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Abstract. For the strictly stationary AR(k) process Z, = A(Z,_,) + q,, with i;R* - R,
Z_=[Z,_.Z, 4 ..., Z,_,] and {a,} an independent identically distributed white noise
process, we partially characterize the A for which the stationary distribution of Z, is
normal.
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1. INTRODUCTION

Consider the strictly stationary AR(k) process
Zy=MZ 1)+ a (1.1)

where Z, \ =[Z, ,Z, 5,...,Z, ], the {a,} are independent identically distrib-
uted (iid) zero-mean random variables and 1:R* — R is a measurable function.
In what follows we provide partial answers to the question: For which A does Z,
have a normal stationary distribution?

We assume without loss of generality that the marginal stationary distribution
of (1.1) is N(O, 1). Then by Cramer’s theorem (Lukacs, 1960, p. 173) both A(Z,_ )
and @, must have normal distributions which we will take throughout to be
N(0, 1 — o%) and N(0, ¢?) respectively.

2. FIRST-ORDER PROCESSES .
Throughout this section we assume a first-order model so that (1.1) becomes |

Zi=M, )+ a 2.1)

THEOREM 2.1. The only differentiable ’s for which the stationary distribution of
(2.1) is normal are linear.

ProGF. Assume that Z,_, ~N(0, 1), AZ,_,} ~ N(0, 1 — ¢?). We first show
that 1 is monotone. Suppose that it is not. Then 4 has a local maximum or
minimum at some z € B, and A'(z) = 0. If M(d), m(8) are the maximum and
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minimum of X on [z — &, z + ], and if &( - ) is the N(0, 1) cumulative distribu-
tion function, we have

Pz + 8) — Dz — d)

0 < 2¢'(z) = lim

a—0 5
< i Dm0 < LR MO} _,
8—+0

The last equality is obtained because

LHm M =0,
§-0 g

Thus, by contradiction, 4 is monotone. Assume that it is strictly increasing. Then
D) = PUHZ, ;) < (1 — 6)22)
= P[Z, 1 < A7H(1 — 02)22}]
= LA H(1 — 6)2)]
which implies Az) = (1 — 6%)"*z. Similarly, A strictly decreasing implies

Az) = —(1 — ¢}z, B

However, Theorem 2.1 does not hold for merely continuous 4 as the following
example shows. Assume that a, ~ N(0, ¢?), some UES 62 <1 and define 4 on
[0, o) by
21 — a2z 0<gzgd
{y (G<z<3
(1 -4z -3) (2<z<?)
(1 — aHt?z (z > 1)

- _ z z 3
C l(Z) =@ 1I:q§{(1 . 0.2)1,/2} - @{4(1 _ 0.2)1,’2 WZ}

b4

Extend 4 to (—oo, 0) by skew symmetry, ie. M(—z)= —A(z), z 0. Then 1 as
described is continuous and, with this 4, (2.1) has an N(0, 1) stationary distribu-
tion.

Az) =

where

TuroREM 2.2, If A in (2.0) is 1 — 1 and measurable and if | A(z}| = (1 — o)1 z|
almost everywhere {a.e.), then (2.1} has an N(0, 1) stationary distribution.

ProoF. Since Ais 1 — 1 and [A{z)| = (1 — 6%)"*| 2| a.e, 4 must be skew sym-.
metric. If A = {z € R: A(z) = (1 — ¢)"/%z}, then A is symmetric: z € Aiff —z e A.
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Thenif Z,_; ~ N(0, 1),

z
P{MZ, )<z} = P{Zz~1 < TP Z, 1€ A}
z
+ P{—Zrl éa“:““az)“f;z AR A}
= PZ < __ "
t (I . o.2)1f2
so that AZ, ) ~ N{0, 1 — ¢?) which implies the result. [ ]

Whether or not the converse of Theorem 2.2 is true is, as far as we know, an
open question. However, if A leaves a suitable second measure invariant, then the
converse holds. Specifically, if @(-) is the N{0, 1) measure ®(4) = f1o(x) ds,
where @(x) is the N(0, 1} density, we set the following condition:

There is a measure g equivalent to @ on R with a Radon-Nikodym derivative
du/d® satisfying

(i) (Ap/dd)(z,) = (dps/dP)(z,) implies |z, | = | z; | ae. ©
(i) # is invariant under the normalized transformation (- )=Ai{-})
(1 — B2

THEOREM 2.3. If 2 in (2.1) is 1 — 1 and measurable with A~ % measurable and if
condition (C) is satisfied, then process (2.1) has an N(0, 1) stationary distribution
only if | Az)| = (1 — ¢)'?|z]| ae.

Proor. Let o(z) = A(2)/(1 — ¢*)%. As in Halmos (1936, p. 85), for any A mea-
surable,

du
L o {2(2)} dP(z) = u{t(A)}
: = p(A4)

- | %) angy

so that
d
% {2(z)} = d—"‘ () ae.
By assumption then | #(z)| = | z| a.e. and the result follows. B

ReMARK 2.1 Two measures u which satisfy condition (C) are the Lebesgue
measure and the N(0, %) measure, §2 # 1. If u is taken to be one of these a result
obtained by Ghosh (1969) follows.
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3. HIGHER-ORDER PROCESSES

In this section we assume that the process has the form (LI) with k> 1. It is
natural to ask, as we did in the previous section, for which A the stationary
distribution of {1.1) is normal. However, since the marginal stationary distribu-
tion of Z, does not determine the joint distribution of Z,, there is little hope of
characterizing 2 by this univariate distribution alone,

One natural generalization of the characterization of A by the normal marginal
distribution in the first-order case is to require the k-dimensional stationary dis-
tribution of Z, to be multivariate normal. Theorem 2.1 is then generalized by the
following theorem. ‘

THEOREM 3.1. Suppose that 1 is continuous and that its ith partial derivative
exists everywhere for some 1 <i< k. If the stationary distribution of Z, and of

(2.2, 1, ..., Z 110, MZ), Ziiv iy Zy i 1] ave both k-variate normal, then A
is linear.
Proor. Let A{Z)=1[2,, Z,_,, ... Liiia, M2), Z,_,, ..., Z, _z+1]). Assume

that Z, ~ N(0, Q) and 2(Z) ~ N, X). Define Z, , to be the (k — 1)-dimensional
vector consisting of Z, with its ith component removed. Let X, be the
(k — 1) x (k — 1) matrix obtained from X by deleting the ith row and column and
similarly for Q,. Let a; and ;; denote the (i, j)th entries in % and O respectively
and let

a;=[o,, ..., Tiyi—1s Tpig 1 oons O]’y
;= [y, ..., W3 1-12 Oy 415 00y Dy ]
We then have that the distribution of

MZ) — o} Eiil‘zt,:'
(0s — o} x° 10’1)1"2

E(Zz) =

given Z, ,is N(0, 1), as is the distribution of

rey—1
7 L @i i
Li= -1, 31/2 |
(o — o} Q o) |

also given Z, ;. Tt follows from the proof of Theorem 2.1 that, given Z
Nz)=2, o Nz)=-Z_,
' Suppose that the former holds, without loss of generality, Then

ti

UZ)=04Z, 14, — 0, 071Z, ) + X Z, ,
=62 i1+ (o7 — 9, ) Ei_l Z, (3.1)
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where
Al 142
5. = {05 — 6 "0y !
b oy — o Qs_lwi)uz
Because of continuity, it follows that 2 is a linear function of Z, . 2|

ReMark 3.1. If we asssume that the stationary distribution of process (1.1)
is N(0, 1) and that of A{(Z) is N(0, 1 — ¢%), then w; = 1, 0, = 1 — ¢ and, since
Q; = X; and @, = g;, (3.1) simplifies to

$Zioy +(1-8)0 57,

where

5 - (1 —¢*—a X ta)'?
= oz et

Remark 3.2. Implicit in the proof of Theorem 3.1 is the following construction
of nonlinear noncontinuous A which otherwise satisfy the conditions of the
theorem. For any measurable 4 in R* ™' define

MZ)=8,Z,; 1 + (0, — ;)L 1Zt,i (Z, ;e A)
= —8Z + oI+ @) Z (Z,: ¢ A).
Then if Z, ~ N(0, ), A(Z,) ~ N, 2).
Theorem 3.2 is an analog of Theorems 2.2 and 2.3 for the kth-order process

(1.1), in which the measure p of condition (C) is taken to be the Lebesgue
measure, yielding the following condition:

the transformation z: R* — R* defined by
()= QXTI ) ()
preserves Lebesgue measure.

Here A;, € and X are as defined in the proof of Theorem 3.1, and the powers %
and — % signify the usual square root of a symmetric positive definite matrix and
its inverse respectively.

THEOREM 3.2, Suppose that A in (1.1) is such that for some 1 < i<k A, is I — 1
and measurable with A7 ! measurable, and that condition (C') holds. Then the sta-
tionary distributions of Z, and A{Z,) are both k-variate normal if and only if

Ay EZ lidr) =70 iz ae.

Proor. Necessity follows in essentially the same way as in the proof of
Theorem 2.3. To show sufficiency we note that since t preserves Lebesgue
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‘Tneasure, so does
. TAI(Z) — ﬂ,: ].(ZUZQ—MZZ).

Then if Z, ~ N(0, Q) we have, for A measurable in R, K = (27)"%2 Q| 112,

m ,Q, 1
P{d(Z)e A} = K exp( z z) dz
vt HA) 2
" AV E 1,
_x exp{ﬁ {2z ll(Z)} iz
v‘l_lﬂfﬂ 2
il ’97 I
=K exp(gz 2 z) dz
wA
= P{?z € A]s
so that 7(Z,) ~ N(0, ©). It follows that A(Z,) ~ N0, Z). =

REMARK 3.3. In order for 4; to be 1 — 1 and measurable with measurable
inverse it suffices that A possesses these properties in its ith component, with the
other k — 1 components fixed.

RemArk 3.4. Eidlin (1971) has shown that algebraic and entire transformations
of finite order from R* to R* that preserve normality must preserve equidensity
contours of the distribution density. This implies the result of Theorem 2.1 for
such A. In addition, the equality at the end of the statement of Theorem 3.2 is
precisely the preservation of equidensity contours of the distribution density of 7.
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