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ABSTRACT

Petruccelli, Joseph David. Ph.D., Purdue University,
August, 1978. Some Best Choice Problems with Partial
Information. Major Professor: Burgess Davis.

This thesis deals with variations of the Secretary
Problem.

In Chapter I the following problem is considered: let
F be a family of continuous distribution functions and let
n i.i.d. FE€F observations be taken sequentially with the
object of selecting the largest observation. At time j the
jth observation must be chosen (and the process terminated)
or rejected (and the process continued). No knowledge of
the future is allowed, no recall of rejected observations is
possible and one observation must be selected.

Let the versions of this problem obtained when the
family f is all distribution functions, a single distribution
function and any family distinct from these two be denoted
respectively as the No Information, Full Information and
Partial Information Best Choice Problem (hereafter N.I.,
F.I. and P.I. Problem).

In Chapter II the P.I. Problem is investigated when F
is a location, scale or location-scale parameter family of

distributions. For each such family a sufficient condition

is obtained for there to exist stopping rules which are
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asymptotically as good as the best rule in the F.I. Problem.
It is of particular interest that this result applies when
F is taken to be N, the family of all normal distributions.
In Chapter III attention is focused on the P.I. Problem
for distributional family N. It is shown that the result of
Chapter II holds for a more sophisticated stopping rule.
The rules considered in Chapters II and III are invariant
rules. In addition to their optimal asymptotic properties
such rules are of interest since in each P.I. Problem con-
sidered the class of invariant rules contains a minimax rule.
This follows from a version of the Hunt-Stein Theorem and
means that a best invariant rule is minimax. The second
part of Chapter III investigates a best invariant rule for
the P.I. Problem defined by the family N.

Chapter IV treats the P.I. Problem defined by the

location parameter family of U[B—%,e+%] distributions. A
best invariant (hence minimax) rule is found and for small n
the probability of choosing the largest observation using
this rule is obtained. It is shown that this probability is
asymptotically strictly between the corresponding asymptotic

values for the best rules in the N.I. and F.I. Problems.



CHAPTER T

INTRODUCTION AND HISTORY

This thesis deals with variations of the Secretary
Problem.

This chapter gives an historical development outlining
the past variations and generalizations of the Secretary
Problem which most directly relate to our own work. The
chapter concludes with an outline of the main results of

this thesis.

1. The Secretary Problem

The Secretary Problem has been known under a variety
of names, two of them being the Dowry Problem and the Beauty
Contest Problem. When known as the Secretary Problem it is
stated as follows: n applicants for a secretarial position
are interviewed one at a time. The applicants appear in a
random order and as each is interviewed he is assigned a
rank (rank 1 meaning he is the best) among those interviewed
so far. At this point a decision must be made to hire him
and terminate the procedure or to reject him and interview
the next applicant.

The decision must be based only on the information

available to the interviewer at the end of an interview.



Namely, he knows n, the total number of applicants, k, the
number interviewed up to and including the applicant being
considered, and the relative rank of the present applicant
among those k. Once rejected an applicant may not again be
considered for the position. One applicant must be chosen,
meaning the nth will automatically be chosen if the n—lSt
is rejected.

The object is to choose the best applicant. For this
reason the Secretary Problem and variations of it for which
the payoff to the observer is 1 if he chooses the best among
the objects sampled and 0 otherwise, are called Best Choice
Problems.

The Secretary Problem is solved by finding a stopping
rule which maximizes the probability of choosing the best
among the n applicants. This optimal rule is well known to
be: reject the first k(n)-1 individuals and select the
first applicant thereafter with relative rank 1; if no appli-
cant among the first n-1 is chosen, choose applicant n. The
value of k(n) is given by

P S 1
(1.1) k(n) = mln{j.?+~?;r+... +

It can be shown that as n » «

k(n) & e—l
n

and the probability of selecting the best applicant also

-1
approaches e 7.



The origins of the Secretary Problem are hazy.
Frederick Mosteller [7] heard of it in 1955 from Andrew
Gleason who himself heard it elsewhere. A version first
appeared in print under the name Googol in Martin Gardner's

column in the February, 1960 issue of Scientific American

[6]1, [12]. Dynkin and Yushkevich [4] offer a particularly

elegant treatment of the problem.

2. The Full Information Best Choice Problem

Consider the following optimal stopping problem: let
F be a continuous cumulative distribution
function (c.d.f.)

Xl’x2"" ~i.,i.d. F be the observations

L, = max{Xl,...

X, ) 1 <i<n.
The X's are observed sequentially. The object (as
always for Best Choice Problems) is to choose for each n

the largest among Xl""'Xn' Thus we must find a stopping

rule On < n for the X's such that

P(X =L )= sup P(X_ = 1.)
n GGSn & o

where Sn is the class of all stopping rules ¢ for the X's
such that ¢ < n.
If F is completely known the problem stated above is

called the Full Information Best Choice Problem, hereafter

abbreviated to "F.I. Problem". If F is completely unknown



the problem is equivalent to the Secretary Problem. In view
of the above terminology we will refer to this case as the
No Information Best Choice Problem, which will be abbrevi-
ated to "N.I. Problem".

Gilbert and Mosteller [7] solved the F.I. Problem.
We will now outline a solution by the standard method of
backward induction. Assume F is known. Since the problem
remains unaltered if we observe F(Xl),...,F(Xn) we may as-
sume F is the ¢.d.f. of a U[0,1] distribution.

Let

Sj,n = {TESn : >3} (note that § = Sn)

Xyo= (XpreeaiXy) § o= 1,2y

and define

U. X.) = P(X. = L_|X.) ,
J:n(—]) ( J n‘—J)
V. : = b
j’n(_zgj) sup E(UG(;gG)I_J)
og€S )
n,Jj

Uj - is the probability, given our knowledge at time j,

r

that by choocsing Xj we choose the largest of the X's. Vj n
7
is the best we can expect to do if we reject Xj and continue

sampling. The method of backward induction gives Vj

4

recursively as

<
I

U

n,n n,n
Then Vb’n. = E(maX{Ul,n(Xl)'Vl,n(xl)})

= sup P(X_=L_) ,
GESn 7 2



and the optimal stopping rule T is given by

(1.3) o, = min{n’?ii{j:Uj,n(gj)>vj,n(Ej)}}

It can be shown that there is a sequence

> =
1 dl,n > dz,n > ee. > dn,n 0 such that

(1.4) o = min{n,min{jeX.=T.,X.>8, _¥}
n G B R M P

It can also be shown that

3

v VY o = .58 as n + o ,
O,n o

Note that the solution to the N.I. Problem is given by

(1L.4) where dl,n = ... = dk(n)—l,n = dk(n),n = ...

dn q = 0, and k(n) is given by (1.1). For notational
F

Ly
purposes we will speak of the optimal rule for the F.I.
(N.I.) Problem of length n as the F.I. (N.I.) Rule of
length n or, where the meaning is clear, as the F.I. (N.I.)

Rule.

3. Other Variations and Generalizations

The Secretary Problem has spawned numerous variations
and generalizations. A few will be mentioned here.

One generalization of the Secretary Problem is known
as the Rank Problem. In this problem the payoff to the
observer is a non-increasing function g of the absolute
rank of the chosen applicant among all applicants. Notice
that the Secretary Problem corresponds to the special case
of gq(x) = I{l}(x) (where IA is the indicator function of

the set 24).



Chow et al [2] solved this problem for linear g, the
case in which it is desired to minimize the expected rank of
the chosen applicant. For general g the problem is more
difficult but some work has been done (Mucci [13]1, [14])
giving asymptotic results.

Motivated by a problem of Cayley [1], Moser [11]
studied the following variation of the F.I. Problem:

n i.i.d. U[0,1] random wvariables X ’Xn are observed

17"
sequentially. If Xj is chosen, a payoff of Xj is obtained.
To solve this problem Moser found a stopping rule T€S, the

class of all stopping rules for the X's, for which

EX = sup EX

o€S ©

Guttman [8] extended Moser's results to the case in which

Xl,...,Xn ~i.i.d. F with F a known continuous c.d.f.

4. The Partial Information Best Choice Problem

Sakaguchi [15] and later DeGroot [3] considered the
following problem: let Xl'XZ"" be i.i.d. random variables
from a N(u,l) distribution with unknown u. The X's are
observed sequentially and at a constant cost c per obser-
vation. If observation j is chosen the payoff is Xj - cj.
It is desired to find a stopping rule that in some sense
maximizes the expected payoff.

Both Sakaguchi and DeGroot assumed a normal prior on U

and found a sequential Bayes rule as their solution.



If in this problem it is desired to choose the largest
among the first n X's then we have a Best Choice Problem
which is an analogue of the F.I. and N.I. Problems. We now
make the natural generalization of this example.

By the Partial Information Best Choice Problem (the
P.I. Problem) we mean the Best Choice Problem (as formulated
in the first paragraph of Section 2) in which it is known
only that FEF, a family of c.d.f.'s. To distinguish the
P.I. Problem from the F.I. and N.I. Problems we will require
that F have more than one member and that F is not the family
of all c.d.f.'s. Typically F will be a family of c.d.f.'s
{Fe}eet)indexed by a parameter or vector of parameters.

The families F we will consider all have this form.

One approach to the P.I. Problem is to assume prior
knowledge (or a degree of belief) about the parameter 6.
Stewart [17] investigated the P.I. Problem defined by the
family G é{cﬁ,g}-w<u<8<m where Ga,B is the c.d.f. of the
Ula,B] distribution, via this Bayesian approach.

In this thesis we investigate the P.I. Problem for
other distributional families. 1In the last section of
Chapter II we consider the P.I. Problem for the family

. 2 . .
{FU,U}UEE{ where Fu,c is the c.d.f. of the N(u, ¢°) distri

butiong>0

If we know the true value of the parameter (u,c) then
the P.I. Problem becomes a F.I. Problem. Tf o is the F.I.

Rule of length n then (see Section 2)



lim P(X0 = Ln) =0 = .58 .
n-w n

We show that, making no assumptions about the
parameter (u,0), there are stopping rules Th with T < n

n
for which

lim P (X =L ) =
noe MO TTTH n o
uniformly in (u,c). Thus, asymptotically at least, a

Bayesian approach is unnecessary for this problem.

It is not surprising that the rules T, are invariant
under location and scale changes and in Chapters II - IV
we pursue the study of invariant rules. Such study is
further justified by the fact that a version of the Hunt-
Stein Theorem (Kiefer [9]) insures that a best invariant
rule is also minimax for the P.I. Problems we consider,
namely those defined by location, scale and location-scale
parameter families of distributions.

In Chapter II we give sufficient conditions for there
to exist a sequence of invariant rules (Tl,Tz,...) with
TS0 such that

(1.5) lim P(XT = Ln) = W
n-w n

in the P.I. Problem defined by arbitrary location, scale
and location-scale parameter families of distributions.
The conditions involve the shape of the upper tails of
distributions in the relevant family. The proof of the

sufficient conditions is constructive in that sequences of



rules satisfying (1.5) are explicitly given. Applications
of these sufficient conditions to familiegs with different
upper tail shapes (including the appropriate families of
normal distributions) is made.

In Chapter IIT we restrict our attention to the P.I.
Problem for the families {F } and {F } where

H,1 uER u,0"UETR
Fufo,isthe c.d.f. of the N(u,cz) distribution?>01n each
case we consider a more sophisticated sequence of invariant
rules than those of Chapter II and prove that these rules
have the same asymptotic property (1.5). 1In the second
part of Chapter III we discuss best invariant rules for

these P.I. Problems.

Chapter IV deals with the P.I. Problem for the location
1 1

parameter family G = {GS}GGB{Where G, is the U[6-3, 68+3]
c.d.f. The distributions we consider in Chapters II and
IITI all have decreasing upper tails. In this respect G is
an extreme case among those we study in that its members
have flat upper tails.

Indeed, this is reflected in the asymptotic result of ,
Section 4 that if Ty is a best invariant rule for the
problem of length n then

= x 1im P(X_ =L )<1im P(X_ =L_) < a
e —_— T n'— T n o
N+ n n-o n

Thus asymptotically this P.I. Problem lies strictly between

the N.I. and F.I. Problems.
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Of interest in this vein is work done by Samuels [16]
concurrent with and independent of ours. He has shown
that for the P.I. Problem with distributional family

G' = {G being the U[a,B] c.d.f.) a best

G:B}-w<a<8<w (Ga,B
invariant rule, which is also minimax, is the N.I. Rule.
Thus the family G' is so large in the invariant case as to
be indistinguishable from the family of all distributions.
In addition this result shows that if we restrict our-

selves to invariant rules then the family G is asymptotical-

ly an intermediate case of the P.I. Problem falling between

that of the family G' and those of the families (among them

the family of all normal distributions) which obtain the
value o in the limit.

In the first three sections of Chapter IV a best
invariant rule Ty for the problem of length n is derived,
and formulas are obtained giving P(XT=Ln) for stopping
rules T in a certain class (which contains Tn) and giving
decision numbers for a best invariant rule. Finally,

P(XT =Ln) is found for small n.
n
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CHAPTER IT

ASYMPTOTIC FULL INFORMATION FOR SOME PARTIAL

INFORMATION PROBLEMS

In this chapter we will consider the P.I. Problem
defined for arbitrary location and/or scale parameter
families. 1In each case the problem is invariant under the
appropriate group of location, scale or location-scale
changes. These considerations lead us to look at invari-
ant stopping rules for these problems, an approach whose
value is enhanced by the fact that the class of invariant
rules contains a minimax rule in each case we consider
(Kiefer [91).

Recall from Chapter I that if Ty is the F.I. Rule of

length n then R is defined as

o, = lim P(XU =Ln) = ,58 .
n-o n

This motivates the following definition:

Definition 2.1. For each n=1,2,..., let Th be an invariant

stopping rule for the P.I. Problem of length n defined by

any location, scale or location-scale parameter family

{F }eee' The sequence of rules T = (Tl,Tz,..,) will be

6
said to be asymptotically full information (asymptotically

F.T.) if
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lim P, (X_ =L_) = o
n-re eo Th ©

o
for any fixed edze. (Note that since N is invariant for
each n PG(XT =Ln) is a constant independent of 9).

We willnmake the convention that whenever we speak of
T = (Tl,Tz,...) as being a sequence of invariant rules for
a given P.I. Problem we will mean that Ty is an invariant
rule for the problem of length n (i.e., Tnfp).

The most significant result of this chapter is found
in Section 6. There we give a sufficient condition (in-
volving distributional upper tail shapes) for there to
exist an asymptotically F.I. sequence of invariant rules
in the P.I. Problem determined by an arbitrary location-
scale parameter family of distributions. Of particular
interest is the result that such a sequence exists for the
P.I. Problem defined by the family of all normal distri-
butions. To keep this existence proof (which, incidentally,
is a constructive proof) both simple and general, the rules
considered are somewhat naive. The result is obtained for
a more interesting sequence of rules in Chapter III.

Section 1 of this chapter sets up the problem and
proves preliminary lemmas which are also used in Chapter III.
Section 2 gives a sufficient condition for the existence
of asymptotically F.I. sequences of invariant rules in the

P.I. Problem defined by arbitrary location parameter fami-

lies of distributions. Section 4 does the same when the



defining family is a scale parameter family. Both suffi-

cient conditions involve the upper tail shapes in the

defining distributional family. Each of Sections 3 and 5

applies the conditions of the preceding section to several

common upper tail shapes.

The following notation holds throughout this chapter:

{Fe}

eter family of distributions.

Xl'x2"" ~ i.i.d. Fe,
i
ii = % ¥ X i =1,2,
3= -
i 1
_ .1 % e 2 .
8. = la=y -E (xj X)) i = 2,3 00n
j=& -
L, = max {Xl,...,Xi} 3, = 18
Pe, Ee, Vare denote respectively probability, expec-

tation and variance taken with respect to dFe.

1. Preliminaries

We begin with two lemmas which will be useful in
Chapters II and IIT. Let

(2.1)  1>d; >dy > ... >d =0

be the decision numbers defining the F.I. Rule when a
U[0,1] distribution is assumed. Let

“ i Gl'n —>—' szn ">_ e > 6 = -

5€0 is a location, scale or location-scale param-

13

some AEO are the observations.

be the decision numbers defining the F.I. Rule when a N(0,1)



1l
o}
~

distribution is assumed. Note that F(¢§. ) .
i,n i,n

i=l,...,n, where F is the N(0,1) c.d.f.

To obtain an exact value for di & , and therefore for
1 4

6i n , requires finding the roots of a polynomial of degree
r

n-1i (see Gilbert and Mosteller [7]). This is impractical

for large n. The following lemmas give bounds on the d's

and 6's.
ILemma 2.1. Let C_ = 100 & and let 4. _, j=1,...,n, be
_ o] 1+log 2 J,n
the decision numbers given by (2.1). Then
1 : Co ;
1 - =7 T = dj,n % 1 = o5 j=1l;...,n-1

Proof. By (1.3) and (1.4) the decision number d. 5 is the

L4

number d at which, given Xj=Lj=d, we are indifferent as to

whether to accept or reject Xj. Explicitly dj # satisfies
r

. X.= X.=L.=d. = P(X =L |X.=L.=d.
(2.2) Py L | 5=L5=d5 1) GZEP (X,=L_| 57L5=dy )
J.mn

where Sj - is the class of stopping rules ¢ for the X's

’

such that j<o<n. Note that
(2.3) P(xj = Ln|X. =L, =4d) =d ;

Consider the stopping rule TéSj 5 given by

14

T = min {n,mlq{k:xk = Lk}} .
k>J

For any 2=j+1,...,n let

R, = {X2>dj,n’ medj,n’ j<m<n, m# Ll

It follows that

14



15

Tl
P(X =L_|X.=L.=d. ) > P( U A,|X,=L.=d. )
T n 3 3 J.n - 2=3+1 2 J J«n
n-j-1
= (n'J)(l“dj,n)dj,n .

Thus by (2.2) and (2.3)
n=7j n-j-1
d > (n-3j) (1-d. _)d. '
Js ]

i
which implies

1
> e
dj,n L n=j+1

We now show that

Co log 2
d3,n 21 "5 r Where & T T3Tog 2
Let C < C_ and suppose d > 1 - —ET
o n-j
Then
n-=j
C 1
P(X.=L_ {X.=L.=4d) > (1 - —— > =
( 5 nl 505 ) ( n_j) 5

For any O€S.
J.0

P(X =L |X.=L.=d) <P(X. .,>X., some 1<&<n-j|X.=L.=d
(X =Ly [X=L5=d) <P(Xj, ,>Xy <2<n-3|¥4=Ly=d)
n-j

C 1
<1_(l_E-_j) <§.

Thus

sup P(X =L |X.=L.=d) < P(X.=L_|X.=L.=d
g B o nl J 3] ) ( J HI J ] )
o€eSs .
Jh
By (2.2) then, dj - <1 - Eg§ for each such C and the

7

desired inequality is proved. //
2
m o s
Lemma 2.2. Lety < [ e 2 qu . For each such y let

1
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1 -2 logy
L
(-2 log y)2—l
(2.4) aly) = T

log

(-2 log y)2-1

Then if x(y) is defined by

2
w e
y= [ e?au,
x(y)
1 1

(2.5) (-2 log v)2 -al(y) < x(y) < (-2 log Y)° .

Proof. The right inequality in (2.5) follows from the

relation

y= [ e“du< [ ue “du=e .

x(vy) B f 2
2
1+x™ (y) x(y)

which is well known (see McKean [10], p4). It follows that

1+ %2 (y)

xz(y) + 2 log =05

> =2 log y .

2
Since x increases faster than log (lEE—) and 1 > log (%),

we have

2
il 1+x
x + 5 > log | -

) if x > = .

It then follows that

2 14x2 (y)

(X(Y)+l)2 > x (y) + 2 log 303 > -2 log y

which implies

| =

(2.6) x(y) > (=2 log y)2 - 1
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Now
(2.7)  2a(y)x(y) + a’(y) > 2a(y)x(y)
1 -2 logy

L
2
(-2 log y) -1

> 2 log

1+ x2(y)
> 2 log —mm— ,
x(y)
the last inequality following from (2.6) and the right
inequality of (2.5).

From (2.7) we obtain

2
(x(y) + a(¥))? > x°(y) + 2 log —l—ﬂg—(%’b—z log v
which yields 1
x{y) > (-2 log y)2 -~ &@ly) = 2F

Lemmas 2.1 and 2.2 give bounds on the §'s. Let

2
w =
2
; = e du = v2m (1 - d.
P 5f V2 S on)
i i
By lemma 2.1
v2n C r
R <y < __g_‘TT_ where C = __._.]_'29.2_.
n-j — *j,n — n=-j+1 o 1 + log 2 °

~—

We note that a(y) given by (2.4) is an increasing function

of vy, 0 <y < e .

| =

Hence Lemma 2.2 implies
1 1
T T 2T Co, 2

(2.8) (-2 log — . <
=% L n=j+l1 J n-j
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for n-j > S, = 1 (i.e. n—sz)

— _ .
Let // denote the positive integers.

We end this section of preliminaries by defining

P = {1 ZZ+-+Z7+ s.t. ¢ is non-decreasing,

Y(n) = o(n), ¥(n) < n for all n}

p'= {YeD s.t. Y(n) - » as n > «}

2. Location Parameter Families

In this section it is assumed that the family of
distributions defining the P.I. Problem is the location

parameter family {Fe} where Fe(x) = F(x-6), for some

fer’

continuous c.d.f. F. It is also assumed that f deF(x) < oo,

R
Our approach will be to use a small proportion of the

observations to estimate the true value of the location
parameter 6. If 6 is the estimate so obtained we will then
apply the F.I. Rule for distribution Fa to the remaining
observations.

Let h, geP' with h(n) + g(n) < n for each n.

We may assume (see Remarks at the end of this section)

that E.X. = 0. Then X, is an unbiased estimate of 6, and
01 k
- Varo Xl
Vare Xk = = Thus
Var, X
= 0 "1

k vy
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We will assume further that 6 = 0.
Let gl n i=1,...,n be the decision numbers for the
F.I. Rule when the F0 distribution is assumed. Thus
I | . . .
Zi,n = FO (di,n)' the d's being defined by (2.1).
Define two seguences of stopping rules, Bl and 52 as
follows: for each n=1,2,... let
(2.10) R = (h g)=min{n-g(n) ,min{k:X X BE }}
1,n st kT %% ,n
(2.11) R = o (b g)=min{n-g(n) ,min{k:X, =L ,X -X }l
2,n k>h(n) k "k'7k h(n)lq
Iet Bi = (Ri,l’Ri,Z"")' i= 1,2
It will be noticed that R1 n is the F.I. Rule of length
¥

n, assuming distribution FO' altered so that it does not

select any of the first h(n) or last g(n) observations.

Since h(n), g(n) = o(n) it is clear that El is asymptoti-
cally F.I.
R, is a stopping rule analogous to R in that it
fael l,n

ignores the same h(n) +g(n) observations for selection

purposes. However R2 n is invariant under location changes
r

(i.e. for any CGIR,R2 - will take the same value whether
r

Xl,...,Xn or X1+C""’Xn+c are observed) .

In what follows we obtain a sufficient condition for
R, to be asymptotically F.I. The condition involves the
upper tail shape of FO = F. Our method is to compare 32
with the sequence Bl'
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Rl,n and R2,n can disagree at observation Xj' j> h(n)

only if

or

.+ X g X. € I,
%:n h(n) X] - CJ,n

Thus if Ky > 0 for each n=1,2,...,
(2.12)

PO({{ern=j,R2’n%j}LJ{Rl’n#j;Rz’n:j }}r\{|Xh(n)|<Yn})

LT P RS A
- FO(Cj,nwn)_Fo(Cj,n_Yn)'

By (2.12) then

(2.13) PO({XR #Xp n}n {]ih(n)|<yn})

1,0 2
n-g(n)
< ? (F

< : (L3
j=h(n)+1

0 ' °j,n 'n 0 ' °"j,n 'n

If Y, can be chosen so that the right hand side of
(2.13) goes to 0 as n»» and

(2.14) 1lim By ({Xp  #Xp }f1{|§h(n)|>Yn}) =0,
n->oo 1l,n 2,n

then it will follow that R, is asymptotically F.I.

2
But by (2.9), in order for (2.14) to hold it suffices
that lim h(n)yn2 = », We state these conditions as:
n-ew

Theorem 2.1. In the P.I. Problem defined by a location

o , _ 2.
parameter family KFG%GIRWlth EOXl—O and EOXl <o the sequence

of invariant rules Bz(h,g) defined by (2.11) is asymptotically
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F.I. provided there exists a sequence {Yn}§=l of positive

numbers for which the two conditions

i) 1im hin)y. 2 =
g n
n--o

. = (n)

ii) ;Lli!: it 1 (FO(Cj,n-I-Yn)_FU(ijn"Yn)) =0
are satisfied.

The role that h(n) plays in the foregoing formulation
is necessary and clear: we need h(n) observations to supply
an estimate of 0. Letting g be an arbitrary function in D'
will sometimes facilitate computations in applications of
this result (e.g. the normal case treated in the next

section) . However knowing that Bz(h,g) is asymptotically

F.I. is enough to insure that Bz(h,O) is asymptotically F.I.

Corollary 2.1. Under the assumptions of Theorem 2.1, the

sequence of invariant rules Bz(h,O) is asymptotically F.I.

Proof. The rule Rz'n(h,g) will choose Ln when R2,n(h’0)

does not choose it only if Xn—g(n) = Ln' Thus

B 1 . . .
PO(XR n(h,O)#Ln“XR =L ) < =i which implies

2! 2,1’1

P (X =L ) > P, (X

and the result follows. //

Remarks
Since the Chebychev bound (2.9) applies evenly to all

distributional families having finite second moment, the
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theorem distinguishes among the various families through
condition ii) which is really a condition on the shape of
the upper tail of the distribution. The more rapidly the
tail approaches 0, the more likely we are to obtain an
asymptotically F.I. rule.

While Theorem 2.1, giving only a sufficient condition;
cannot tell us which tail shapes do not approach (¢ quickly
enough to guarantee an asymptotically F.I. rule, it can
verify that the decrease is fast enough for some common tail
shapes as the next section shows.

In two of the applications in the next section we apply

condition ii) to families {FG}GEIRln which E Xl # 0. It

0
can be shown that if the conditions of the theorem are

satisfied and if EOX1 # 0 then the sequence of rules

(R2’2,R2r3,...) where
R! = min{n, min {k:X,=L_, X —-(X -E X.) > C 1}
2,n ksh (n) k "k k h(n) 01 k,n

is asymptotically F.I.

3. Location Parameter Families — Applications

Normal Tail Shapes

2
o
Suppose Fo(x) = e 2 du
/2T =
Then (2.4) and (2.8) give us
L o1
2 Tog®= It 2 _ 4 < f. =6 < (2 JLog—i'l_-_'—J——)2
V2 n I Js V2T C



log log g(n)

where a. =20

23

n L :
(log g(n))2
Choose Yp satlifylng Y, < gj,n' h(n) < j < n-g(n).
Then, noting that x2 < X ifx s 45 . 1
= (7 Lodimtay® Ny )2
g i
2Y Y2
- = _n 2
Fo(cj'nﬂn) Fo(Cj,n Yol 2 — e
1
i+1, 2
2y (Y (2 loghith
P n_ o V2T
— n—-j+1
i+
2y (a,tv,) log J__l
p n_ V2w
S h3+1
2Yn
= "
n
1-(a_+v_)
(2m) % (n-3+1) P
Thus if 1lim v_. = 0 ,
nse
n-g(n)
(2.15) 1im (F (z: #.F = P (T =% ))
n+o j=h(n)+1 0 7 0 J.mh
2y n-g(n)
-— n 1
< 1lim Z ;
= a_+y i 1-(a_+Y_)
n-+ n2 n Jj=h(n)+1 (n=3+1) n 'n
(2m)
n dx ZYn n®
< Ilim 2y, == < lim
n--co h{n)+1l (n-x+1) n-re E

for any 1 > e > 0.
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So if we choose Yo and h€P' such that ynng + 0 and

h(n) Y2 + @ as n »+ =, the conditions of Corollary 2.1 will
n

be met. For example we may take y_ = n~% and hin) = n ¢
for an arbitrarily small e > 0.
Exponentially Shaped Tails
suppose F(x) = 1-e™*, x > 0. Then
log fn-341) = r: . % log {f5d j=1 n-1
2tinl Co o W
Assume also 0 < yv_ < g for each n, so that
n n-1,n
iy, vy
FO(Cj,n_l_Yn) = FO(Cj,n_Yn) = e (e =2 )
Y =Y
. e n_, n 2 Yn
— n-Jj+1 — n-j+1 -y, !
T20g « s glimd
Assuming g(n) > 1 for all n we have
n—?(n) Y, B-g(n) 2
) (Falo, 4y )=Folz. =y )) < = % =3 0
j=h{n)+1 0'79,n 'n 0'’j,n 'n 1 T 5=h(n) +1 n=j+1

if ¥ logn -+ 0asn + ». In this case we could take
T © [log_zn] and h(n) = [logSn] (where [-] is the greatest

integer function).

Tails Decreasing Like Inverse Powers

Suppose Fo(x) = l—xl_t, t>2, x>1. Then
1 1
t-1 n-7j Bl
(A=g+1) T i‘cj,n < (E;—) . Assume 0 < Vs < Cn—l,n for

all n. We have
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]
. — . - =
Fo (o, ntn) = Foloy, q7Yy) = 2 T vy
some “E3(§j,n'Yn' Cj,n+ Yn)
_ 2(t—l)Yn . 2(t=1)v,
A
n j/n Yn
2(t-1) v, 2(e-1)v,
e T = 7t
((n—j+1)t_l—Yn)t (n_j+l)2t—l
1 1

if v, < (n—j+l)t-l (1-(n=3+1) (t-1) (28-1)

It is clear that we may easily choose Yq to satisfy this
last condition.

Thus if g > 1 for all n,

nig(ﬁ) n—g(n) 1
(F (g. +Y)-F (T. -Y)) < 2(t-1)Y e .
sh(m+1 O dm m 0 77im n el 22t
. t-1
(n=j+1)

if Y, T 0asmn > .

Tt is then an easy matter to find an h for which

1im Bl v 2 = =,

e hon n
Remark
If we consider the location parameter family {GG}BEIQ
where Ge is the c.d.f. of the U[e—%, 6+%] distribution,

then conditions i.) and ii.) of Theorem 2.1 cannot both hold.
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4. Scale Parameter Families

In this section we assume the family of distributions

defining the P.I. Problem is the scale parameter family

- g ;
{F8}8>0 where Fe(x) = F(e) for some continuous c.d.f. F.
We will require that | x4dF(x) < o, We will also assume

R
(see Remarks at the end of this section) that Ele = 0,

Varlxl = 1.
Under this assumption ES Sk2 = Varexl = 82 so that
Sk2 is an unbiased estimate of 62. It can be shown that
var.s.? = L(g.x %-1) (1+0(1)) as k + «
17k k171 :

Thus for & € (0,1)

2 2,2 2 2.2 2 2
(2.16) Py (5, "> (1+8) 6% or s, “<(1-E)76 )< Py (|8 "-1]>28-E7)
E, X, " (1+0 (1))
2 .
— 2,2
k(2E-E87)
We follow the approach of Section 2. Assume 0 = 1.
Let Ei # i=1,...,n be the decision numbers for the F.I. Rule

when the Fl distribution is assumed. Then for these ¢
values and h,ge D), h(n)+g(n)<n, let Ri n be given by (2.10)
r
for each n. Define R3 (h,g) as
,h

X

i ; k
(2.17) R, =R (h,g)=min{n-g(n) ,min {k:X =L ,=——>z, _}}.
3,n 3,n feSh (1) k "k Sh(n) k,n

We define the seguences Bl' 33 as was done in Section 2.

R3 & is a rule invariant under scale changes.
[4
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Rl,n and R3,n disagree at observation Xj, j > h(n)

only if
Snn) %5,n %5 “%4,n
or
= 3.
Eg,m J © Sh(n) ®y,n

Thus, taking EDGE(O,l) for each n,

(2.18) ' (IR =37, A} 1R AR, =31bn{ls,)-1]<E D

< P (g ) Ly W " Fl((l—gn)cj'n)l

(The absolute value is necessary since Cj o mey be negative).
4

By (2.16), (2.18) and the discussion leading to Corollary

2.1 we may write

Theorem 2.2. In the P.I. Problem defined by a scale

_ 4
6>0 le = 1 and Ele < ¢,

the sequence of invariant rules 53(h,0) defined by (2.17)

parameter family {Fe} with Var

is asymptotically F.I. provided there exists a sequence

co

{g .}

., 0 < £ <1 and a geD', for which the two condi-
n n=1 n
tions
. . 2
i) 1lim h(n)é& = ®
n—)-OO n
n-g(n)
ii) lim ) [P (4 DTy ) -Fp (=g gy | =0,

n+~ j=h(n)+1

are satisfied.
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Remark

Echoing the last remark of Section 2 we note that if

Var; X, # 1 then the sequence of rules R, given by
1
(Varle)_Z"Xk
R! =min{n,min {k:X =L , ¥ T }}
3,n k>h (n) k "k Sh(n) k,n

is asymptotically F.I. if the conditions of Theorem 2.2

are met.

5. Scale Parameter Families - Applications

We now consider the application of Theorem 2.2 to scale
parameter families in which Fl has those tail shapes con-

sidered in Section 3.

Normal Tail Shapes

suppose Fy(x) = — [ e & &y

Then, taking a, as in Section 3,

Fl ( (l+£n) Cj ’n) _Fl( (l_gn) CJ ’n)

1
((1-€) ((2 Log? Aty 24 )
2 T, n V2T
D i 7% - AN 5
T V2T 1
= 1
-5 5 s
2¢_(2 log——3-) n-j+1, 2
n = a (1-£_) (2 logi=dtd
. e mom /2T

2
(1-£_)
(n-j+1) -



1
2 (@ log —2-d-y® . o
. g o o ) an(l—En)logn j+1
< 20 - V2T
B (1-E)
(n=j+1)
L
n-h(n) 4
28 (2 log———)
B V2T C
< T '
— a —
n ; n (1—£n)(l—En an)
(2m) (n-j+1)
Thus
nighﬂ
(2.19) (F. ((I+E )L, )-F. ((1-E )T, ))
j=h (n) +1 1 n "j.,n 1 n "j,n
1
ZEn(z 1oqn—_w)
/-Z—’FT & n-g(n) 1
i TET ' T O
ik 7 (- i
- 2 = j_h(n)+l(n—'+l)(1—gn) (1_En_an)
(2m) 4
if En n® - 0 for some € > 0 as n + «,
Exponentially Shaped Tails
If Fq(x) =1-e* x>0
then (see Section 3)
5n Enfim Ton%in
Fl((l+En)Ej'n} - Fl((l—En)Cj'n) = e (e -e )
5 . 28-1 28-1
< . Z = .(logn—j)
— n-3+1 2:1(2£-l) ! Co

for h(n) < 3 < n-g(n), and g(n) >

29
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Thus
n—?(n)
‘ (F.((1+E V5. )=F ((1-€ )C. ))
j=h (n)+1 i n “j,n 1 n "j.,n
28-1 . 20-1
ay (log—3)
© n-g(n) n C

o

| A

g=1 j=h(m)+l (28-1)! (n-3)

n=h(n)+1

28-1 ¢
© ZEn Jr o (log u) 28-1

P=1 (28-1)! &

du

| A

1

28-1 - 2%
gn (1o n hén)+l)
&) o
2 ) + 0

=1 (28) !

Il

if £_(log n)2 -+ o.

Tails Decreasing Like Inverse Powers

I~E
X

Suppose Fl(x) = 1- t >»>5, x>1,

and (1-E_)¢C > 1. Then, recalling computations done
n’ "n-1,n

with this distribution in Section 3,
Fl((l+€n)cj’n)“Fl((1—En)Cj’n)==2F1(n)Cj'n€n

ne((l—En)Cj n,(l+€n)zj n)

2(t—1)cj'nEn ) 2(t—l)Cj’n€n
t

— t. t
n (l—En) Cj'n

2(t—1)£n 2(t—1)£n

<
(1=£n)t¢§'i'_ (1-€ ) (n=3+1)
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Thus
n—cj‘;(n) 2(1:—1)5n
) (F, ((I+E Vg, )-F ((1-€ )z, )) £ ———— log(n-h(n)) >0
=h o)l 1 n “j,n i n “j,n (l_zn)

if En logn + 0 as n + «,

6. Location-Scale Parameter Families

In this section we assume the family of distributions
defining the P.I. Problem is the location-scale parameter
g _ x—U ;
family {FUIU}UejR where FU,G(X) F(_E—) for some continuous

020 ; 4
c.d.f. F. As in Section 4 we assume [ x dF(x) < =. We

also assume (see Remark following Theorem 2.3) that

E0,1X1 = 0 and VarO’le = 1. Let Yy >0, 1 >En > O for
each n. Then
X, -H
k 1
B s (=== 5 ] £ 5 k21,
ky
n
and
2 2 3 2 2 2 2 2
o >(14E ) 70”7 or 5, "<(1-E ) "0%) f_PO'1(|Sk -1|>2£n—£n )
@ x.-1) (L1o(1))
P ©
— 2. 2
k(2€ -E )
as k -+ oo,
_ n
We assume now that (u,o0) = (0,1). Let {cj n} be
S
J=1

the decision numbers for F.I. Rule of length n when a FO 1
distribution is assumed. Then define the stopping rule
Rl n(h,g) for h,geD', h(n)+g(n)<n, by (2.10}. Define the

stopping rule R4 nfh,g) as
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(2.20)
X, =X
X . k "h(n)

R =R (h,g)=min{n-g(n) ,min {k:x =1, , ———= > H- .

4,n 4,n E5hia) k k Sh(n) k,n
R4 . is a rule similar to R1 - but invariant under location-

r I

scale changes. Let Bl' 34 be the sequences formed from the

above rules.

Ry and R4 disagree at observation Xj only if

Shm)%,n t Enm) <% < &,m

or

. . . +
Z5,n < %5 < Shmti,n t *am)

This gives us

Py (R =3.R

4

rn#j} ] {ern#j'R‘l;n:j}} n {th(n} |<Yn}m t |Sh(n)"l|<5n})

< max{[F (=€ )Ly =Y )-F (AT, +y) |

|F0,1({l_gn)Cj,n+yn)_FO,l((l+€n)Cj,n_Yn)I} .

Thus we have

Theorem 2.3. In the P.I. Problem defined by the location-

. . _ >
scale parameter family {Fu,o}uEH{Wlth EO'le—O, EO,le =1.;
4 c>0
and EO le < =, the sequence of invariant rules 54(h,0)
r

given by (2.20) is asymptotically F.I. provided there exist

seguences {Yn}z=l”£n}z=l’ Y,>0r l>£n>0, and a gel' such

that both conditions
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i) lim h(n)€n2=lim h(n)Yn2 = ®

n-—co 1 -0

n-g(n)
ii) lim ) max{ |F

((+E )z, +Y)-F. ((=E)c. -y | .
n3o0 §=h (n) +1 0,1 n "j,n n 0,1 n “j,n n

By 1 (Q-E)T, #Y)-Fy ( (E)L, =Y |1=0

are satisfied.
Remarks
The easiest method for handling the case where

. ; P .
EO'le#O and/or VarO’le#l is to find u',0' for which

Euhc'xl=0' varuhO'Xl=l and reformulate condition ii.) by
. . -1
1] — =
substituting Fuio' for FO,l and Ej,n Fu}G'(dj,n)

-1

L} 1

o FO,l(dj,n) + u' for Ej,n'
This method, with a glance at Sections 3 and 5, will

easily give the result for the exponential and inverse

power upper tail shapes studied there. For the remainder

of this section we confine ourselves to the location-scale

family of all normal distributions. That is, we assume

X —_—

i (X)=tf e du .

Then condition ii.) becomes

£2.21)

n_%(n) ) ))
lim (F ((1+&€ )z, _+ -F ((1+& V.
new | S=hinl4l 0,1 n °j,n Yn 0,1 n’ °j,n
n-g(n)
+ (F ({1+E YEps J&F ((1=E YE. )}
j=h(n)+1 0,1 n’" °j,n 0,1 n" ?j,n
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n-g(n)
+ (FO,l((lqgn)cj,

: }=F (L1~ )T
j=h(n)+1 8,1 B

i n~Yp)) 1=0-

n ]

The first two sums of (2.21) are dominated by their respec-
tive analogues in Sections 3 and 5 ((2.15) and (2.19)) and
therefore converge to 0 if ynng+0 and Enn8+0 for some

1>e>0 as n»»., Therefore it remains only to show that the

last sum has 0 as its limit.

1
, . 2 2
-[(-g 2 logg—;il) —an)-Yn]'
Y V2T
n
FO,l({l-En) Cj ,n) _FO ,l((l—gn) C’j ,n_Yn) iEe -
2 2
(1-€ ) (a_(1-E ) "+y (1-€ ))
£ Yn v2m ) (n—j+l) o = o n
~vam i V21

and it may be seen from similar computations in Sections 3

and 5 that choosing Yn! En such that Ynn€ -+ 0 and Enne -+ 0

for some 1 > € > 0 produces the desired convergence to 0.
Let o = P(X(j =Ln) where the distribution of the X's

n
is known and o is the correct F.I. Rule of length n. Let

Bj,n = X (XR.
o Tt
value for the appropriate distributional family (location,

=Ln) j=2,3,4, where 90 is a fixed parameter

scale or location-scale).
Theorems 2.1-2.3 give us a sufficient condition in
order that lim (un—Bj n)=0 for each j=2,3,4. The compu-
n-e r

tations of Sections 3, 5 and 6 tell us more. Implicit in

these computations is an upper bound for un—Bj n'
F
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Let us consider this bound for the normal location,
scale and location-scale parameter families.
The bound obtained clearly depends on our choice of

h, g, Yn and En’ and its value can be divided into two

g(n) , hn)

components. One is — "

the probability that the
largest observation occurs among the h(n) + g(n) obser-
vations our rule neglects. The second is obtained from
condition ii.) of each theorem and represents our estimate
of how well we can do with the other n-h(n)-g(n) observa-
tions.

By (2.15) we have for the location parameter case a

(a_+v_)
an+Yn

g(n)=[nv], Yn:n_? Then this bound is less than

bound smaller than Let >0, &>2¢, h(n)=[n6],

21r1p(n,,\),,ss)+n—e
bn = cl

ngp(n,v,e)+l
for a constant Cl and

log log n + log v
il

2

O(anrE) =

N =

v (log n)

It can be seen from (2.19) that for the same values of

h, g and En = n_ef

1

2
Q.. = 63 % & Cz(log n) bn + +

r

From (2.21) we obtain the estimate



a_ = B

n 4.n

if we take h, g, ¥

1

<¢c_b_ + Cz(log n)2 b

__3 n

nl’

E].’1

as above.

36
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CHAPTER ITI
THE NORMAL PROBLEM

This chapter deals with the wversions of the P.TI.
Problem determined by the two families of normal distri-
butions {Fp,l}uEH{ and {Fulg}ggﬂi where Fu,c is the ¢.d.f.
of the N(u,cz) distribution. Fgom now on these versions
will be known respectively as the N(u,l) Problem and the
N(u,oz) Problem.

Recall that in Chapter II we proved that there are
sequences of asymptotically F.I. invariant rules for each
of these problems. 1In Section 1 of this chapter we
consider sequences of rules having a more satisfactory form
than those of Chapter II, and show that these sequences
also are asymptotically F.I. Section 2 considers best
invariant rules for each case. Unfortunately the expres-
sions involved in obtaining exact decision numbers and
probabilities of winning for these best invariant rules
are intractable even for small n. In view of this, the
chapter concludes with a discussion of some approximate
procedures we have investigated for small n.

The following notation will be used in this chapter:

Xl'X2"" x Teoi.d. N(u,Uz) (or N(u,1))

are the observations.
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== n n ;
X.r 8,y Lys {di,n}i=l' {Gi,n}i=l' D, D' are as
defined in Chapter II.
N O XiTR
Y2 = =5 ; Yi = =g i=3,...,0.
2 i-
¥, = (Y2,...,Yi) 1=2, ¢ o 11
Zi = Xi—Xi_l 1=25 s I
Ei = (Zz,...,Zi) i=2,...,n.
FU W c.d.f. of N(u,Oz) distribution.
r

1. Asymptotic Results

In this section we first consider a class C5 of
sequences of invariant stopping rules for the N(u,1)
Problem which are asymptotically F.I. As in Chapter II,
our approach is to compare the sequences of rules in C5
with the sequence of optimal rules for the F.I. Problem.
We then compare each sequence in a subclass of C5 with an
analogous sequence of invariant rules for the N(u,oz)
Problem to show that the latter sequence is also
asymptotically F.TI.

Assume Xl’XZ"" . i.i.d. N(0,1). Let h,geD be such
that h(n)+g(n)<n for each n. We define for each n the
stopping rules

Rl’n=Rl’n(h,g)=m1n{n-g(n),min‘ {k:Xk=Lk’Xk>6k,n}}
k>h(n)

R. _=R (h,g)=min{n-g(n) ,min {k:X =L ,Z, >0 FJ
5,n "5,n k>h (n) k "k'"k” "k,n
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R, _=R (h,g)=min{n-g(n) ,min {k:X =L ,Y >§ 11,
6,n 6,n onm) kK kK kn

Rl i is the same modified F.I. Rule considered in
r

Chapter II. R5 n is a stopping rule analogous to Rl - but
F [ 4

invariant under location changes. R6 n is similar to the
f 4

others but is invariant under location and scale changes.

Notice that R differs from R of Chapter II (and R
5,n 2,n

differs from R, ) in that the former constantly updates
r

6,n

its estimate of the parameter while the latter obtains an
estimate using a fixed number of observations and never
changes that estimate. The greater complexity of the former
makes it more difficult to work with, but the more desirable
form of this rule rewards our extra effort.

As in Chapter II each pair (h,g) defines a sequence

of rules

Bl(hrg) = (Ri'3(hrg)r Ri'4(h:g): e..) i=1,5,6.

Then

C.
i

{R; (h,g) ,h,g€D} i=1,5,6
are the classes of sequences of rules whose asymptotic be-
havior we will investigate.

As was noted in Chapter II, each sequence in Cl is
asymptotically F.I. We will show that each sequence in
C5 is asymptotically F.I. by comparing these sequences with

their counterparts in Cl. We begin with a computational

lemma.



Lemma 3.1. Let a>0, X X ~ i.i.d. N(0,1).

27°°-
k
I %,
=1 a log2n .
Then P(,°oF bE) € dfl-m . yjeiTells,
1ik_<_n T - 0,1 /3 log?2
Proof
k k
(3.1) L X, ; L%,
p( SUP ]R—l sq) < % B sup £=£— 5a)
1<k<2] ! /K i=1 ,i-l il /K
i-1
i%P( U ,Xﬁzza)
i=1 l<k<2 =1
. o1 i-1
< 2 %P( X2 >2 2 a) (reflection
i=1l |[&=1 principle)
- i RENE

| A

. a
43017 1 D)

Suppose 2]_l<n§2j. Then (j-1)log2 < logn <j log2

logn _ . . log 2n

which implies Tog 7 <3 Tog 3

This along with (3.1) gives the result. //

For 0<0<l Lemmas 3.1 and 2.2 imply

I x, 5
B sup ‘R 1 > 2(log 4log2n ) ) < a.
1<k<n' vk /2m o log2
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L&k g, = lBg ———;
v2malog2

Fix b E(O,%ﬂ and choose hb(n), gb(n)GD' such that

1
2(loglog2n + Cu)2
(3.2) hb(n)imin{lijin-l: T < b}
. 2
(J=1)
and 1
(3.3)  (loglog2n)™ *P = o(gy (n))

(Naturally we assume n is large enough for each pair (a,b)
so that these expressions can be satisfied.)

By (2.8) for n-j large enough we have

1
n-j+1 2
(3.4) (2 log —L=) -b < 8.
V2T B

Specifically, for large n and j<n—gb(n) (3.4) holds.

To simplify notation we will denote

Ri'n(hb(n)rgb(n)) as R,
and
Bi(hb(n),gb(n)) as R, i=1,5
Rules Rl and R5 choose differently at Xj only if
S. _ + X. < X, < 8.
J.n =l J jm
or
S .. < X, < 8. + X.
J.n ] J,n i-1
k
) X 1
=1 * 2
If sup < 2(loglog2n + Ca)
vk

41
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1
2(loglog2n + Ca)z
T ]
: 2
{J=1L)

2,e00 0+l o

then ]Xj_ll <

Hence, recalling (3.2) and (3.4),

X
1 L

vk

I| ~a %
N

%

(3.5) P({X_ #X_ } n { sup
R" R 1<ken

< 2(loglog2n + C )"1)

I_.I

n-g, (n) 2 (loglog2n + C )2
b & X. < 6. )
j.n 1 ] j,n

(5-1)°

A
e)
—_
(@]
|

1
n-—j+l)§_2b)2
V2T
2

1 ((21log
2
n—gb(n) 1 2(loglog2n-+cu) -
% il e

(5-1) 2

1
8% (5 Tty

1 n-g,(n) y2m
2

= K(b) (loglog2n + C_) 2
j=hy (n)+1

(e

(n-j+1) (§-1) 2

2
< K(b) (loglog2n +C,) y
< j=h,

I.—l

(n) +1 =
2P (35-1)*

3413 T
1
K(b) (loglogzn+c_)> ™9™ ax
% ~2b 1
(gb(n)+l) (n-x) “x

<

N
Do =

n—gb(n) g n—gb(n)

Now f 2 tam“l L2 [ +T as n-+e,
1

n=x

N
o) =

(in—-x) "x
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So using assumption (3.3),

k
L %y s
_ | L 2
lim P({X_ #X_ I { sup <2(loglog2n +C )“1}) = 0.
n-veo Ry B /K .

1<k<n

We have shown that for all n

'_l

)
X
gon &

vk

P({XRl#XR b i Sup

> 2(loglog2n + C )2}) < a.
5 1<k<n &

Thus Iim P (X #X ) < a for all o > 0, and R. is
R R — =5
n--co 1l,n 5,n

asymptotically F.I.

Recalling the argument used in the proof of Corollary
2.1 it is clear that if Ré is defined as Ré’n(h) = RS,n(h'O)
then Bé is also asymptotically F.I. For this problem we
can say more. The following lemma shows that the sequence
55(2,0) is asymptotically F.I. 1
ILemma 3.2. Let hel' with h(n) = o((n log n)j). Then

i.) lim P(Z. < 6. j=2,...,h(n)) =1
n-oo J j,I'l’
ids lim P(X. < 8. _, j=1,...,h(n = 1
) Lim P < 85 0 3 (n))

Proof. Since the Z's are independent (this is easily seen

by applying Basu's Theorem),

h(n) _
PLB.28. .3 T=25.5ssh = T P(X.-X. .<8.
( J 1.1 . (n)) 3=2 ( J Tl ]:n)
1 L. 2l
h(n) 1.5 h(n) j2e 23 "J,n
=1 P(X.<(LZ=5%6. H)>1 [1- ,
S l J ]rn s l l
]=2 j=2 5



since for x > 0
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2 2 x2
w -2 SR 5
[ e 2 g < = [ ue 2 _ & ;
X X
X X
1 _3-1 42
j2e 27 j.n
Let An,j = log (|l - T T .
2 2
2 j—=1) "¢
(2m) = (3-1) 4 5
By the above,
h(n)
log P(Zj < 6j,n' j=2,...,h(n)) > .52 An']
J
To prove i.) it suffices to show that
h(n)
(3.6) lim A =0
n+o =2 Dyl
k
h (n) h(n) o 52 LT e
T e 23 3m,
j=3 BrJ j=3 k=1 5k
k(2m(j-1)) Gj,n
By (2.8), then,
h(n)
> n
j=% 742
= h(n) 5 £O=D (1-6(1)
5 E z j ( V2T )
S A - K T n-3+1
L =% 5 n-§+1,2 e
(9-1)"( 12 log ——=) " -all]})
V2T
k
1 3V/2m 2
z = kzl }i 323 (m_—j-_l-_']—_")—) for large n
(logn h(n)+1)2
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% 3v2m ]';'
= kzl e 2 (1ogP @ Thiny 1)
V2T
h(n) Of —= T
= B log n} 2 > as n - o,
1 -0 )
(n 1log n)
Clearly lim A n,?2 = 0, so that (3.6) is true and i.) is
proven. nT;e same method works for showing ii.) . //

By the definition of hb(n) it is clear that {or any

,%ﬂ and o>0 we may choose hb(n) = o((n log n)j) so that

be(0
Lemma 3.2 applies. Then i.) of Lemma 3.2 implies that the
sequence of rules gg = 35 (2,0) 1s asymptotically F.I.

We state this result as:

Theorem 3.1. 1In the N(u,l) Problem the sequence of rules

55 = (R5 ot R5 3 ...) given by
RS,n = min{n, Eig{k X, =Ly o 2y > 6k,n}}

is asymptotically F.I.

Note that Theorem 3.1 implies that all sequences in C5
are asymptotically F.T.

The next theorem is a version of Theorem 3.1 for the
N(U,Uz) Problem.

Theorem 3.2. In the N(u,cz) Problem the sequence of in-

variant rules R (h(n),0) where h(n)=0(n ) some £>0, is

asymptotically F.I.
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Theorem 3.2 states that sequences of rules in the

class Cé = {BG(h,g):h(n)=O(n€),some >0} C C6 are

asymptotically F.I. In preparation for its proof we state
and prove

Lemma 3.3. Let 0<Y<%- For a suitable constant C(y),

log h(n),Y

h(n)e?' and gn = C(y)( B () ¥ e

Lim P(1-E <8;<1+E , h(n)<j<n) = 1.

n-—-w

Proof. Assume aj<j—2, Uj~X§- Then

5. J=2 _u
(3.7)  P(Us<a.) = ——— [ J 4 % e %aqu
i 93 30
3
T(3)2
3 aj
—2 2 T T _2
F” T e g
e 3 f [te ] dt
T(E) 0
J
25)2
< 2]
= a .
o
a7
I'(Fe
. k! 1
Recall stirling's formula: 1 < T LI
k 5 12k-1
(=) (2mk)
If § is even then j=2k and r(%) = (k-1)! Thus
. 3
' Rl 5 2. (w4202
.8) 1 > ED oraen? = (GH 2 A

Z T k-1 2
e 2
e

If j is odd then for j > 4 TI'(3) >r(d3h so that
=3 . 2
2 (m(3-3))

3 ¢

2
e

[ =

) > (352

M-

(3..9) I'(



For j>4 the right hand side of (3.9) is smaller than the
right hand side of (3.8) which implies that (3.9) holds
for all j>4.

From (3.7) we may then write

- ; s 5 g
375 ja \2 4 3 3
e 2 [23)2 2.2 2
(3.10) P(Us<ay) < 1 -3 a, & J-2
T 07,423, 2 3 (20)212 (3-3) 2
“(3-3) 25D e
2

Fix 0<a<l. Since (j—l)szw}(j

each large n a En>0 such that

_1+ We propose to find for

(3.11) P(U,<(1-g)3) < 5% . 3>hn)

]

It would then follow that for each n

2 i o
P(Sj >l—€n, h(n)<j<n) > 1 - 5

and, in fact, this probability would approach 1 as n =+ «,

By (3.10) it suffices to find En satisfying

1- .
3 33 Hodd
ez(l—En)zjze 2 3a
(3.12) T T3 & 55 j>h(n)
(28)2W2(j—3)
(3.12) can be rewritten as
. 3
(3-3) ’ E,.2 30
T 1 [(l+j_3)(l—En)e 1 < —
. 55 T3
(2e) "1

or

47
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3
2F 2g I
52[l+———£1—+ i +...] z%.]_og(('”) J (]"3))

2e 30

+ 2 log (1 + 3§§q, i>h(n).

In particular (3.11) will be satisfied if we choose

(3.13)
2 B
2 h(n) (h(n)-3)

Y 1
= )10 0<y<5.

4
gn z [h(n)

loq((g*g) ) +2 log(l+

N
h(n)-3
Since (l—En)2< l—En we have for Zn satisfying (3.13),

lim P(Sj > l—En, h(n)<j<n) = 1.

n--ce

We now find 0<En<l for which

1im P(S. < ‘1+£_, h(n)<j<n) = 1.
n--co J n -

Wallace [18] derived bounds on the upper tail of the
X2 distribution in terms of the standard normal distri-

bution. His Theorem 4.1 gives

i1 3 )
Jy 2 2 u
(‘2—) e = e
P(U.>t) < . y e © du
1 r(3) 1
(t=-j-3 log(z))
2 x2
u e —
e o e 2
Recall that x>0 implies [ e © du < %
X
Then by (3.9) and the above
=l ]
j, 2 2 u2
(5) e o 5
P(U.>(1+& ) j)< : f 1 e du
J i T (%) =

(£, 3-3 log(l+e ))°
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-

; —% i%; -£
J n 2
(5) e "e (e (l+gn))

| A

L
2 P E-nc (En—log(1+gn))2

§—3
= 3 R 3
_e Tlazzm (e T(1+E )
T 3 Z T
7 2 25n 2£n 2
(2m (g f-=T + B - )
: j
2 =E i
3 n 2
) (l+3:§ (e (1+En);
= il 1
2 2€n 2£n .o 2
(2m) “g_(1-—% + - - )
30
A
T3
if
1
(3.14) % 26 2gn2 3
32maE (1- 5=+ - )
log, 2.2 Lt
™3
. E2 B3
_ 3¢ n  _ “"n” 1 3
15 5=+ .-2) + 5 log (léz=y)

For large n (3.14) will hold for j>h(n) if we choose

log h{(n) ¥ 1

(3.15) En =2 ( h(n) ) (1+o(1)) 0<y<xz .

2

To see this we first note that the left hand side of (3.14)

is increasing in j _with respect to its right hand side if

1 3 1,6n tn ; .
3(2 70337 5(—5— = o + +-+). 8o by choosing En as in

(3.15) this relation is certainly satisfied for j>h(n)

)

if n is large. Thus it suffices to show (3.14) for j=h(n)
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and En as in (3.15). That is, we must show log c +
log £ + log (1-o(1)) - 2 log h(n) > 2B ¢ 2151+ 0(1),
or

log ¢' + ¥ log log h(n) - (2+y) log h(n)

1-2y

> —(h(n)) (log h(n))2Y (1-o0(1)) + o(l).

This last becomes clear upon dividing both sides by Uluﬂ)l_zY

and letting n become large.

Y
By letting o(l) = (22g BM),y" 51 (3.15) we have

2 h(n)
log(E§EL)Y)2- Thus, from (3.13) and the above,
by choosing a suitable constant C(y) and setting

log h(n))Y

£, = € (T

(148 ) = (1+(

we have

lim P(1-E < S, <1+ &, h@<jm) =1. //

n-—+w

Proof of Theorem 3.2.

The spirit of this proof is close to that of the pre-

vious theorem. Let us denote

Ri,n(h’g) by R:
and
Bi(h’g) by Bi i=5,6 ,
where we assume h,gel'. For a given pair (h,q) Rg and R6

can differ in their choice or rejection of X. only when

S. §. & X=X, £ 8,
j=-1 "Jj.n ] Ti=d j,n

or



Let En satisfy the conditions of Lemma 3.3. Then
{{R5=3,R6%j}kj{Rs#j,R6=j}}(1{ISj_l—l|<£n}}

C'{(l—gn)ﬁj'n < XymXy < (l+£n)6j'n},
and therefore

p({xR5¢xR6} n {lsj_l—1|<gn}, h(n)<j<n-g(n) })

RO .y % .
< P( U (1-€_)68. _<X.-X. .<(1+& )6. )
~ " 4=h(n)+1 n’"j,n 73 T3-1 n’"j,n
n-g(n) _ &
=1- I P(X.-X. o € ((1-& )6, ,(1+E )8, 1))
j=h(n)+l ] 3= n- j,n n° Jj,n
1 1
n-g(n) 41 2 2
=1- 1 P(XE((—= (1-§ )5 ,( ) (1+£ )6, )
j=h (n)+1 1 7 n N n j,n
1 1
Let A, = P(X; € (( 34 2(1-¢ ), cAZh % ase s, )
J J J.n J p 11
and assume Enna + 0 for some e€>0 as n»», Then for
h(n)<j<n-g(n) i
1 1 j-1 n-j+1, 2
a5 2E e o= grti~En) ((log—ﬁ) “a(1)) 2
% o (AT 2 T s qae Sdg 2, 2] o
i—=" 3 1 5T C
(2m 2
So
n-g(n)
(3.16) 0> ) log (1-X.) >
j=h (n) +1 4
k k -
2 *(3-1)%(2 109 n=3 )2 k(3-1) n-3+1, 2 2
©  n=g(n) I o — e 1 E ) ((21 og ) -o(1))
=) ! ” T o o < 21
k=1 j=h(n)+1 ~ =

k 32 (2m?>

51
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k
o R -_
§ 2°€ © n-g(n) { o 351(1—0(1)) > &
S use : n-j
~ =k i n-j+1 (2 log ) }
k 1Tr2 ) j=h(n)+1 F7
@]
5 x
L ok k(1-n) =
% § * o ng(n)(@?) (2 log “'j>2
T k=1 %— j=h (n)+1 231 /am ¢
T Xk ©
for 0<n<e and large n.
Since - %
(log ==
n-g(n}) v2m C
['s) i
1o dominates
j=h(n)+1 (n-j+1)
k
(log _nl)z
n-g(n) V2T CO
>
TFERE) for all k I

J=h(n)+1 (n-j+1)

and since the asymptotic behavior of the former guantity

n

is between that of n and nnlog n we see that

n-g(n)
lim X log (1-X.) = 0, and therefore
n+® j=h(n)+1 4

lim P({X, #Xp, 1Iq {Isj_l—l|<5n, h(n)<j<n}) = 0.
n-—+ 5,n 6,n
By Lemma 3.3 then

(3.17) lim P(XR #X ) =0
R
n->ow 5,n 6,n

and thus R, is asymptotically F.I.

6
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Choosing h(n) = [nY

1 for 1 - % >8>0 ([-] is the
greatest integer function) implies that nEEn+0 as n-w
and therefore that (3.17) holds.

Finally, using the same argument as in the proof of

Corollary 2.1, it is easily seen that we may take g(n) =0

and still have BG(h,O) asymptotically F.I. L

Remarks

As was lndicated earlier exact values for the decision
n
numbers {Si n}i—l are difficult to obtain even for moder-
, =

ate values of n. Gilbert and Mosteller [7] found approxi-
mations to the §'s which are close to the true values, are

easily computed, and give for the F.I. Problem a sequence

o= (Tl,Tz,...) of stopping rules such that
lim P(X_ =L ) = o . It can be shown that Theorems 3.1
oo T, B o)

and 3.2 are valid when the ¢'s are replaced by these
approximations in the rules R5 and R6. Thus there are
easily computed asymptotically F.I. Rules for both the
N(p,1l) and N(u,sz) Problems.

As was the case with the theorems of Chapter ITI,

Theorems 3.1 and 3.2 implicitly give rates of convergence

of P(XR =Ln) and P(XR =Ln) to the wvalue o, -
5,n 6,n
In the first case we know
1
n=J+1 2
§. > (2 log 2=472) o (1) where, if j<n-g(n).

om = /I
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Lemma 2.2 implies

log log g(n)
1) = C_(n with
0 (1) = C_(n) 5

(log g (n) )
1

lim C (n) = — .
n-co 2/2

If in the proof of Theorem 3.1 we let
log log g(n)

bn = Cg(n) —— take the place of b then (3.3)
(loggfn)ﬁ
becomes
t(n)
(locglog2n) = o(g(n))
1
(log g(n)) >
where t(n) = °d g

il
(log g(n) )2—4Cg(n) log log g (n)

This will be true if for some £>0 (log'logn)l+E = o(g(n)).

We also require that h€D' be s&ch that

' ‘ 2(loglog2n + Cm)2 log log g(n)
h(n) > mln{lijgg—lz T -<Cg(n) T }
: 2
(3-1) (Log g(n))?

or equivalently
4(loglog2n + C@) log g(n)
h(n) 3 5 5 + 1
Cg(n) (loglog g(n))

This makes it clear that the minimum size of h depends on g.
I1f, for example, g(n) = [log n] we may take

B, (log log n)2

1

h(n) < 5
(logloglog n)




for Bl a suitable constant. If g(n)=[nr] for some 0<r<l

then we may take

62 logn
h{n) € ———o
log logn

for 82 a suitable constant.
If we use the above values b=bn in the computations
following (3.5) we have

X 1

B ¢ 5
‘&:l——— <2(loglog2n + Ca)2 )

vk

P({xX, #X, }n{ sup
Ry Bs" " 1<k<n

1

{loglog2n + Ca)2

= n L _ 9

(g(n)+1)2 n

where Cn < 27 for all n.

Therefore

|

o - P(X =L ) < (n) +h(n) - (loglog2n + Ca) '

o RS,n n - n n _-|2__2b

(g(n)+1)

If we turn our attention to a, - P(XR =Ln) we see
6,n

from (3.16) that

n-g(n)
g log (1-A.)
T j=h(n)+1 J

3

s n-h(n)
-27t_ (log————
n Y2 CO

n

(2m?

BO|

) n''(l-0(1))

-

55
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k L k(l-n)
o 276 (2 logBRW))) 2 (op) 2
_ 21 C n-g(n)+1
) (@] Jr dx ol
=2 k 1 (m=-x+1) -~ "
WZ k
3 3
.-Zzin (Loghh(n),
21 C
> = 2 n" (1+0 (1))
(2m 2 n
1
“h(n), 2
> = K(n) (logi=22B1y  pllg
: /2T C i

for large n.

Thus P({XR6 #Xp }r\{|5j_1‘1‘<5n' h(n)<j<n})
Phal 5,n

E
= 7
-K (n) (logE—}l—(ﬂ) nn&'n
Y2 q)

< l-e

2. Best Invariant Rules

So far our search for asymptotically F.I. sequences of
rules has led us to invariant sequences in the N(u,l) and
N(u,cz) Problems. We showed in Chapter II that there exist
asymptotically F.I. invariant sequences of rules in these
problems, and in the first section of this chapter we ob-
tained the same result for a more sophisticated class of

rules.



5.l

Based upon these results it is natural to inquire
about the best that one can do with invariant rules in
these problems. This section pursues this question. The
existence of best invariant rules is guaranteed by the
theory of sequential decision problems and such rules can
be constructed by the method of backward induction (see
Ferguson [5] whose treatment we follow here). We begin by
setting the problem in a formal decision theoretic frame-
work, and then move on to deriving the form of a best in-
variant rule. Difficulties arise in trying to obtain an
exact rule since the expressions giving us this best in-
variant rule prove to be intractable for even small values
of n. Our efforts to cope with these difficulties are the
topic of the next section.

Fix n>2. For each 2<i<n define the group of location-
scale changes on E{i as

‘ i i
By = {gab:ﬂl >R~ where g_, (X;,...,%X;)
= (axl+b,...,axi+b), a>0, beIR}.

Gi will be considered the group of transformations on the

space of observations (Xl,...,Xi). The group Gi induces a
group G acting on the parameter space 0 = {(u,o)}ueJR as
_ _ o>0
qab(u,o) = (autb,ac). G is induced by requiring that the
distribution of 9ab (Xl,...,Xi) under Fe be the same as
that of (Xl,...,xi) under F— A third group required

gab(e)'
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in this formulation is a group G of transformations on the
action space A. Because our actions in this problem con-

sist of choosing one and only one of X "Xn as our candi-

1'- °
date for the largest observation we will take A = {1,...,n}
where action i corresponds to the action "choose Xi". We

will take the group G to be the identity transformation on
A.

A sequential decision rule consists of a stopping rule
and a terminal decision rule. The stopping rule tells us
when to stop sampling and the terminal decision rule tells
us what action to take once we have stopped sampling. The
conditions of the problem allow us to simplify this struc-
ture. Because no recall is allowed and because we must
accept or reject observation Xi as it is observed, we need
only specify that stopping at X requires that we take
action i. Thus the terminal decision rule is given by
5i(Xl,,..,Xi) = i and a solution of the problem will be a
determination of when to optimally stop.

If we stop at Xi the gain to the observer is
I(Xi=Ln); that is, 1 if Xi is the largest observation and
0 otherwise. Clearly this gain is invariant under the

action of groups G and G on the parameter and action spaces.
This fact along with the existence of the group G assures
us that the N(u,cz) Problem of length n is, in Ferguson's

terminology, an invariant sequential decision problem

truncated at n.



59

To find a best invariant rule our next step is to
find a maximal invariant under Gi for i=2,...,n. It is
easy to show that 31 is such a maximal invariant. In
addition an application of Basu's Theorem shows that the

components Y .,Yi are mutually independent.

gree
In what follows it is helpful to refer to the back-

ward induction method for the F.I. Problem. An outline of
this is given in Section 2 of Chapter I. We assume a
N(0,1) distribution without loss of generality. Xi is our
invariant state of knowledge at step i. Given Xi' our
expected gain by stopping (and therefore choosing xi) is

U; (%) = POX=mo[Y) .

If, on the other hand, we elect to observe Xi+l the best

we can expect to do is given by

E(V.

41,n i) %))

=i+l

where V is defined recursively as

(3.18) VvV (Y

1541 Ay

)= maxily g (E00) B, (X Yyl

i+l,n i+2,n " =i4+2
Then a best invariant rule for the N(u,oz) Problem of

length n is given by

(3-19) Tn=mln{n:rjnig{3:Uj ,n(‘Y":]) >E(V]+l,n(zj+l) IEJ) }}-
] ¥
The independence of the Y's and of Yj and Xj+l""'xn

allows us to write
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Un—l,n(zn—l) - I(Xn—l=Lr1—l)P(Xn<X l\Hn l
= I(X:r‘l--lan—l)P(erx‘n—-l|Yn~--l)
- I(Xn—l=Ln—l)Tn—l*,n(Yn—l)
E(Vn n —n)IXn-l) -

I(X

1 Dy VB (P (B 2%,

|y

-1 n,Yn—l)lYn—l)

+ I(X (7L, _{)E(P(X =L |x, Yy, _q)

- I(Xm—l:Lm-l)Hn—l,n(Yn—l)+I(Xn—l’—"ELn—l)Gn—:l.,n(’)—f-n—-l)'
Since G _, > 0 (3.19) implies
T I(T >n=2)=(mini{n,min{j:X.=L.,T. (Y.)>H, (Y.)}DI(T >n-2).
$>n-2 j"73m 73 i n
Continuing to the next step in the induction,
Un—z,n(zn—2) - I(Xn—2=Ln-2)P(Xn—l'xn<Xn—2Izn—z)
- I(Xn-2=Ln—2)P(Xn-l'Xn<X 2|Yn 2
- I(Xn—Z_Ln—Z)Tn—Z,n(Yn—Z)
E(Vy_1,nTn-1) [Zy0) =
E(I(X _;=L _;)max{P(X <X _,[¥ _P) P >x (Y )Y
+ T(X _#L PR =LY, ) (Y o)
=E(I(X ;=L o) T(X 1 >X odmax{T, () /By (0 MY,
+ E(I(X,_,=L__,)I(X _ <X IP(X >X o|¥ _)[Y, ,)
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+ E(I(X L

n—Z# n- LT %

2) n—l=Ln—l)maX{Tn—l,n(Yn-l)'Hn—l,n(Ynhl)}

i I(X1r1—l7£Lr1—l)P(Xn=Ln|3—E-n—l)]lz-n--2)

= I(Xnnzan-z)E(I(Xn-lixn—z)maX{Tn—l,n(Yn—l)'Hn—l,n(Yn-l)HYn—ﬁ

+ T(X,_,=L__S)E(I(X ;<X _,)P(X >X

n 11--21Yn—l"Y1‘1—2)IY

)

n-2

+ I(X _,

¢Ln—2)Gn—2 (X )

,n i =n=2

= T(X, 5=y p)H, 5 (Y o) FT(X 7Ly 5)6

n-2,n

X, s

Letting Mn_l'n(Yn_l) = maX{Tn_l’n(Yn_l),Hn_l’n(Yn_l)};

H (Y

n-2,n J=E{IX

n—lz-xn--Z)M

n-2 n—l,n(Yn—l)IYn—Z)
FE(T(X <X )P(X >X o [Y _1.¥, ) [¥, ).

Since G > 0 we have
n—-2,n

T T(T >n-3)=(min{n,min{j:X.=L.,T. (Y.)>H. (Y.)}DI(T_>n-3)
n ' n - 3" 373 Tim ] n
j>n-3
In general we find for k=1,...,n-2
Ui, n Tnoi) =T =Ty g ) PR <X e, J=n=ked, ooon[¥ o)
=nI(Xn_kan_k)P(Xj<xn_k’j=n—k+1,...,n1Yn_k)
= T s )

Xn—k:Ln—k)Tn—k,n( n-k
The V's are computed recursively according to (3.18) giving

E(V

n—k+l,n(Y )IY ) =

—n-k+1’ '=n-k

I(X =L )Gk . n

n—k= n-k)Hn—k,n(Yn—k) % I(Xn—k#Ln—k (Xn—k)'
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Letting
M. Y.)= H. Y. T, Y.
3 4 Vg =0 3,030 1Ty, n j)}'
(k)
25,0 Yn-x
k-j-1
= &1 REI I(Xn—k+£<Xn—k)I(Xn—jzxn—k)Mn—j,n(Yn—j)|Yn—k)
j=l,... ,k=1 ,
and
®(k)(Y )=E(kilI(X <X )I(X >xX )y )
k,n'"n-k 0=1 n-k+% “n-k n-"n-k n-k’ '
we have
Y
Hn—k,n(Yn—k) - j£1®j,n (Yn—k)

Since G > 0 we obtain
n-k

T I(t_>n-k-1)
n n

= (min{n, min {j:X.=L.,T. _(Y.)>H. _(Y.)}DI(t_>n-k-1)
Ssn-k-1" 3 373.m73 7m0 n

By taking k=n-1 we obtain the best invariant rule given by
(3.19).

The same analysis applies to the N(p,l) Problem. A
best invariant rule will be obtained if the Y's in the above
argument are replaced by the corresponding Z's.

It seems clear that there are decision numbers

}n

tb n=2

: for each n>3 such that
:},1’1 -
T, = mln{n,mln{j:x.=Lj,Yj>b

.
j>2 j jl’n



63

Though we offer no formal proof of this assertion, we will
outline the reason we believe it to be true.

if Xj:Lj then Xj is Yj sample standard deviations above
the sample mean. A large value of Yj indicates that to the
best of our (invariant) knowledge at time j, Xj is large
relative to its true distribution. In particular if one
is willing to choose an Xj which is x sample standard devi-
ations above the sample mean then one should be willing to
choose an Xj which is x+¢§ sample standard deviations above
the sample mean for any ¢>0.

Finally, we note that for n=1,2 a best invariant rule
is based only on relative ranks and therefore is the N.I.

rule.

3. Small Sample Sizes

The intractability of the expressions defining the
best invariant rules of the last section makes it extremely
difficult (if not impossible) to obtain exact values of
P (X =Ln) for even small n. Our approach to this difficulty
has been to guess a seemingly reasonable invariant rule o4
and then to obtain an estimate of P(Xo =Ln) through a Monte
Carlo procedure. §

For reasons given in the last section we expect a good

invariant rule to be of the form

<y

g = mind{n.mindd:X.=L. ¥Y.ob.
n 7 i - R e 7
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and consequently we confine ourselves to rules of this form.

Guessing a reasonable rule is then equivalent to guessing a

}n—l

reasonable set of decision numbers {b. .
j,n j=2

We consider two rules ¢, and o

1 5 obtained in this way,

where for i=1,2

(

: ; ; i)
a. = min{n,min{j:X.=L.,Y.>c.
i,n ’j>3{j e el L

(1)

The decision numbers c. " are defined as follows:
4 i
We first note that /i%i Yj has a Student's t distri-

bution with j-2 degrees of freedom. Let '.’L‘:.| be the c.d.f.

n-1
gl

Rule when a U[0,1] distribution is assumed.

of Yj. Let {d;l;} be the decision numbers for the F.I.

Consider the P.I. Problem defined by the location
parameter family of distributions {GB}GGI{ where G8 is
the U[G-%,8+%] c.d.f. 1In Chapter IV a best invariant rule

of length n is shown to be
(2

. ; ; )
= min{n,min{j:X.=L.,R.>d.""}
"n { 'jig JaXy=LysRy>dy 1
where R. is the range of X,,...,X.. The numbers dgz) are
J 1 ] j.n
computable.
we define olt) = p7l(glt)y,  i=1,2.
J.n J 1.0
For n=25, 50 and i=1,2 the quantity P(XO =Ln) was
i,n

estimated by a Monte Carlo procedure using the CDC 6500

computer at Purdue. For each of n=25, 50, 50,000 pseudo
random sequences of n N(0,l) observations were generated
using the RVP routine. The proportion of successes (i.e.

the proportion of sequences in which rule 9% n selected the
4
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largest observation) was computed in each case. These
numbers are displayed in Table 3.1.
To facilitate comparison Table 3.1 also lists the
true probability of choosing the largest for both the N.I.
and F.I. Rules of lengths 25 and 50. These numbers are
taken from Gilbert and Mosteller [7]. As the true value
for the F.I. Rule of length 25 is not listed in [7] the
value listed in Table 3.1 has been obtained by interpolation.
It can be seen that both rules o, and o

1 2

improvements over the N.I. Rule for each n. It must be

offer definite

mentioned that as we do not know the values for the best
invariant rule we cannot say exactly how significant the
improvement is. It is cerﬁainly not impressive when com-
pared with the F.I. values.

For both sample sizes o, improves upon o Perhaps

1
this is because the decision numbers dgzi take into account
r

some of the same variability (due to an unknown location

parameter) as is found in the N(u,cz) Problem.

Table 3.1. Estimated Probability of Choosing L, for Rules

Gl’n and Gz’n; True Probability of Choosing Ln

for the N.I. and F.I. Rules

Gl 02 N.I. F.I.
Sample 25 .3961 .4294 .3809 .5914
(approx.)

Size n 50 .4187 L4442 .3743 .5857




66

CHAPTER IV
THE UNIFORM PROBLEM

In this chapter we investigate the P.I. Problem deter-
mined by the location parameter family of distributions

. i 1 i ;
{GG}GEH{'Where G, is the c.d.f. of the U[e~§78+§] distri-

0
bution. As in the previous chapters our approach is to con-
sider stopping rules that are invariant under location
changes. For the problem of length n we obtain the form of
a best invariant rule Th (which is also minimax - see
Chapter I), and we derive exact expressions for obtaining
the optimal decision numbers and for finding Pe(xT =Ln)
{which, since Ty is invariant, is constant in 8) fgr
n=1,...,50.

In the last section we show that the sequence
_F(Tl,TZ,...) asymptotically improves upon the sequence

of optimal rules for the N.I. Problem but is not asympto-

. : 1 . : P B
tically F.I. (i.e. = ¢ lim PG(XT —Ln) < lim PG(XT —Ln)<ao).

To set notation for this chapter let:

X 7 Bnpsow =~ dsleds U[8—£,8+ll be the observations
1772 2 2

Y, = X=Xy, Xg=Xp .00 X X)) i=2,3,...

Liy. = max{xl,...,xi}

Dy 5 min{xl,...,xi}.



67

Li+Di
Mi = 5 (the midrange of Xl,...,Xi)
Rl = Li—Dl (the range of Xl,...,Xi)
GB = ¢c.d.f. of the U[S—%,8+%J distribution
F = {invariant stopping rules for the X's}
Fj,n: {oefF:j <o <n}.

EG(PB) denotes expectation (probability) taken with
respect to dGB'

1. The Form of a Best Invariant Rule

The P.I. Problem defined by the location parameter
family {Ge}eejR (hereafter known as the U[G—%,G+%] Problem)
is clearly invariant under location changes and a decision
theoretic formulation which exactly parallels that of the
N(u,l) Problem may be given (see Chapter IITI Section 2).

It is easily seen that Xi is a maximal invariant under
Gi, the group of location changes on Eti. We also note that
the range Ri is zi measurable.

We will assume 6=0 and n>3. The joint distribution of

R, and M, is then given by the density

12
1-R. 1-R.
_ i i
[,

(4.1) h(Mi,Ri) = i(i-1) R, "I (Mi)I
from which it may be seen that the distribution of Ri is

given by the density

s i=-2
(4.2) f(Ri) = J_(J.—l)Ri (l_Ri)I[O,l](Ri)

The distribution of My given ¥, is the same as that

of Mi given Ri which, we infer from (4.1) and (4.2), is
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l_Ri l-—Ri
uniform on | - 5 5|

Following the same steps as in Chapter III Section 2

1

we define for the U[B—%,8+§] Problem of length n,

LI

Il

P(X;=L,|%;)

I
()
pad

Il
£

H-
o

Xy <X i<f<nl|¥.)

R,

— o 1 .
= I(X;=L;)P(X, <= + M;, i<2<n|R;)

n-1i+1

1-R,
i

(n—i+l)(l—Ri)

I(Xi:Li)

I(Xi=Li) Ti,n(Ri) .

Note that T n is an increasing function.
r

Using backward induction we define Vi - recursively as
r

A% = U
n,n n,n
n(gi) = B (max{0, 1+1ly H(Xl+l) Vi+l;n( —i+l }IY ’
A best invariant rule is then
4.3 T = min{n,min{j:U Y.) > V. Y.) 1},
( ) n 5>2 44 ]rn(_j) jrn(—j)
As defined Vj n(g_j) =G€?up EO(UO(ZO)|Xj)
j.n

We now show that Vj n(Yj) is a function only of Rj'
JH

Lemma 4.1. vj,n(zj) = Vj,n(Rj) for each j=2,...,n.
Proof. The relation of R, and R. is given by
R, *L g, J R, R.
= i J J_ M. -3
Rj+l R I(M 5 <X. +15M]+2 )+(Mj+2 j+l)I(x l j 5 )
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- -l )
+ (Xj+l Mj+2 )I(Xj>Mj+2 )
If j=n-1 the result is clear since
Vn—l,n(zn—l) - P(Xn>Ln—llzn-l)
R
_ n-1
B P(Xn>Mn—l+—§__an—l)
1-R
= -1 .
- 2 - Vn—l,n(Rn—l)
Suppose Vj,n(zj) = Vj;n(Rj) for j=n-1,n-2,...,n-mtl,
2<m<n-2.
Then
(4.4) vn—m,n(zn—m)
- E(maX{Un—n&l,n(Xn-m+l)’vn~m+l,n(Rn—m+l)}an-m)
Rn—m Rn—m
- E(Vn—m+l,,n(Rn—rn)I(Mn—m_ 5 F e
n=m Rh—m
+Wrm1mu%ﬂﬁ2 _%ﬂmﬁlmmmﬂq%qf2 )
n-=m Rh—m
+ maX{Tn—m+l,n(Xn—m+l_Mn—m 2 )’Vn—m+1,n(Xn—m+l_Mn—m 2 )
n-m
I(Xn—m+l>Mn--m+ 2 )|Rh-m)
- n—m,n(Rn—m) /7
We can give a more explicit expression for vn—m,n(Rn—m

From (4.4) and

69

).

(4.1) we have



70

(4.5)
Vﬁ—m,n(Rn—m) = Rn—mVn—m+l,n(Rn—m)
1-R — R
n-mT _ n-m
2 n-m 2
* l—% f [ -m+1 n( = g_m—x)dx
L n-m+l, n-m
) l-Rn_m 1
2 -
1 .
2
n-m Rn-m
+ fmaX{Vn4m+l,n(X_Mn—m+_7__)'Tn—m+l,n(X_Mn—m+_§——)}dx am _
n-m
n—m+ 2 |
1 ¥
=~ “n-m n—m+l,n( n—m)+1—R i I (l_u)[vh—m+l,n(u)
Ro-m
- maX{Vn—m+l,n(u)’Tn—m+l,n(u)}]du'

We now derive the form of a best invariant rule. Let

hj,n(x) = (1-x) Vj,n(x)
n-j+1
_ _ o A
gj'n(X) = (1-=) Tj,n(x) = S5eT
for j=2,...,n, x€e[0,1].
Lemma 4.2. 1i.) An—l o = 0 is the unique sclution of
hn—l,n(x) = gn—l,n(x)' If 2<j<n-1 there is a unique solu-
tion Aj,nmg(o’l) of the equation hj,n(x) =-gj,n(x)'
For each 2<j<n:
ii.) 1 > AL > A F oewe ¥R = 0.
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iii.) h. el are decreasing functions on [0,1].
J.q0 77,0

iv.) hi n(x)
?' (%) > 1 for 0 < x < A. -

gj,n Jr
V.) Vj,n(x) is decreasing for x > Aj+l,n‘
vi.) by L Ogyq ) > 95 ng41,0)
Proof. The proof is by induction. To simplify notation

we consider n fixed and omit the second subscript on A, h,
g, T and V.
We begin by showing i.) - vi.) hold for j=n-1 and n-2.

It is easily verified that

2
_ 1-x _1-x
Vn~l(x) -2 Vn—2(x) 2
1+x l+x+x2
Tho1 ) = 75 T2 () = T3
Thus i.) and ii.) hold for j=n-1,n-2 and kn_l=0, An_2=.29.

iii.) and v.) are immediate for j=n-1,n-2 as is vi.) for

j=n=-2. By the above

h! . (x)

%:%_X>1 for x = A _; = 0

gn-—l

h! (%)

1}2()= 12+}l§—%>1 for 0 < x < A__,
gn—2 - 2x

so that iv.) holds for j=n-1,n-2.
Next we show that if i.) is satisfied for index j+1

then vi.) is satisfied for index j. Let

fj+l(u) = max{hj+l(u),gj+1(u)}, 1<j<n.
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(4.5) implies
1

(4.6) hj(X) = x h (x)+ i (hj+l(u)+f

S+1 {(u) )du.

j+1
Suppose i.) is satisfied for index j. We claim:

(4.7) hj(x) > qj(x) if x < Aj ,

hj(x) < gj(x) ifl > x> Aj

To see this first note that (4.7) is eguivalent to
(4..8) Vj(x) > Tj(x) if x < hj y
Vj(x) < Tj(x) if 1 > x > Aj
It is clear that Vn_l(l) = (0. Suppose that Vj(l) =0
for j=n-1,n-2,...,n-k+1l. Then
1

a _
Vel (1) = Vn-k+1‘1)‘[a§}{ (hn—k+l(u)+fn—k+l(u))du]X:l_ .

Thus Vj(l) = 0 for all 2<j<n. (Note: the probabilistic
meaning of Vj makes this intuitively clear).

From the expressions for T,

T, (0) = =7 T (1) =1, 2<j<n.

1
Vj(O) = é (hj+1(u)+fj+l(u))du

1
> é gj+l(u)du = 53Er S Tj(O), 2<j<n.

1 . . .
Thus Vj+1(0) > il and since Vj+l is continuous and non

negative on [0,1], so 1is hj+ Thus

Jrl
> h.
~ 0 j+1

1°

1 S (0 .

i =371 7 7

(u) du +
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Tj is also continuous on [0,1] for 2<j<n. Therefore if Aj
is the unique root of Vj(x) = Tj(x) in (0,1) (and therefore,
by the above, the unique root in [0,1]), (4.8) is satisfied,
implying (4.7) is also satisfied.

Now if i.) (and therefore (4.7)) holds for index J+1

then
1
hj(kj+l) = Aj+lhj+l(lj+l) +Af (hj+l(u)+gj+l(u))du
79+l
X .1 An_j) 1
B 1 Sl < SR R 5
= - . . u))d
— N ( j+l(u) gj+l( ))du
j+1
A (1—An_j) Loonej
> j+ln_. 14l f l:g:f— du
j A j
j+1
n=j n-j+1
hj+1(l“kj+l) l_kj+1 l_)‘j+l
= n-3 oS T me3) (ne3+ D)
n-j+1
1-XA.
=_—:_l+.l._._....= g.()\_ )_
n-j+1 jroj+l

Thus vi.) holds for index j.

Let 3<m<n-1 and assume i.)-v.) hold for j=n-1,n-2,...,
n-m+l. We will show that they hold for j=n-m. By the
above this will show vi.) is valid for 2<j<n and the lemma
will be proved.

Consider iii.) It is clear that gj is a decreasing
function on [0,1] for 2<j<n. By (4.6) and the induction
hypothesis

h' (x) = x h! (x)

n-m n-m+1 (x) <0,

fn—m+l
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and therefore iii.) holds for j=n-m.

To prove v.) for j=n-m it suffices to show Vn_m(x)

is decreasing for x>A . Recall that
— n-m+1
Vo_p(x) = sup PO(XG:Ln|Rn—m=X)
oEF
n-m,n
= Po(x0| =L IR _ =%

where the induction hypothesis implies that

o =min{n,min {k:Xk=Lk,Rk > Ak}}.
k>n-m

It 3% 3-An—m+l > An—m+2 ¥ swe ¥ kn—l = (0 then
Po(Xin = Ln|Rn_m=X) = PO(XU.=Ln|Rn_m = %)
where
c" = min{n,min {k:X =L, }}.
k Tk
k>n-m
1
Now for vy > % - 5
PO(XO" - nILn—méy’ Rn m x)
m o4 n
= kzl T B (exactly k of {Xi}i=n—m+l are larger than vy).

The latter is clearly decreasing in y. Given Rh_m=x,

1. L
Ln-m ~ Ulx-%, 5], io that
\% (x)=—£— fjb (X_w=L_|L.__=v, R __=x)dy
n-m 13 0'"¢c" "n'"n-m *’ "n-m
X~
which is decreasing in x. Thus v.) holds for j=n-m.
We now show that iv.) holds for Xikn—m+l and j=n-m,
i.e
-
3 =) > 1 for Of;ikn_m+l.
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Note that g!(x) = -x" J. Thus if x<A the induction
] — n-m+l

hypothesis for i.), iii.) and iv.) gives

hﬂ—m(x) _ hﬂ—m+l(x) hn—m+l(x)
A GO

] i | > 1.
n—m+l(x) gn—m(x)

This means that hn-m is decreasing more rapidly than e

on [0,A __,;y]. This, along with v.) and the fact that T _
is increasing on [0,1], gives us i.) for Jj=n-m. As noted
earlier vi.) follows for j=n-m-1.

Since hn—m(kn—m+l) > gn—m(An—m+l)' we see that the

. s " A
equation hn_m(x) gn_m(x) has no roots in [0, n—m+1]'
Thus there is exactly one root in (An—m+l’l)' This proves
ii,) for j=n-m.

For x € (A A ] Vi, _qg s decreasing, T _ 1is in-

n-m+l’ "n-m
creasing and T (x) < V¥ (x) by what has been shown so
n-m — ‘n-m

far. Therefore

[ o o |
0 > hn_m(x) = Vn_m(x) # i L) Vn_m(x)
0 >g _n(x)=-T __(x)+ (1-x) T) o (%)
which implies
b (%
——T—'—m > 1 for x i )\n_m.
In-m

Thus iv.) holds for j=n-m and the induction is complete. //

Lemma 4.2 leads us immediately to

Theorem 4.1. A best invariant rule for the U[e—%,8+%]
Problem of length n>3 is Tn=m1n{n,Eig{k:Xk=Lk,Rk>kk'n}},

where 1>k2,n>K3,n>"'>kn—l,n = 0.
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Proof. Immediate from (4.3) and Lemma 4.2. //

Remark
For n=1,2 the best invariant rule is clearly the N.T.
Rule. Since An—l 5 = B this is also the case for n=3. The
r

rule of Theorem 4.1 differs from the N.I. Rule when ni4.

2. P(XTfEn) for Stopping Rules T in a Certain Class

It is our purpose in this section to derive a formula
giving PO(XT=LH) for a certain class of invariant stopping
rules T in the U[8—%,8+%] Problem of length n. The class
considered is

Ty = {T:T=mln{n'1£ir21{kzxk:Lk'Rk g Bkrn}}'

1>8 >By 20 2B = 0}.

210 N — — "n=-1,n
By Theorem 4.1 we know that Tn contains a best invariant
rule. For notational simplicity in what follows we assume
n is fixed and omit the second subscript on the decision
numbers.

Let 1 > u, > u3 2 eee 2y g < 0 be any set of

decision numbers and let TETn be the stopping rule defined

by these numbers. Assume 6=0 and define the sets

A, = {Ry > uy}
A. = {R. < u. R. > u. 3<j<n-1.
5 = PReug B g By # agle -
n-1
Clearly Air\Aj = ¢, 1#j and P(jngj) = 1. Define An = ¢.

On Aj, t>j. Detk 3Lj<rin-l.
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(4.9)

p({t>r} AL

=P (X <L e [T % L < . .
(Xvﬂqj_lfv 3 x Rj—l—uj~1 Rj>1%)
R. R R
- M il J-1 j-1
= < _— U= —~—— -
P(Xv_Mj_1+ - j,...,r,Rj_ljp ,M]_l+ 5 TRouL X M, -5)
Ry
+P (X <M, _+ VI peeestu <R, oS, o).
( M1t V=7 rru, Rj_l_u]_l)
Ry-1 e
; . i | 31 oy ;
Since Mj-l 5 Mj_1 + = ay if and only 1f
R._l > uj, the‘right hand side of (4.9) can be written as
Ri_p Ry_y
<M. — V=] S <UL XL <M. —-u.
P(Xv—Mj—l+ 51V J+1, ,r,Rj_l_uj,Xj Mj-l+ 5 uj)
Ry_p
<M. ——— V=], e . . .
+P(Xv_Mj_l+ 5 rV=3, ,r,uj<Rj_l§p]_l)
= (using (4.1))
u 1—Rj_l
. 2 R, r-j s
: ; j-3 -11 j-1.1
= & il =y o B
(3-1) (3-2) ij_l / x| (M, yhgg) O hpto-ugan R,
0 0o
1-R,
u =2
-1 i=3 2 L
+(3-1) (5-2) f Ry ) f A au, &R,
u, 1-R,
J _ j-1
2
B o e T B e Yo T

Let pj (uj_l,uj) denote this last quantity.
, _

r
Let Q be the complement of the set {T=n,Xn#Ln}.
For r,j as above {T>r}r\Qr\Aj ={r=k, X =L, , some r<kin}r1Aj.

Given {T>r}()Qr\Aj, the probability that
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X = max{X

T r+l""'Xn} is H%— . By (4.9) and the compu-

r

tations following it we see that

P >r} A.) = p. . L euL) — P U, -,U.).
(HorinQnag) = py Ly y0ug) = Py, (8y 5.0y
Combining these we obtain
P({X =X =L_}n A.) = 1 (p (u u.)-p (u u.))
T “r+l Tn’ Ny n-r Fi,rt =173 F,mt =13
r+l
Since {XT=xr+l=Ln}(: jgz Aj it remains only to
consider {XT=Xr+l=Ln}(qu , j=2,r+1
We first look at
(4.10) P({X =X =L }nA ) =
P(Rriur+l<Rr+l'inxr+l=Lr+l' i=r+2,...,n)
+ P(ur+l<Rriur'inXr+1=Lr+l' Jj=r+2;...,n)

Recalling that, given Rr’ Lr is distributed uniformly

11

on [Rr—§'2

1, and letting a>0 we have

P(X, 4 15PeX - L=alR)

= E(I (L) |Rr)

— 1 1 (b) I (a)
r [Rr—§+a,§] [0,1—Rr]

Thus the density (note that the total probability does not

equal 1)

1

P(X =b,X ﬁ
r

4l —Lr=a|Rr)= I 1 1. () I (a)

r+1
[Rr_farf] [Orl_Rr]
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Hence
(4.11 - o
) P(X, <X rJ=r+2,...,0,X -1 a]Rr)
% 1 n-r-1
(b+§)
= | f , TX db I[ ](a)
_ r 0,1-R
Rr §+a =
n-r
l—(Rr+a)
= I (a) .

(n-r) (1-R ) [0,1-R.]

If R <
T

u we can write
— r+l t

P(inXr+l,j=r+2,...,n,Xr+l—Lr>ur+l—Rr|Rr)

1-R_ o
1-(R +a) -

= — — da
(n-r) (1 Rr)

l_vp—r+l
N = r+1
+1 n-r+l

(n—r)(l—Rr)

(.'L-u.r

Thus the first summand on the right hand side of (4.10),

P(R_<u <R $ X, <X =L P o > TR ; §
r—r+l Tr+l’%j—"r+l Tr+l —
1-u

Uyl (1-u_, )~ o,

= r(r-1)| f R r—2 dR n=r+l

r £ n-r
0
Fm] n-r+1
_ 2 B
= r+1 ( n-r _ " r+l )
n-r n-r+1 Urtl n-r+1

Let qr+l,l(ur'ur+l) denote this quantity.
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To obtain an expression for the second summand on the

right hand side of (4.10) we use (4.11) and write

P(Xj§Xr+l=Lr+l, j=r+2,...,n|Rr)

1-R
1 r n-xr
= TESET IR f [1- (R +a) lda
0
1-gh-rt+l
_ 1 - - e
= To=1) (I-R) [(1-R.) - g==F1 ]

Integrating with respect to the density of Rr on (ur+l’ur)

we obtain the desired result as

n-r+l1 r-2

Y (1-R )R
r(r-1) _ -2 r r
n-r I L{1 Rr)Rr n-r+1 ]dRr
u
r+l
pef oty (em1y (o - uE ) r(e-1) (0w
r r+l1° r r+l r r+l’
n-r+l n-r n(n-r) (n-r+1) ¢
Let qr+l,2(ur’ur+1) denote this quantity. Let
qr+l(ur'ur+l) - P({XT=Xr+l=Ln}r‘Ar+l)
= qr+l,l(ur'ur+l) * qr+l,2(ur'ur+l)

Note that q, = 0.

To obtain P({XT=Xr+1=Ln}(\A2) we let

P({t>r}nQn AZ)

Il

P({t>r}na,))-P({t=n,X #L }nA,).



Now
1 %
P({t>r} nA,)) = SP(X <M,+5=,v=3,...,r,R,>U,)
L l—R2
2 R2 1 r-2
= f fl-R (My+—5+35)  dM,dR,
Bo T g
¥ r
I P _l'uz) _1_ T 0™
r-1 2 r r r-1 r{r=1)
R
P({t=n,X #L_1} A)=]—'P(X<M+2\)3 n,R,>u,)
*2n” T N 52072 2" 27 pe i pRS9 750
u ul
. " 2
n n-1 n(n-=1)
r n
u u
_ 11 1 1 2 _ 2
=6 p2,r(u2) (r n) u2(r—l n—l)+ r{r-1) n{n-1)
Let p(k) = P(X =X=L ), 2<=n.
n
R u u
_ 1 2 _ _ I 2 2
p(2) = EP(vaM2+—§” v—3,...,n,R2>u2)— e, =y e
k
For k>3, p(k) = j£2 P({XT=Xk=Ln}nAj).
Thus we have
Theorem 4.2. In the U[B—%,G+%J Problem let TETn be an in-
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variant stopping rule determined by the decision numbers

1 > U, > u3 Z ..

P(XT=Ln)
(regarding vacuous

p(2)

S|+

. >

0. Then

p(k) where

sums as 0)

™
2

u
2
T ¥ a1




82

_ R B2
p(r+l) e qr+l(ur'ur+l)
¥
P ) (p. _(u ,ul)-p. _(u Jus))y,
n-r 323 12 1773 jentj=1""7]
n>r>2.

3. Computing Decision Numbers for a Best Invariant Rule

Recall the best invariant rule for the U[B—%,6+l]

2
Problem of length n given by Theorem 4.1:

By = mln{n,iig{k:Xk=Lk,Rk>Akrn}}.

In this section we will obtain each of the n-2 decision

numbers {X. }n—l

. - as a root of a polynomial. We are able
i,n i=2

to compute the A's with the aid of a high speed computer

and have done so for n=1,...,50. The results are displayed
in Table 4.1. Using these numbers in the formula of Theorem
4.2 we then obtain P(XT =Ln). These values are displayed

n
for selected n in Table 4.2.

k!

Let (R,m,n) denote the trinomial coefficient TTminl”
Theorem 4.3. Let {ki n}?:; be the decision numbers for
’ ==
the best invariant rule of Theorem 4.1. ln—k i is a root
F
of the equation
k+1 .
(4.12) Z a A =20,
r
r=0
where
k i+l
_ 1 t—1) k
{413 a1 = wrr Lo (i) + 1)
i=1l i
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k i ur
_ 1.k oy ded 1 _ 1
(4.14) ag = ) T L DTG 5Tt T B
i=1 j=0
k r=-k+i
(-1) k
4.15 a = =t . . O<r<k+1.
(4.15) ay = b @D (ki kersl,r-keicn)’
Proof. Assume 0= 0. If we observe X = T we will be
n-k n-k

indifferent to choosing X, _x OF rejecting it if

(4.16) P(Xn_k=Ln|Rh_k=A) = sup P(XT=Ln|Rn_k=h).
TEF
n-k,n
The value of A satisfying (4.16) will be kn—k n’

We assume n is fixed and drop the second subscript on

Xn—k=Ln-k and Rn-k-=

rule can only choose the largest observation if it is the

the A's. If An_kthenby'rejectlngxh_k our
first observation following X which exceeds X . Let E.

n-k n-k i
be the event that exactly i of Xn—k+l""’xn exceed

Ln_k,1=l,...,k.

P(Ei|Rh—k - kn-k)
= &yp(x.>L ., %=n-k+l sl , 3, 4,
‘i 2 n-k’ peec T —"n-k’'
E=n—k+1+l,",nﬂRn_k = An—k)
1-XA
n-k . ‘
—_— A k-1 A .
ok, 1 2 n-k, 15771 “n-k_ i
= 3 =3 [7 Mt t3) (Gm— M ) A
n-k
1-X
_ n-k
2
k. 1 L g g
= () 1= f (1-u) “du.
n-k A
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Given {Ei,Rn_k—Kn_k}, the probability is ¥ that the
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first of these i observations larger than Ln—k is also the

largest of all the observations. Thus

: n
P (exactly i of {X2}2=n—k+l are larger than L _, and the
first of these i is equal to L_|R _, = A _;)

1 ; ;
1 0k 1 kei o i
=2 [ g f u* T (l-u) du.

n-k A
n-k

If, on the other hand, we elect to choose X =L
n-k "n-k

the probability it is equal to L, is

P(Ln—k=Ln[Rn-k=An—k)

= P(X,<L__, . d=n-k+l,...,n|R =t )
_l—An_k
2 A .k
_ 1 n-k 1
"= ! M+ 5+ 3 Ay
_ l_kn—k
2
k+1
B 1-a 7
k+D) (1-7__)
So (4.16) becomes
k 4 ; : 1 k
y % (?) [ uk—l(l_u)ldu = f udu
i=1 A A
* n-k n-k
or . %
x i 5 l_)\k+j—1+l l—kk+l
) % (?) -1y k+§:?+l - kﬁik
i=1 3=0 ]

r

Simplifying, we obtain the form of this equation given by

(4.12) - (4.15).

//
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An interesting sidelight of this theorem is that the
decision numbers An—k,n depend only upon the number of
observations remaining and not on n, in contrast to the
numbers for the N(U,Oz) Problem. This is so since Rh—k
contains the same amount of information about 6 no matter
how many observations it took to obtain this information.

We used the results of Theorem 4.3 and the CDC 6500

n—-1
computer at Purdue to obtain the decision numbers {Aj }

;N7 =2
for n=3,...,50. To find the roots of the defining
polynomials (4.12) the double precision library routine
RPOLY was used. The values obtained are listed in Table
4.1 according to the number of observations remaining (since
by the above for nl,n2>k, Anl_k'nl = an—k,nz)‘

Using the formulas of Theorem 4.2 and the X values
from Table 4.1 we were then able to obtain P(XT =Ln) for
n=l,...,50. These values as well as the corres;onding

values for the N.I. and F.I. Rules are given in Table 4.2

for representative n.

4. Asymptotics

In this section we will show that for the stopping

rule Tn of Theorem 4.1

1 . 3 T _
— < lim Pe(xr—Ln) < lim Pe(XT —Ln) < oy

1 —>co n n-—-ce n

for any 6€IR. We begin with a lemma.
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Table 4.1. Decision Numbers for the Best Invariant Rule
of Theorem 4.1
n-k Ak n-k lk n-k Ak
1 0 17 .88147 33 .93743
2 .28990 18 .88774 34 .93922
3 46275 19 .89338 35 .94091
4 .56971 20 .89848 36 .94252
5 .64163 21 .90312 37 .94403
6 .69312 22 .90735 38 . 94547
7 « 13175 23 .91123 39 .94684
8 . 76177 24 .91480 40 .94814
9 .78577 25 .91809 41 .94938
10 « 80539 26 .92114 42 . 95056
11 .82173 27 .92396 43 85169
1z .83553 28 .92660 44 .95276
13 .84736 29 . 92905 45 -95379
14 .85760 30 +93135 46 . 95478
15 .86656 31 < 93350 47 95572
16 .87445 32 « 93552 48 .95663
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Table 4.2. Probability of Choosing Ln for the N.I. Rule,
the F.I. Rule, and the Best Invariant Rule of

Theorem 4.1.

Best

= Reds Invariant Eals

1 1.00000 1.00000 1.00000
2 .50000 .50000 .75000
3 .50000 .50000 .68429
4 .45833 .48305 .65540
5 .43333 47311 .69392
10 .39869 .45393 .60870
15 .38940 44762 .59898
20 .38420 .44449 .59420
30 .37865 44137 .58947
40 .37574 .43981 .58713

50 37427 .43888 .58573
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Lemma 4.3. Let {Ak n}i:é be the decision numbers defining
i L B B , -
Tn in Theorem 4.1. Then
2/3 log 2 _
1 mf_ )\k'n i 1 - N+l k—2,...,n—2

Proof. For simplicity of notation fix n and let Ak = Kk n°
F

Assume 6=0 and recall that
l_)\n—k-i-l

P (X =Ly [ X =Ty B=N) = ooy

As in the proof of Lemma 2.1, if

= - 2 1
P(xk—Ln}xk—Lk,Rk-A) > 5 then for any UEFk'
P(X =L |X=L,, R=A) <
P(X.>L some j>k|X =L =)) < 1
57 b s kT Ry 3 -
-k+1
_ . _log 2 dow 8,7 1
Suppose A = 1 e ey Then (1 n—k+l) < >
implies Yoy 8 n-k+1
1oy -kl _ -0 1
(n=k+1) (1-X) log 2 g *
n~k+1
Since 1-A is increasing in A
(n—-k+1) (1=-1) El '
_log 2
A 21 - BT
2v/3 .
To show that Ak = 1 e oy g we recall that kk is a
solution of
n-k 1 . . 1
417§ O P aewtan = [ o™ e
i=1 * A X

i
Integrating (n—k)f " & l(l—u)du by parts gives
A
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| _ i
(n-k) [ & a-wau = -a" k

A
Therefore to satisfy (4.17) A, must satisfy

(I=%) %] @ Egu.
A

_ n-k _ 1 oy ;
31 k(l—k) = 3 % (n.k)f & k L(1-u)tdu
i=2

n-k
n-k n-k-1i
> LTy G 2 (123

i+l

So we must have

n-k
n-k 1 B-K, B-kK-1 i
(@.18) N> Loy Ci) A AT

Suppose A, = 1 = c > 243 .

k T n-k-1 '
n-k

Then )
i=2

1 (nTk) An—k—i

g
o i e (1-2y)

(n-k) (n-k-1) An—k—2 2
12 k

>

2
_ (n-k) (n-k-1) c c
- 12 A P
2

since

(n=k) (n=-k-1) o (n—k—l—c)
12 c °
This contradicts (4.18) and so

2/3
e 2 L = mmeaT - //

We now assume e=% so that the X's are U[0,1] random

variables. Let wn; o be the optimal N.I. and F.I. Rules
of length n respectively, for the observations Xl’XZ""
The next theorem shows that if T, is the best invariant

rule of Theorem 4.1,
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j _ : _ — _
(4.19) == lim P(Xw —Ln) <1lim P(XT —Ln)illm P(XT —Ln)
n-+e n n-— n N n
<lim P{(X_ =L ) = o_ = .58 .
o n o}
n--o n

Our approach to the leftmost inequality of (4.19) is to
take advantage of the fact that Wy ignores more than % of
the observations. Among these observations significant
improvements can be gained by using a simple invariant rule.

To obtain the rightmost inequality in (4.19) we note

that

,.4
1l

min{n,min{k:X =L ,R >X ol
e k "k Bk”*k ,n

mln{nrzig{k:Xk=Lk>hk'n+Dk}}.

Looked at in this way T, appears to have the same form as

o but with random decision numbers Kk + D Our

n /N k*
approach is based on the premise that the random quantities
Dk introduce too much variation to allow T = (Tl,T2,...)

to be asymptotically F.I.

Theorem 4.4. For T, the best invariant rule of Theorem 4.1

and any B6€IR

1 1imp.(x =L )<Tim P, (X_ =L) < a
e 0 T n’ — (S n o)
n-ce n n-co n

Proof. Assume e=%. Let 9 be the F.I. Rule of length n

when a U[0,1l] distribution is assumed. Let 0<a<l and for

[-] the largest integer function let an=[an]. Let
2V3

= h—1 i
n ﬁ:g;:T- Let {Ak,n}k=2 be the decision numbers for T
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Lemma 4.3 implies that Ak,n 1 - Yo ! k=2,...,an
Let X, = 1 - % where 0 < g < 1 is a number to be determined.
Note X > Ak,n for all k=3,...,n-1 and all n > 3.

Consider the stopping rule

min {k:X =Lk>xn,Dk>yn}, if such k exists

_ 2<k<a_ K
v, o= ——="n
n
n, if no such k exists.
 L— :
Let T} mln{vn,Tn}. Clearly

P(X, =L ) > P(X_,=L) , n > 2.
n n

We will show that there is a v > 0 such that

(4.20) P(XT.=Ln) 2 P(XT =Ln) + v as n-—o,
n n
Let
—_— 0 — — —
Bk,n {1 By k} k=2, ran
a
n c
Then U B = {t! =7 F .
k=2 k,n
On Bk,n XTIll = Xk = Lk ¥ X and therefore
e n -
(4.21) P(XTA = Ln|Bk'n) > X k=2,...,a, .
Also, since Foe > k on Bk,n'
. n
(4.22) P(X_ —Ln|Bk’n)§P(Xj>xn, some k<j<n) < 1 - x

n

Fix 0<8<l and let 0<e<l be such that

g C l§§ (equivalently, € < ————li%—)
l-!-logm

£
Then x. = 1 - = means
n n
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(l"Xn)+5<xn
n n

and therefore by (4.21) and (4.22)

P(X ., = LnlBk'n) > P(X_ =Ln|Bk’n) + 6 k=2,...,a
n n
a
n c
= ] i ' —
Since {Tn = Tn} = | U Bk, ) we have
k=2
a a
n c n C
P(X =L | (U B ) ) =P(X =L [(U By ) )
n k=2 n =2
and therefore s
n
P(XT'=Ln) > P(XT =Ln) + 8§ P g Bk,n)
n n k=2

We complete the proof of (4.20) by showing that
a

n
lim P (U B ) > 0.
o gep Hi8

Consider the set

En = {Dan>yn, Xk > %, some 2§k§an, Xl<xn}.
a
n
It is easily verified that E_. C U B 5
n >~ k,n
k=2
an—l an—l]
P(E)) = (xn-Yn)[(l—Yn) ~ 8 N
_2Y3 a
+ e L=a (l—e_ae) > 0 as n-+w

and therefore (4.20) follows.
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Let w, be the N.I. Rule of length n. That is,

w_ = min{n,min {k:X =L }} where lim kin) _ l. We want to
n k Tk e
k>k (n) s
show
T4 BX =0 ) > 1o BCE. =N ) = = .
sty T n W n e

T1—>co n T —co n

For n>e>0, let

_ . . . . E =
En,s = mln{n,mln{k.Rk>l =Xy Lk}}
k>2
Po,e = mln{Enlg,mn}.
For each n>e>0 p and £ are invariant rules. We will
n,e n,e

show there is an £>0 such that

lim P(X =15) >z
e p n e
n--c n,c
Let An’€ = {pn,e = gn,g < k(n)}. In order for X, to equal

n

n
L, on the set - - at least one of {Xk}k=k(n)+l must exceed

r

1 _ E

E. Thus 1
c n-k(n) —e(l-g)
P(X =L_|A ) <1 = (1 - 2) + l-e as n-o,
w, n''n,e’ — n
On the other hand X will equal L_ if X. < X for
&n n ] £
r € n,e
B s 9 j < n. The probability of this is greater than
' n n
_E.:.. = > __E_ —E
(1 n) on the set An,e' Thus P(Xp LnlAn,e)—(l =) e
n,e
as n-o,
: _ . -
Since {pn,a —wn} = An,e we have
_ c _ _ .
P(xp = Ln]An’E) = P(X, LnlAn’E).
By n
Clearly
lim P(An E) = §(g) > 0 for each >0
L r

n -+
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If we choose £>0 such that

1

-e(l—=) _

1 - e L = g
then
lim P(X = Ln) - 1im P(Xm = Ln) >
n-+c pn,e n-+o n
- —s(l-é)

(e -(l-e Y)Y 8§ (e) > 0 . ZE

Remarks

Theorem 4.4, the results of Chapter II and the work of
Samuels previously cited (Chapter I Section 4) show that
asymptotically the U[e—%,e+%] Problem is an intermediate
case lying between the extremes represented by the N(u,cz)
Problem and the Ula,R] Problem.

It would be gratifying to know the true value of
lim P(XT =Ln) or even that such a limit exists. From

I -+oo n

Table 4.2 it seems that P(XT =Ln) is decreasing in n (this
n

holds not only for the values of n displayed in Table 4.2
but also for all n=1,...,50). This is in keeping with the
results in the F.I. and N.I. Problems and suggests that a
good estimate of lim P(XT =Ln) may be obtainable by extra-
polating these knggn resu?ts.

For example, in the N.I. and F.I. Problems if one
considers P(Xwn=Ln) and P(XO =Ln) as linear in % one ob-
tains very good estimates of their limits by extrapolation.

In the case of full information the extrapolated value is

.580121 while the true value is .580164. 1In the no
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information case the extrapolated value is .36759 while the
true value is .36787. Both results were obtained by linear
extrapolation in % from the values n = 40, 50.

If the same procedure is applied to the values in

Table 4.2 we obtain an estimate of lim P(XT = Ln) = .43516.
n-o n
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