AUTOREGRESSIVE PROCESSES WITH NORMAL STATIONARY DISTRIBUTIONS

By Joseph D. Petruccelli

Worcester Polytechnic Institute, USA

First version received January 1988

Abstract. For the strictly stationary AR(k) process $Z_t = \lambda(Z_{t-1}) + a_t$, with $\lambda: \mathbb{R}^k \to \mathbb{R}$, $Z_{t-1} = [Z_{t-1}, Z_{t-2}, \ldots, Z_{t-k}]$ and $\{a_t\}$ an independent identically distributed white noise process, we partially characterize the λ for which the stationary distribution of Z_t is normal.

Keywords. AR processes; stationary distribution.

1. INTRODUCTION

Consider the strictly stationary AR(k) process

$$Z_t = \lambda(Z_{t-1}) + a_t \tag{1.1}$$

where $Z_{t-1} = [Z_{t-1}, Z_{t-2}, \dots, Z_{t-k}]$, the $\{a_t\}$ are independent identically distributed (i.i.d) zero-mean random variables and $\lambda : \mathbb{R}^k \to \mathbb{R}$ is a measurable function. In what follows we provide partial answers to the question: For which λ does Z_t have a normal stationary distribution?

We assume without loss of generality that the marginal stationary distribution of (1.1) is N(0, 1). Then by Cramer's theorem (Lukacs, 1960, p. 173) both $\lambda(Z_{t-1})$ and a_t must have normal distributions which we will take throughout to be N(0, 1 - σ^2) and N(0, σ^2) respectively.

2. FIRST-ORDER PROCESSES

Throughout this section we assume a first-order model so that (1.1) becomes

$$Z_t = \lambda(Z_{t-1}) + a_t \tag{2.1}$$

THEOREM 2.1. The only differentiable λ 's for which the stationary distribution of (2.1) is normal are linear.

PROOF. Assume that $Z_{t-1} \sim N(0, 1)$, $\lambda(Z_{t-1}) \sim N(0, 1 - \sigma^2)$. We first show that λ is monotone. Suppose that it is not. Then λ has a local maximum or minimum at some $z \in \mathbb{R}$, and $\lambda'(z) = 0$. If $M(\delta)$, $m(\delta)$ are the maximum and

0143-9782/89/01 065-06 \$02.50/0 JOURNAL OF TIME SERIES ANALYSIS Vol. 10, No. 1 © 1989 J. D. Petruccelli

minimum of λ on $[z - \delta, z + \delta]$, and if $\Phi(\cdot)$ is the N(0, 1) cumulative distribution function, we have

$$0 < 2\Phi'(z) = \lim_{\delta \to 0} \frac{\Phi(z+\delta) - \Phi(z-\delta)}{\delta}$$

$$\leq \lim_{\delta \to 0} \frac{P\{m(\delta) \leq \lambda(Z_{t-1}) \leq M(\delta)\}}{\delta} = 0.$$

The last equality is obtained because

$$\lim_{\delta \to 0} \frac{M(\delta) - m(\delta)}{\delta} = 0.$$

Thus, by contradiction, λ is monotone. Assume that it is strictly increasing. Then

$$\begin{split} \Phi(z) &= P\{\lambda(Z_{t-1}) \leqslant (1 - \sigma^2)^{1/2} z\} \\ &= P[Z_{t-1} \leqslant \lambda^{-1} \{(1 - \sigma^2)^{1/2} z\}] \\ &= \Phi[\lambda^{-1} \{(1 - \sigma^2)^{1/2} z\}] \end{split}$$

which implies $\lambda(z) = (1 - \sigma^2)^{1/2}z$. Similarly, λ strictly decreasing implies $\lambda(z) = -(1 - \sigma^2)^{1/2}z$.

However, Theorem 2.1 does not hold for merely continuous λ as the following example shows. Assume that $a_t \sim N(0, \sigma^2)$, some $0 < \sigma^2 < 1$ and define λ on $[0, \infty)$ by

$$\lambda(z) = \begin{cases} 2(1 - \sigma^2)^{1/2} z & (0 \le z \le \frac{1}{2}) \\ \zeta(z) & (\frac{1}{2} < z \le \frac{3}{4}) \\ (1 - \sigma^2)^{1/2} (4z - 3) & (\frac{3}{4} < z \le 1) \\ (1 - \sigma^2)^{1/2} z & (z > 1) \end{cases}$$

where

$$\zeta^{-1}(z) = \Phi^{-1} \left[\Phi \left\{ \frac{z}{(1 - \sigma^2)^{1/2}} \right\} - \Phi \left\{ \frac{z}{4(1 - \sigma^2)^{1/2}} - \frac{3}{4} \right\} + \Phi \left\{ -\frac{z}{2(1 - \sigma^2)^{1/2}} \right\} \right] \qquad (-(1 - \sigma^2)^{1/2} \leqslant z \leqslant 0).$$

Extend λ to $(-\infty, 0)$ by skew symmetry, i.e. $\lambda(-z) = -\lambda(z)$, $z \ge 0$. Then λ as described is continuous and, with this λ , (2.1) has an N(0, 1) stationary distribution.

THEOREM 2.2. If λ in (2.1) is 1-1 and measurable and if $|\lambda(z)| = (1-\sigma^2)^{1/2}|z|$ almost everywhere (a.e.), then (2.1) has an N(0, 1) stationary distribution.

PROOF. Since λ is 1-1 and $|\lambda(z)| = (1-\sigma^2)^{1/2}|z|$ a.e., λ must be skew symmetric. If $A = \{z \in \mathbb{R} : \lambda(z) = (1-\sigma^2)^{1/2}z\}$, then A is symmetric: $z \in A$ iff $-z \in A$.

Then if $Z_{t-1} \sim N(0, 1)$,

$$\begin{split} P\{\lambda(Z_{t-1}) \leqslant z\} &= P\bigg\{Z_{t-1} \leqslant \frac{z}{(1-\sigma^2)^{1/2}}, \, Z_{t-1} \in A\bigg\} \\ &+ P\bigg\{-Z_{t-1} \leqslant \frac{z}{(1-\sigma^2)^{1/2}}, \, Z_{t-1} \notin A\bigg\} \\ &= P\bigg\{Z_{t-1} \leqslant \frac{z}{(1-\sigma^2)^{1/2}}\bigg\} \end{split}$$

so that $\lambda(Z_{t-1}) \sim N(0, 1 - \sigma^2)$ which implies the result.

Whether or not the converse of Theorem 2.2 is true is, as far as we know, an open question. However, if λ leaves a suitable second measure invariant, then the converse holds. Specifically, if $\Phi(\cdot)$ is the N(0, 1) measure $\Phi(A) = \int_A \varphi(x) ds$, where $\varphi(x)$ is the N(0, 1) density, we set the following condition:

There is a measure μ equivalent to Φ on $\mathbb R$ with a Radon-Nikodym derivative $d\mu/d\Phi$ satisfying

(i)
$$(d\mu/d\Phi)(z_1) = (d\mu/d\Phi)(z_2)$$
 implies $|z_1| = |z_2|$ a.e. (C)

(ii) μ is invariant under the normalized transformation $\tau(\cdot) = \lambda(\cdot)/(1 - \sigma^2)^{1/2}$.

Theorem 2.3. If λ in (2.1) is 1-1 and measurable with λ^{-1} measurable and if condition (C) is satisfied, then process (2.1) has an N(0, 1) stationary distribution only if $|\lambda(z)| = (1-\sigma^2)^{1/2} |z|$ a.e.

PROOF. Let $\tau(z) = \lambda(z)/(1 - \sigma^2)^{1/2}$. As in Halmos (1956, p. 85), for any A measurable,

$$\int_{A} \frac{d\mu}{d\Phi} \left\{ \tau(z) \right\} d\Phi(z) = \mu \left\{ \tau(A) \right\}$$

$$= \mu(A)$$

$$= \int_{A} \frac{d\mu}{d\Phi} (z) d\Phi(z)$$

so that

$$\frac{d\mu}{d\Phi} \left\{ \tau(z) \right\} = \frac{d\mu}{d\Phi} \left(z \right) \text{ a.e.}$$

By assumption then $|\tau(z)| = |z|$ a.e. and the result follows.

REMARK 2.1 Two measures μ which satisfy condition (C) are the Lebesgue measure and the N(0, δ^2) measure, $\delta^2 \neq 1$. If μ is taken to be one of these a result obtained by Ghosh (1969) follows.

3. HIGHER-ORDER PROCESSES

In this section we assume that the process has the form (1.1) with k > 1. It is natural to ask, as we did in the previous section, for which λ the stationary distribution of (1.1) is normal. However, since the marginal stationary distribution of Z_t does not determine the joint distribution of Z_t , there is little hope of characterizing λ by this univariate distribution alone.

One natural generalization of the characterization of λ by the normal marginal distribution in the first-order case is to require the k-dimensional stationary distribution of Z_t to be multivariate normal. Theorem 2.1 is then generalized by the following theorem.

THEOREM 3.1. Suppose that λ is continuous and that its ith partial derivative exists everywhere for some $1 \le i \le k$. If the stationary distribution of Z_t and of $[Z_t, Z_{t-1}, \ldots, Z_{t-i+2}, \lambda(Z_t), Z_{t-i}, \ldots, Z_{t-k+1}]$ are both k-variate normal, then λ is linear.

PROOF. Let $\lambda_i(Z_t) = [Z_t, Z_{t-1}, \ldots, Z_{t-i+2}, \lambda(Z_t), Z_{t-i}, \ldots, Z_{t-k+1}]'$. Assume that $Z_t \sim N(\mathbf{0}, \Omega)$ and $\lambda_i(Z_t) \sim N(\mathbf{0}, \Sigma)$. Define $Z_{t,i}$ to be the (k-1)-dimensional vector consisting of Z_t with its *i*th component removed. Let Σ_i be the $(k-1) \times (k-1)$ matrix obtained from Σ by deleting the *i*th row and column and similarly for Ω_i . Let σ_{ij} and ω_{ij} denote the (i, j)th entries in Σ and Ω respectively and let

$$\boldsymbol{\sigma}_i = [\sigma_{i1}, \ldots, \sigma_{i, i-1}, \sigma_{i, i+1}, \ldots, \sigma_{ik}]',$$

$$\boldsymbol{\omega}_i = [\omega_{i1}, \ldots, \omega_{i, i-1}, \omega_{i, i+1}, \ldots, \omega_{ik}]'.$$

We then have that the distribution of

$$\tilde{\lambda}(\boldsymbol{Z}_t) = \frac{\lambda(\boldsymbol{Z}_t) - \boldsymbol{\sigma}_i' \; \boldsymbol{\Sigma}_i^{-1} \boldsymbol{Z}_{t, i}}{(\boldsymbol{\sigma}_{ii} - \boldsymbol{\sigma}_i' \; \boldsymbol{\Sigma}_i^{-1} \boldsymbol{\sigma}_i)^{1/2}}$$

given $Z_{t,i}$ is N(0, 1), as is the distribution of

$$\tilde{\mathbf{Z}}_{t,i} = \frac{\mathbf{Z}_{t-i+1} - \boldsymbol{\omega}_{i}' \boldsymbol{\Omega}_{i}^{-1} \mathbf{Z}_{t,i}}{(\boldsymbol{\omega}_{ii} - \boldsymbol{\omega}_{i}' \boldsymbol{\Omega}_{i}^{-1} \boldsymbol{\omega}_{i})^{1/2}}$$

also given $Z_{t,i}$. It follows from the proof of Theorem 2.1 that, given $Z_{t,i}$,

$$\tilde{\lambda}(\mathbf{Z}_t) = \tilde{\mathbf{Z}}_{t,i}$$
 or $\tilde{\lambda}(\mathbf{Z}_t) = -\tilde{\mathbf{Z}}_{t,i}$.

Suppose that the former holds, without loss of generality. Then

$$\lambda(\mathbf{Z}_{t}) = \delta_{i}(\mathbf{Z}_{t-i+1} - \boldsymbol{\omega}_{i}' \boldsymbol{\Omega}_{i}^{-1} \mathbf{Z}_{t,i}) + \boldsymbol{\sigma}_{i}' \boldsymbol{\Sigma}_{i}^{-1} \mathbf{Z}_{t,i}$$

$$= \delta_{i} \mathbf{Z}_{t+i-1} + (\boldsymbol{\sigma}_{i}' - \delta_{i} \boldsymbol{\omega}_{i}') \boldsymbol{\Sigma}_{i}^{-1} \mathbf{Z}_{t,i}$$
(3.1)

where

$$\delta_i = \frac{(\sigma_{ii} - \sigma_i' \Sigma_i^{-1} \sigma_i)^{1/2}}{(\omega_{ii} - \omega_i' \Omega_i^{-1} \omega_i)^{1/2}}.$$

Because of continuity, it follows that λ is a linear function of Z_t .

REMARK 3.1. If we assume that the stationary distribution of process (1.1) is N(0, 1) and that of $\lambda(\mathbf{Z})$ is N(0, $1 - \sigma^2$), then $\omega_{ii} = 1$, $\sigma_{ii} = 1 - \sigma^2$ and, since $\Omega_i = \Sigma_i$ and $\omega_i = \sigma_i$, (3.1) simplifies to

$$\delta_i Z_{t+i-1} + (1-\delta_i)\sigma_i' \Sigma_i^{-1} Z_{t,i}$$

where

$$\delta_i = \frac{(1 - \sigma^2 - \sigma_i' \Sigma_i^{-1} \sigma_i)^{1/2}}{(1 - \sigma_i' \Sigma_i^{-1} \sigma_i)^{1/2}}.$$

REMARK 3.2. Implicit in the proof of Theorem 3.1 is the following construction of nonlinear noncontinuous λ which otherwise satisfy the conditions of the theorem. For any measurable A in \mathbb{R}^{k-1} define

$$\lambda(\mathbf{Z}_{t}) = \delta_{i} \mathbf{Z}_{t+i-1} + (\sigma'_{i} - \delta_{i} \omega'_{i}) \Sigma_{i}^{-1} \mathbf{Z}_{t, i} \qquad (\mathbf{Z}_{t, i} \in A)$$

$$= -\delta_{i} \mathbf{Z}_{t+i-1} + (\sigma'_{i} + \delta_{i} \omega'_{i}) \Sigma_{i}^{-1} \mathbf{Z}_{t, i} \qquad (\mathbf{Z}_{t, i} \notin A).$$

Then if $Z_t \sim N(0, \Omega)$, $\lambda_i(Z_t) \sim N(0, \Sigma)$.

Theorem 3.2 is an analog of Theorems 2.2 and 2.3 for the kth-order process (1.1), in which the measure μ of condition (C) is taken to be the Lebesgue measure, yielding the following condition:

the transformation $\tau: \mathbb{R}^k \to \mathbb{R}^k$ defined by

$$\tau(\,\cdot\,) = \Omega^{1/2} \Sigma^{-1/2} \lambda_i(\,\cdot\,) \tag{C'}$$

preserves Lebesgue measure.

Here λ_i , Ω and Σ are as defined in the proof of Theorem 3.1, and the powers $\frac{1}{2}$ and $-\frac{1}{2}$ signify the usual square root of a symmetric positive definite matrix and its inverse respectively.

THEOREM 3.2. Suppose that λ in (1.1) is such that for some $1 \le i \le k \lambda_i$ is i = 1 - 1 and measurable with λ_i^{-1} measurable, and that condition (C') holds. Then the stationary distributions of \mathbf{Z}_i and $\lambda_i(\mathbf{Z}_i)$ are both k-variate normal if and only if

$$\lambda_i(z)'\Sigma^{-1}\lambda_i(z) = z'\Omega^{-1}z$$
 a.e.

PROOF. Necessity follows in essentially the same way as in the proof of Theorem 2.3. To show sufficiency we note that since τ preserves Lebesgue

measure, so does

$$\tau^{-1}(z) = \lambda_i^{-1}(\Sigma^{1/2}\Omega^{-1/2}z).$$

Then if $Z_t \sim N(0, \Omega)$ we have, for A measurable in \mathbb{R}^k , $K = (2\pi)^{-k/2} |\Omega|^{-1/2}$.

$$P\{\tau(Z_t) \in A\} = K \int_{\tau^{-1}(A)} \exp\left(-\frac{z'\Omega^{-1}z}{2}\right) dz$$

$$= K \int_{\tau^{-1}(A)} \exp\left\{-\frac{\lambda_i(z)'\Sigma^{-1}\lambda_i(z)}{2}\right\} dz$$

$$= K \int_A \exp\left(-\frac{z'\Omega^{-1}z}{2}\right) dz$$

$$= P(Z_t \in A),$$

so that $\tau(Z_t) \sim N(0, \Omega)$. It follows that $\lambda_i(Z_t) \sim N(0, \Sigma)$.

REMARK 3.3. In order for λ_i to be 1-1 and measurable with measurable inverse it suffices that λ possesses these properties in its *i*th component, with the other k-1 components fixed.

REMARK 3.4. Eidlin (1971) has shown that algebraic and entire transformations of finite order from \mathbb{R}^k to \mathbb{R}^k that preserve normality must preserve equidensity contours of the distribution density. This implies the result of Theorem 2.1 for such λ . In addition, the equality at the end of the statement of Theorem 3.2 is precisely the preservation of equidensity contours of the distribution density of τ .

ACKNOWLEDGEMENT

Theorem 2.1 and its proof are due to C. Z. Wei. The author thanks Professor Wei for providing this result as an alternative to the author's result which required λ to be continuously differentiable.

REFERENCES

EIDLIN, V. L. (1971) Certain classes of transformations that preserve Gaussian measure. Vestn. Leningrad Univ. 7, 153-54.

GHOSH, J. K. (1969) Only linear transformations preserve normality. Sankhya, Ser. A 31, 309-12.

HALMOS, P. R. (1956) Lectures on Ergodic Theory. New York: Chelsea.

LUKACS, E. (1960) Characteristic Functions. New York: Hafner.