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 Sankhy? : The Indian Journal of Statistics
 1985, Volume 47, Series A, Pt. 1, pp. pp. 36-46.

 MAXIMIN OPTIMAL STOPPING FOR NORMALLY
 DISTRIBUTED RANDOM VARIABLES

 By JOSEPH D. PETRUCCELLI
 Worcester Polytechnic Institute, Massachusetts

 SUMMARY. The following optimal stopping problem is considered : Xlt .., Xn i.i.d.
 N(fi, cr2) random variables, (/?, <j2) unknown, are observed sequentially. If observation is
 terminated immediately after Xj is observed a payoff of (Xj-fi)!^ is obtained. A best invariant
 stopping rule d(n) is found and is shown to be maximin. In addition it is shown that lim tt?>oo
 EX?(n)!EX[n] = 1 where X[nj = max [Xx, . ., Xn).

 1. Introduction
 1.1. Preliminaries. Let Xl9 X2, ..., be i.i.d. random variables having

 a continuous cumulative distribution function (c.d.f.) F. The Z's are observed
 sequentially and we may terminate observation at any step j with a resulting
 payoff of Xj.

 Moser (1956) and Guttman (1960) found the optimal stopping rule?the
 rule which maximizes EXX over all stopping rules r?when F is known and
 a maximum of n observations are possible (see also Gilbert and Mosteller,
 1966). This rule has the form

 y(n) = min{n, min {k : Xk > R(n?k)}} ... (1.1) *^i

 with the i?'s given by

 R(l) = EXV R(k+l) = E(X1I(X1 > R(k)))+R(k)F(R(k)), k > 1. ... (1.2)
 The above is known as the full information case. Other researchers

 have considered various partial information cases, in which it is known only
 that F is a member of a certain family of distributions, &.

 Sahaguchi (1961) and DeGroot (1968), for example, considered the problem
 in which & is the location parameter family of N(/i, 1) distributions. In
 their formulation there was a known cost function for taking observations
 and the payoff for taking the &-th observation Xk was Xk itself. The approach
 of both investigators was Bayesian, with a normal prior assumed for ?i.

 More recently Stewart (1978) studied the problem in which & is the
 family of all uniform distributions, U[cc, ?], a < /?. His approach was also

 AMS (1980) subject classification : 60G40; 62L15; 62C20.
 Key ivords and phrases : Optimal stopping; Invariance.
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 MAXIMIN OPTIMAL STOPPING  37

 Bayesian with a conjugate prior assumed for (a, ?). Samuels (1979, 1981)
 found minimax stopping rules, which turn out to be best invariant stopping
 rules, for this same problem with loss (Xk?a)l(??oc).

 In this paper we consider the optimal stopping problem in which & is

 the family of all normal distributions {^u,a)ae^o{^u,a being the N(p, a2)
 a > 0

 c.d.f.) and (Xk?p)?cr is the payoff for choosing the k-th observation when
 F?(T is the c.d.f. of the X's. In Section 2 a best invariant stopping rule S(n)
 is derived when a maximum of n observations is possible. This rule is then
 shown to be maximin.

 In Section 3 it is shown that one can do as well asymptotically with the
 maximin rule as one can do with complete availability of observations. That
 is, for any underlying normal distribution Fua

 lim (SXKJEXM) = 1 W?> 00

 where X[n] = max^, ..., Xn}.

 1.2. Notation. O(-) is the standard normal c.d.f. i/r(n, ) is the c.d.f.
 of Student's t distribution with n degrees of freedom. Xk is the sample mean
 of Xv ...,Xk.

 S2 = k-> ifr-Xtf

 Xx, X2, ... ~i.i.d. F e & are the observations. Xn = (Xx, ..., Xn); X'n is
 the transpose of Xn.

 For a parametric family of distributions 3- = {F^qsqEq, Pq will denote

 expectation and probability taken with respect to F~.

 2. The stopping rule
 2.1. A best invariant rule. We assume :

 (i) ^ = {F?t9} x where F?t9 is the N(/i, or2) c.d.f.
 a> 0

 (ii) There are n available observations, Xx, ..., Xn ~ i.i.d. F?p?.
 (iii) The gain to the observer for choosing Xk is

 G((p, <T), Xn, k) = (Xk-p)lcr.

 Note that the gain is invariant under location and scale changes.
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 38 JOSEPH D. PETRUCCEIXI

 Let

 Z2 = (X2-12)?$2 = 1 ifX^Ji
 - -1 i?X2<X1

 and for k > 3,

 Zk = (Xjc?Xjc^lSjc^.

 Then Zj = (Z2, ..., Zy), j ^ 2, is a maximal invariant, after X1? ..., Xj
 have been observed, for the decision problem described. Further the Z's
 have the desirable property of being mutually independent.

 Let

 T(n, 2, Z2) = EUi0(X2\Z2) = an^2+ii, Z2 = +1
 = -O-TT-W+fl, Z2= -1

 and for i = 3, ..., n let

 T(n, k, Zk) = E^(Xk\Zk) = ti+<rc(k)Zk\(l + Z\\kfi2,

 where c(k) = (2(k-l))^2r(k?2)lkT((k-l)?2).

 Define

 V(n, n, Zn) = T(n, n, ZJ

 V(n, k, Zk) = max{?>, i, Z*), ^,,(F(n, fe+1, Z*+1) | Z*)}
 i = 2, ...,W?1.

 A best invariant stopping rule will choose the first observation Xk for
 which

 T(n,k,Zk)> E?JV(n,k+l,Zk+1)\Zk). ... (2.1)

 (2.1) can be shown to be the rule : " Choose X2 if X2 > Xx and
 7T~1/2 > Jf(^, 2); otherwise choose Xk if ? is the smallest integer exceeding
 2 for which

 Zk > M(n, Jfc)/(c2(fe)-J!i2(w, i)/*;)1'2".

 The ilf(ii, &) are defined recursively by :
 ?f(n, ft?1) ? 0

 j|f(rc, J) = M(n, l+l)\?r(l-l, (l-\)V2M(n, l+l)?((l+l)c2(l+l)

 -M2(n, Z+l))1/2)+(Z/27r(Z+l))1/2(((Z+l)c2(Z +-1)

 -Jf2^, Z+i))/(i+i)c2(Z+i))<i-iV2 if M2(n, l+l) < (Z+l)c2(Z+l)
 = M(n, l+l) otherwise.
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 MAXIMIN OPTIMAL STOPPING  39

 In addition, if r(n) is the best invariant rule described above, then

 Eu><J(Xtin)-v)l(r = M(n, 2) if n^2 < M(n, 2)
 = (M(n, 2)+7T-1/2)/2 if 7T-1*'2 > M(n, 2).

 2.2. IFAe^ is a best invariant rule maximum ? In view of the Hunt
 Stein theorem it is natural to ask if the best invariant rules derived above

 are maximin. That is, if for r(n) given in Section 2.1 and An the collection
 of all stopping rules based on {X{}*=1, 1 < k < n,

 E,iAXtin)?p)l<T = SUP inf ^j.,A-/0/cr.
 SeAn(ju,,(r)e7exye+

 We assume a location-scale parameter family of distributions
 & = {jF^J ^-, wehere F?a(x) = F09l((x?p,)lcr). We further assume that

 a > o

 i^><T has a density jf^. The observations Xx, ...,Xn are sequentially and
 independently observed from an unknown distribution in &.

 Let G((/i, or), Xn, i) be a nonnegative function which denotes the gain
 for choosing X{ when Xn = (J^, ..., Xn) is the vector of observations and
 FUf(r is the underlying distribution. Assume G is invariant under location
 scale changes. It follows from a more general version of the Hunt-Stein
 theorem (Kiefer, 1957) that if G is bounded then a best invariant stopping
 rule will be maximin. Samuels (1979) gives a simplified derivation of Kiefer's
 result under the condition that & be the family of uniform distributions.
 By modifying his proof (see Appendix A) we obtain the following generaliza
 tion :

 Lemma 2.1 : // there is a g : 72n ?? TZ+ for which G((0, 1), xn, i)g(xn) is
 n

 bounded for each i ? 2, ..., n and U f0 x(Xi)?g(xn) is integrable on f?n, then for i = i '

 each stopping rule r ^ 2 based on Xv ..., Xn and any ? > 0, there is an invariant

 stopping rule r' for which E0tl(G((0, 1), Xn, r'))

 > inf E^(Q((?i,&),Xn,T)-i.
 (?Jt,cr)e72xJ2+

 It follows immediately

 Theorem 2.1 : If the conditions of Lemma 2.1 are satisfied and if there
 is a best invariant stopping rule r among those taking at least two observations,
 then r is maximin.

 Consider now the special choice of & as the family of all normal distribu
 tions, with gain function G((pt, cr), Xn, i) = (Xi?p)?cr. We may choose
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 40  JOSEPH D. PET?UCOEIXl

 g(xn) = ex?{?(xnx'^m to satisfy the conditions of Lemma 2.1, and thus
 of Theorem 2.1. It is intuitively clear?and it can be shown rigorously (see
 Appendix B)?that for n ^ 3 no reasonable stopping rule will ever choose Xv
 If n = 2 then either the rule r = 1 or r = 2 or any randomized combination
 of the two is maximin. Therefore

 Corollary 2.1 : If & is the family of all normal distributions and if
 G((fi, cr), Xn, i) = (Xi?/i)lcr then for w > 2 the best invariant rule of Section 2.1
 is maximin.

 3. ASYMPTOTICS

 We assume without loss of generality that Xv ..., Xn are standard normal
 random variables. We will prove :

 Theorem 3.1 : Suppose & is the family of all normal distributions and let
 r(n) be the best invariant (maximin) stopping rule of Section 2.1. Let
 X[n] = max{X1, ..., XJ, Then

 Urn (EXt{n)IEX[n]) = 1. n ?> oo

 Proof : Assume Xv X2, ... i.i.d. N(0, 1) and let Zk, k > 2 be as defined
 in Section 2.1. Let 6 > 0.

 Define the invariant stopping rule

 <r*(ri) = min{w/2 < k < n : Zk > (1?e)\/2 log n) if such k exists
 = n+l otherwise.

 Let (x(n) = mm{cr*(n), n}. It is well known that

 This, plus results of Resnick and Tompkins (1973) implies

 X[n]IV2lo?n ^ L

 Since Sk ^> 0 and Sk h> 1 one can show that

 max Zjcl\/2 log n ?> 1.
 n/2 ^ k ^ n

 Now E(XaM)lV2 log^n > (l-t) J S^^dP
 {<t*(?)<?}

 {<r*(n)<n} {<r*(n)>?}
 ... (3.1)
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 MAXIMIN OPTIMAL STOPPING  41

 By Fatou's lemma
 lim  S SsM-tdP

 > J ?5L V(i?K?} s^n)-xdP = 1. *' n ?> ?

 {cr*(n)<n}

 < ? I ^(n)-i I rfP < ?( sup | X* | )< (2/n)#( sup | Vk I )

 where F?

 w/2^ &? n  l^fc^n

 Using Kolmogorov's inequality

 we have

 P( sup \Vk\>v)^E(V2)lv2,

 E( sup |Ft|<l+i(?(F|)/vVv.  n+1.

 Thus the middle term of (3.1) converges to 0.

 0 as n / XndP\ <LE(\Xn\]
 {cr*(n)>n}

 00.

 Thus  Urn E(X9in))IV2logn^ 1-8.

 and the theorem is proved.

 By computation we obtain the following values for the quantities,
 EXy{n), <!>(EXy{n)), EXt{n) and 9{EXt{n)) :

 TABLE 1. EXPECTED GAINS AND QUANTILES OF EXPEC
 TED GAINS FOR FULL INFORMATION AND BEST

 INVARIANT STOPPING RULES

 EX-yim *(-E7Xy(W)) EXx{n) <fr(lSXt{n))
 2
 3
 4
 5
 10
 50
 100
 500

 1000
 1500
 2000

 .39890
 .62970
 .79037
 .91263

 1.27620
 2.01387
 2.28879
 2.85043
 3.06626
 3.18666
 3.24607

 .65500
 .73560
 .78535
 .81928
 .89906
 .97799
 .98895
 .99782
 .99892
 .99928
 .99941

 0
 .28209
 .44496
 .54071
 .94844

 1.82391
 2.14987
 2.79111
 3.02684
 3.15593
 3.24407

 .50000
 .61106
 .67183
 .70565
 .82855
 .95692
 .98422
 .99737
 .99876
 .99920
 .99941

 2.66n_  .3667

 If Un = n(l?O (EXtin))) then the relation Un = e " gives a good
 fit to these values for 1000 < n < 2000. If anything the fit indicates that

 a 1-6
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 42 JOSEPH B. PBTRUCCELLI

 2 66fi"~^^^
 for larger n the true value of Un will be less than e ' ~ 1+2-66/^.3667.
 Thus it seems that lim Un = 1 (note that it is clear that lim Un ^ 1),

 which is the same asymptotic value as for n(l? <?>(EX[n])).

 This compares with an analogous result when & is taken to be the family
 of all uniform distributions. If for observations Xl9 ..., Xn from some dis
 tribution U[<x, /?] in &, n(n) is a maximin stopping rule, Samuels (1981) has
 shown that

 lim n(l~Ea,?(Xn{n)-a)l(?-a)) = 3-478. n ?> oo

 Appendix A
 Proo/ o/ Lemma 2.1 : This proof is an extension of Samuel's (1979)

 proof to the case of an unbounded gain function and of an arbitrary location
 scale parameter family & satisfying the conditions described.

 For any stopping rule r > 2 based on the observations Xv ..., Xn and
 any (fi, cr) e 0 = f?xy2+ (the parameter space) define an invariant stopping
 rule

 Here the sum of a vector and a scalar has the meaning

 xn+x = (x1+x, x2+x, ..., xn+x).

 Let v be any probability measure on the Borel sets of 0. Let

 ?ix(fi, a) = E?t<r (G((/i, a), xni r)).

 If r is an invariant stopping rule then ?t(/?, er) is constant in r and cr and will
 be denoted ?t.

 We have

 inf gx(ji, cr) < J ??x(ji, o)v(d?i, do), e e

 J i .?{dp, da)^ sup f .

 For any two elements of 0, (?i, cr), (/?', cr'), define

 (fi, cr) o (?'9 cr') = (fi+ii'cr, <r<r')

 and for any subset H Q 0 let

 # o di\ <r') = {(/i, or) o (/i\ (/) : (/i, <t) e H}.
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 MAXIMIN OPTIMAL STOPPING 43

 Let nQ(dp, der) = a~xd?Jida. n0 is an infinite right invariant measure on 0;
 that is for any H Q ?, n0(H o (p, a)) = n0(H). Lemma 2.1 will be proved if
 we can show

 lim J (?t(/i, <r)??t )7Tm(d[i, dor) = 0 ... (A.l)

 where nm(H) = ffQ(HHm)l7r0(Hm) and the i/m are increasing subsets of 0 with
 n0(Hm) < oo. Define for zn e 7?n,

 HiK) = {(/i, a)e@: r(p+azn) = i}.

 Then (a, b) e 0 implies

 H{(zn) o (a, b) = {(/i, a)e? : T(/i+a(zn?a)/b) = i}.

 Now ?t(/?, (r) = S E0iX(G((0, 1), Xn, i)I(r(,?+aXn) = i))

 so that
 J ?t(/i, or)v(dp, da) e

 n

 = J v(d/i, da) ? 2 G((0, 1), ?n, <)/({flCn : r(ta+axn) = f})
 d ^ i-2

 x n /(o,i)v*?
 n

 = S f G((0, I), xn9 i)v(Hi(xn)) n /(0,i)(^)^ ... (A.2)

 e ?>*

 = ?#,??t) J S G((0,l),*n,i)
 n

 X 7({asn : T(^+o-(a5B?a^)/1 x2~xt | ) = *}) n /?..?(x^ }=i

 = S J ?((0, 1), ?B, i)v(?T?(*n) (a*, K-ail ))

 X n f(0A)(x})dx}. ... (A.3) i=i

 The interchange in integration in both (A.2) and (A.3) is possible since
 by assumption

 0((of i), xn, i) n M)

 = [G((0, !),*?, i)y(apjl [ n /(av)/flf(a5B)],
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 44 JOSEPH D. PETRUCCEJXI

 the first factor being bounded, the second integrable on /?*.

 If we could find a right invariant v we would be done. However, since
 all right invariant measures are infinite we must resort to showing (A.l).

 Let Hm = {(/i, or) e 0 : \?i\ < Am, 0 <bm < or < Bm < oo}
 with Am t oo> bm I 0, Bm ? oo and Bm?og Bm = o(-?OT).

 Let 7rm be as described above. Then from (A.2) and (A.3)

 J \%x(fi, cr)??r 17rm(d/?, der)

 n

 = S J G((0, 1), a?n, i) | nm(Hi(xn))?nm(Hi(xn) o (xv | o^?^ | )) |

 n

 xn/,0,n(^. ... (A.4)
 If A(a>J = (xv\x2?x1\ ), then

 7T0({ffi(ay o h(xn)}nHm) = n0{Hi(xn)Hm ? *(??))

 +;r0({(#,(a>J-#TO) o h(xn)}nHm)

 -n0{Hi(xn)Hm o h(xn)-Hm).

 From this we can show that (A.4) is bounded by
 n

 S sup {?((<>, 1), xn, i)g(xn)}
 ?=2 xney?n

 X J (7TQ(HmHHm o h(xn))lnQ(Hm)) ( n f{0il)(xj)lg(xn) )

 x n d^.

 Further we can show that

 n0(HmMIm o h(xn))l7T0(Hm) ->0asm->oo

 for all xn with |#2~~^il > 0

 This completes the proof. D

 Appendix B
 Theorem B.l : Let n > 2. i^or ?Ae optimal stopping problem defined in

 Section 2.1, cmy stopping rule that allows a choice of X? can be beaten in the
 maximin sense by the stopping rule tx == 1.

 Proof : The proof is an extension to the family of all normal distribu
 tions and to the unbounded gain function G(([i, or), xn, i) = (Xi?fi)!^ of
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 MAXIMIN OPTIMAL STOPPING 45

 Samuels' (1979) proof of the same result when the family is that of all uniform
 distributions and the gain functions are bounded. It is clear that Theorem
 B.l could be generalized to other distributional families and unbounded
 gain functions.

 The key step in the proof is the following measure theoretic result :

 If m is Lebesgue measure on 72, A (2 72 a measurable set with
 0 < m(A) < oo, 0 < ? < 1, then there is a finite interal / such that
 m(A f]I) > (1?e)ra(J) (see Halmos, 1950, p. 68).

 Let r be a stopping rule which for some (p, a) has positive probability
 of taking observation Xx. This means if A = {xx : r(xn) = 1}, then m(A) > 0.
 Let { /}?,! be a sequence, ti J, 0. Corresponding to each e? find an I? = (ah b?)
 such that

 m(AC{Il) > (i-f,)m(Ji).

 We may also find {(ph ai) e 72X72+, I > 1} such that

 pi?h9fi(^i 7*) -* 1 as l -> ??

 In particular we choose px = (ai-\-bi)?2, ai ? t}l2(bi?ai). Then for this
 choice of (puai) and Z<^N(0, 1)

 PcWT== l)>l-p(\Z\ >(46i)-1/i)-eJ/V(2ir)Vi->i as l->oo.

 = ? ? (((z*-/!,)/^)/^^) = t))

 where Akf t == [xn : r(aiXn-\-pi) = &}. Let Zl5 ..., Zn be i.i.d. 2^(0, 1) random
 variables and define for I > 1

 It is easy to see that
 v

 Yi~> Zx as I ~? oo.

 Hence there is a subsequence {7^} which converges almost surely to Zx.
 Further | 7/ ) is bounded by

 S [\Zk\H({Zn : |Z*| > l})+i({Zff : |Z*|< 1})] ft = l
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 46 JOSEPH D. PETRUCOELLI

 which is integrable with respect to the density

 f(zn) = (2n)-n/2e- ZnZnl2.

 Thus by dominated convergence

 EY, ->EZX.
 This shows that

 inf E?t a((X-p)?a < EUt a((X -p)?a) = 0 ?,<j L

 and so proves the theorem.

 Acknowledgement. The author thanks an anonymous referee for greatly
 simplifying the proof of Theorem 3.1.
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