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 FULL-INFORMATION BEST-CHOICE PROBLEMS WITH

 RECALL OF OBSERVATIONS AND UNCERTAINTY OF
 SELECTION DEPENDING ON THE OBSERVATION

 JOSEPH D. PETRUCCELLI,* Worcester Polytechnic Institute

 Abstract

 n i.i.d. random variables with known continuous distribution function F are

 observed sequentially with the object of choosing the largest. After any
 observation, say the kth, the observer may solicit any of the first k observa-
 tions. If the (k - t)th is solicited, the probability of a successful solicitation may
 depend on t, the number of observations since the (k - t)th, and on the
 quantile of the (k - t)th observation. General properties of optimal selection
 procedures are obtained and the optimal procedures and their probabilities of
 success are derived in some special cases.

 OPTIMAL STOPPING; SECRETARY PROBLEM; FULL INFORMATION

 1. Introduction

 The following best-choice problem was studied by Moser (1956), Guttman
 (1960) and Gilbert and Mosteller (1966): n i.i.d. random variables from a
 known continuous distribution F are observed sequentially with the object of
 choosing the largest. Neither past solicitation nor future knowledge of an
 observation is allowed and one choice must be made.

 The present paper considers a similar problem in which past solicitation of
 an observation is allowed and such solicitation may be successful or unsuccess-
 ful. Further, the probability of a successful solicitation is allowed to depend on
 the number of observations from the solicited observation to the present and
 on the quantile of the solicited observation.

 If, for example, the observations are scores on a competitive examination of
 applicants for a position and solicitation of an observation is a job offer to an
 applicant, then the probability that an applicant will accept an offer may
 depend on the time elapsed between the interview and the offer and on the
 applicant's exam score.
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 Full-information best-choice problems 341

 This paper extends results of Yang (1974), Smith (1975) and Petruccelli
 (1981) in two ways. First, it considers a full-information problem-that is, F is
 known. Second, it allows the probability of a successful solicitation to depend
 on the observation.

 Section 2 states assumptions and provides the basic formulas which are used
 to find an optimal procedure. Section 3 considers several special cases in detail,
 deriving the optimal procedure and the associated probabilities of success for
 each. Finally, Section 4 explores some general properties of optimal proce-
 dures.

 2. The general solution

 Let X1, - - - , X, be i.i.d. random variables from a known continuous distribu-
 tion F. These random variables are observed sequentially with the object of
 choosing the largest.

 Let Lk = max {X1,- ? , Xk} and call Xk a candidate if XLk = Kk, 1 - k - n.
 For each 1 - k = n we denote the state of the process after observing Xk by a

 triple (x, k, t), t < k, if x = Lk = Xk-t and if observation k - t has not yet been
 solicited. If Lk = x and the largest of the first k observations has been
 unsuccessfully solicited we describe the state of the process as (x, k, 00).

 If in state (x, k, t) we solicit the largest among the first k observations (Xk-,
 if t <oo), the probability that we obtain this observation is q(F(x), t). We
 assume:

 (i) q(u, c) 0, 0? 5u 5 1. That is, only one solicitation is allowed for each
 observation.

 (ii) q(u, t) is non-increasing in u for fixed t and in t for fixed u.
 This last seems reasonable in light of the example of the last section: if the

 observations are scores on a competitive examination for a position then
 Condition (ii) states that the probability of a particular applicant accepting an
 offer of employment decreases as the time between the interview and offer
 increases and that the more competitive is the applicant the lower is the
 probability that he will accept an offer at any given time.

 We shall assume that the observations are from a U[O, 1] distribution as no
 generality is lost in doing so.

 Suppose the process is in state (x, k, t). We then have two options: we may
 solicit the best among the first k observations or we may elect to observe the
 (k + 1)th observation. Let 6b (x, k, t) be the probability of choosing the largest in

 the first instance assuming we continue in an optimal manner. Let f(x, k, t) be
 the same probability in the second instance again assuming optimal behavior
 for the future. Then clearly an optimal procedure will, in state (x, k, t), solicit
 the largest of the first k observations if and only if 6b (x, k, t) exceeds 6f(x, k, t).

This content downloaded from 130.215.176.72 on Wed, 31 Jul 2019 20:16:26 UTC
All use subject to https://about.jstor.org/terms



 342 JOSEPH D. PETRUCCELLI

 Let 6(x, k, t)= max {6b(x, k, t), f(x, k, t)}.
 The following recursive formulas are easily derived:

 (2.1) 5f(x, k, t)= J (y, k +1,O0) dy + x5(x, k +1, t+1)

 (2.2) 6b(x, k, t)= xn-kq(x, t)+(1- q(x, t))5(x, k, o)

 (2.3) 6(x, k, oo) = I(y, k + 1, 0) dy + x,(x, k + 1, o)

 (2.4) 8(x, n, t) = q(x, t).
 (2.3) and (2.4) imply

 n-k-1 1

 (2.5) 6(x, k,o)= xi 6(y, k +j+ 1, O) dy.
 i=O

 The following notation will be used throughout: IA(') will be the usual
 indicator function of the set A. I(E) where E is an event, will be another kind
 of indicator function, taking the value 1 if E occurs, 0 if not.

 Vacuous sums will take value 0; vacuous products value 1.

 For observations Xl, - - , Xk, Lk = max {Xl, . . , Xk}; Lo = 0.
 ['] is the greatest integer function.

 3. Special cases

 In this section we find, for several choices of q(., .) an optimal procedure and
 the probability of choosing the largest observation using this procedure.
 Asymptotic results are also obtained.

 3.1. Case 1. q(x, t)= q(x). Intuitively when the probability of a successful
 solicitation remains the same over time an optimal procedure will always
 observe the next observation since nothing is lost in doing so. The result is a
 procedure which observes all n X's before making an offer to the largest. This
 intuitive argument can be made rigorous by using (2.1)-(2.5) to show that
 Sf(x, k, t) exceeds 6b(x, k, t) for all x e [0, 1], 1- k < n, t < k.

 The probability of choosing the largest is then easily seen to be

 n q(x)Xn-1 dx,

 and if lim_,l q(x) = q, the asymptotic probability, as n -V c, of choosing the largest is q.

 3.2. Case 2. q(x, 0) = q(x); q(x, t)= p(x), t =1; q(x) p(x), x e [0, 1].
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 Full-information best-choice problems 343

 Theorem 3.1. For Case 2:

 (i) Form of the optimal rule. If p(x)/q(x) is non-increasing in x then for each

 n there are numbers {d(j, n)}>j= with d(j, n)= d(j, n; q(.), p(.)) and d(j, n)
 decreasing in j, such that an optimal procedure is to solicit the first candidate

 Xk which exceeds d(k, n), 1 -k _ n. If this solicitation is unsuccessful then each candidate that appears is solicited until a successful solicitation is obtained
 or until no observations remain.

 (ii) Formula for decision numbers d(k, n). d = d(k, n) satisfies

 k " n-k

 (3.1) (q(d)-p(d))Iq(d)= (n k(1 -d)v"d"g(n, v, d) v=-1 ( /

 where g(n, v, d) is a function defined in the proof below.
 (iii) Probability of successful solicitation. The probability of choosing the

 largest observation using the optimal procedure is

 (3.2) P(n)= , {P1(k, n)+ P2(k, n)+ P3(k, n)}
 k=1

 where

 n -k ( d(k--1,n) P(k, n)= (k-1) dk,) (1-- X)YX"--1g(n, v, x) dx v=1 = 1 (kn)

 d(k - 1,n)

 + p(x)xn-1 dx , k ?2
 d(k,n)

 =0. k=1.

 P2(k, n)= dk-l(k, n) q(x)xn-k dx
 V(k,n)

 +? nkJ (1- q(x))(1 - x)vx"k''g(n, v, x) dx

 S d(k-'l,n) I

 P3(k, n) = (k- 1) dk, y k-2 jq()n-kdxdy
 -+ n y-k-2))-k-v( V
 v=l 1( Jd(k,n)

 x g(n, v, x) dx dy}, k - 2 =0, k = 1.

 (iv) Asymptotic formula for decision numbers. If limx_, p(x)= p,
 limx_, q(x) = q, then there exist {bi1}7 such that d(k,n)=1-b,_f/(n - k). In
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 344 JOSEPH D. PETRUCCELLI

 addition limi,. bi = b where b satisfies

 (3.3) (q - p)/q2 = ii (1- q/j)b/'lv!
 v=1 j=2

 (v) Asymptotic probability of successful solicitation. Under the assumptions in

 (iv) the asymptotic probability as n -- o of choosing the largest observation is

 p+q f, (1- q/)b"/v! e-b -b (e-bvv) dv] v=1 i=2

 (3.4) +q(eb -biev) dv

 + q(1-q)Y (-v!)-1 (1- qj) u"e-u du eb (e-bv) d . v=l i=2

 Remarks.

 (i) Intuitively the optimal rule may be thought of as follows: if an observa-
 tion is a candidate and is 'good enough' (i.e. exceeds its decision number
 d(k, n)) then it will be solicited. As more observations are taken 'good enough'
 becomes a less stringent hurdle and a less important criterion compared with
 the requirement that the observation be a candidate. Notice also that even if Lk
 exceeds d(k, n) and has not yet been solicited, it will not be solicited at time k
 unless Xk =Lk. This is because, as in Case 1, p(x), the probability of a
 successful solicitation of that observation, does not decrease with time.

 (ii) The condition that p(x)/q(x) be non-increasing in x can be interpreted as
 saying that the relative loss in the probability of successful solicitation by not
 soliciting immediately is greater the larger the observation is. Thus, for
 example, the better the applicant for the job, the less is the relative probability
 of his acceptance of an offer 'later' compared to his probability of accepting an
 immediate offer. This is reasonable if one believes that better applicants are
 chosen faster by the market than are lesser applicants.

 (iii) If q(x) q, p(x) p then

 g(n, v, x) = q I (1 - q/j). j=2

 This results in (3.1) and (3.2) taking a form which is computationally much
 simpler. The asymptotic results (3.3) and (3.4) are unchanged.

 Proof of Theorem 3.1. By using Equations (2.1)-(2.5) and an induction
 argument we can show that

 8f(x, 1, t)> b (x, 1, t) 0<t<l n-1.
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 Full-information best-choice problems 345

 This implies

 6b (x, k, 0) = q(x)Xn-k + (1- q(x))8(x, k, oo)

 6f(x, k, 0) = p(x)x"-n + 8(x, k, o)

 so that Sf(x, k, 0) 1-b (x, k, 0) iff

 (3.5) xk-n"(x, k, oo) _ 1 - p(x)Iq(x).
 By assumption the right side of (3.5) is non-decreasing while the left side is

 decreasing in x. Thus there is a d(k, n)= d(k, n; q(.), p(.)) such that (3.5) holds
 iff x _5 d(k, n).

 Assume x ?= d(k, n). Then from (3.5) we obtain
 n-k 1

 x"-k+l(1-p(x)q(x)). - xi 8(y, k+j,0) dy

 < 6(x, k - 1, oo)

 which implies
 6f(x, k -1, 0) > Sb (x, k - 1, 0)

 and thus x < d(k -1, n). Hence d(k, n) is decreasing in k. This proves i.

 Let v(n, k, x) = ~j=k+1 I(x,1(X); that is, the number of Xk+l, " ". X, which
 exceed x. v(n, k, x) has a binomial distribution with parameters n - k and 1- x.

 Let c(v)= c(v(n, k, x)) be the number of candidates among the v which
 exceed x; that is, the number which at the time of observation are the largest

 of all so far observed. c(v) is distributed as the sum '= Y where v and the Y,
 are mutually independent and P(Y, = 1)= i-= 1- P(Y = 0).

 Let 1 > Z > Z2 > . > Zc > x denote the scores (X-values) of the c(v)
 candidates which exceed x.

 Then, for v ?1 define

 g(n, v,. x)= E(q(Z) 1-f (1- q(Zi)) v, X, = Lk = x .
 j=2

 Notice that g(n, v, x) is the probability, given v and Xk = Lk = x, of choosing
 the largest observation using the strategy of immediately soliciting each candi-

 date among Xk+l, " " ", X, that appears. A coniputational formula for g(n, v, x)
 is found in Appendix A.

 Let o-(k, n) denote the strategy of not soliciting Xk but of immediately

 soliciting each candidate among Xk+?," " , X, that appears. Let y(k, n) denote the strategy of soliciting Xk and if rejected of continuing as does o-(k, n). Then

 P(X(k,) = L, X, = Lk = x)
 (3.6) -k n-) v)xkvg( nk

 =(1- x) g(n, k, x)+ p(x)x" v=1 &
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 P(X,(k,) =L/ I Xk = Lk = x)

 = (1-q(x)) n k ( -x)vxnk-vg(n, k, x) + q(x)x"k. v=1 &

 d(k, n) is the value of x which equates (3.6) and (3.7). This proves (3.1).
 Let -(n) denote the optimal procedure. That is, r(n)= k if and only if the

 optimal procedure chooses Xk. Let

 Pl(k, n)= P({X-(,)= L} fn{d(k, n)< Lk = Lk-1 5 d(k -1, n)})
 d(k-l,n)

 = P(X(k,) = I Xk = Lk = x) d(k,n)

 x P(Lk = Lk-, = x) dx 2 5 k n,

 P2(k, n)= P(n{X() = Ln} n{Lk_ , d(k, n)< Xk})
 1 d(k,n)

 = d(kn) P(X,(k,,,) = L, I Xk = Lk = x)

 x P(Lk-1 = y, Xk = x) dy dx 1 -< k -! n,

 P3(k, n)= P({X() = } fn {d(k, n)< Lk-, d(k -1, n), Xk > Lk-1})
 fd(k-l,n) 1

 = Pd(k,n) (X(k,)= L, IXk = Lk = x)

 x P(Lk-1 = y, Xk = x) dy dx, 2 < k 15 n.

 With some computation these expressions yield those in (iii). (3.2) follows

 easily if we note that Pl(k, n)+ P2(k, n)+ P3(k, n) is the probability that X;(,) =

 L, and that solicitation is first allowed at time k, k _-2. P2(1, n) is the same probability at time 1.

 Since q(x), p(x) ?0 and are non-increasing limxl q(x) = q, limxl p(x) = p exist.

 Clearly (see (3.1) and Appendix A) the quantity j(1- d(n-j,n)) is a
 function only of j (not of n - j) and therefore we can write d(k, n)=

 1- b,_k/(n - k). Let b*= lim supi,, bi, b*= lim infi,, bi. By using (3.1) and

 bounds on g(n, v, x) it can be shown that 0 5 b, < b* <(q - p)/q2. Let bn_(,n)
 and b_,3(n) be subsequences converging to b* and b, respectively. (3.1) can be written as

 n-k

 d(k, n)(q(d(k, n))- p(d(k, n)))/q(d(k, n))

 c(v)

 =E(I(o, )(v(n, k, d(k, n)))q(Zm) H (1-q(Z )) I Xk = Lk =d(k, n)). i=2
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 Full -information best-choice problems 347

 Let k = a (n) and let n -- oo. Then we obtain

 e-b*(q - p)/q = qE(I(O,)(N*)(1 - q)= Y)
 N*

 = qE(Io,o>(N*) H (1 - qj)) i=1

 where N* has a Poisson distribution with parameter b*. By similarly letting

 k = 3(n) and letting n -- oo we obtain
 N.

 e-b*(q - p)/q = qE(I(0o)(N*)H (1- qlj)) i=1

 where N* has a Poisson distribution with parameter b,.

 These two expressions imply that b, = b*= b and that b satisfies (3.3). To prove (3.4) we will view the problem from a different perspective. Let

 c(n) be the number of candidates among XI, 1 ", X,, and define

 jr(n) = kI(Xk = L,)

 51(n) = kI(X, = L,_f>-1), c(n) j 2
 =0 j>c(n)

 so that ?j(n) is the arrival time of the jth-largest candidate among X1, . ,X,,
 ij>-1.

 For each jr 2, define

 Vi(n) = 1x(n)/n Zx(n) = n(1- L-,())
 Vi(n) = ,(n)/l-i((n Z1(n) = - 1(n)(1 -L,,/L,_,-,().

 For each j, since c(n)- oo as n - oo a.s.,

 (Vi(n), ..., Vi(n), Zi(n), . , Zi(n)) (Vi, 9-..., Vi, Z1,..., Zi)

 where the V's and Z's are mutually independent, Vi - U[0, 1], Z, - exp (1).

 P(X(,,) = L,) = 2 P(X(,,) = L., L,(n) - d(Gi(n), n), L~,_(n)> d(%i-l(n), n)) j=2

 + P(X(,n) = L, L,(,) < d(51(n), n))
 n j-1

 =--, E(q(LI(,n)) f (1 - q(L{,(n))) j=2 [=2

 x I(L4(n). - d(Ji(n), n), Lj,_,(n) > d(-jl(n), n)))

 +E(p(L<(d)I(L (.)< d (51(n), n))

 -- q(1-q)-2Ai + pAl
 i=2
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 where

 Ai = P(b/(1 - V, i)<Z+Z2/V+ --.. -+ Zl/ 1 Vi-1,
 b/(1- V1 . Vi-l1) > Zi? Z2/Vi? --l v, - Z> l 1/V1 V. j -2)

 A1 = P(Zi > b/(1- VW)).

 This shows that we may assume that d(k, n) = 1- b/(n - k) and that q(x) -q
 and p(x) p for the purpose of finding lim,.o P(X,(,) = L).

 Under these assumptions g(n, v, x) = q q1=2 (1 - q/j) and therefore

 Pl(k, n) = (k - 1) q I-I (1 - q/j)
 v=l V i=2

 'd(k-1,n),n-v--an n
 x x 1- x)v dx + p(d(k -1, n)- d(k, n))/n d(k,n)

 Let an denote [an] where O<a <1. Then

 nPx(an, n) = (an - 1)p((l - b/(n - an + 1))n -(1 - b/(n - an))")

 (3.8) +n(an -1)q En a I (1- q/j) V=1 =2

 1-b/(n -an +1)

 x xn"-v-l(1 - x)" dx.
 1-b/(n-an)

 The first summand of (3.8) converges to pabe-b/(-a/(1 - a)2. The second
 converges to

 qabe-b/(1-a) , (1- q/i)b"/v! (1- a)2. v=1 j=2

 Similarly

 nP2(an, n) --> q(1 - e-b)e-abl(1-a(1 - a)

 + [q(1-q)e-ab/(1-a) (v!)-1 (1-qj)uve-udu (1-a), v=1 j=2 0

 and nP3(an, n) --->0. Thus P(X,(n) = L,) converges to

 [p+q  (1-q/j)b"/v! bJ(ae-bl/(1-a)-2) da
 v=1 j=2

 O1
 +q(1-e-b) ( -"b(l/(1-a)

 + q(1-q) (v!)-1 (1-q/j) uve-u du (e-ab/(1-a)I/(1-a)) da,

 which gives (3.4).
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 Full-information best-choice problems 349

 3.3. Case 3. q(x, t) = q(x)(p(x))', t -0, O< q(x), p(x)< 1. We state, without
 proof, the following result.

 Theorem 3.2. For Case 3:

 (i) Form of the optimal rule. If p(x) is non-increasing in x, then there are

 numbers {d(j, n)}i-1, d(j, n) = d(j, n, p(.), q(.)), decreasing in j, such that an
 optimal procedure is to solicit the largest among X1, " ", Xk if d(k -1, n) ?
 Lk-1, Lk > d(k, n) and if unsuccessful to solicit each candidate that appears in
 turn until successful or until all observations are exhausted.

 (ii) Formula for decision numbers d(k, n). d = d(k, n) satisfies

 1 = k (l-d)Vd_,,(1 +p(d)v/n(1-p(d)))g(n, v, d).
 (iii) Probability of successful solicitation. The probability of choosing the

 largest observation using the optimal procedure is

 P(n)= Y{P,(k, n)+P2(k, n)+P3(k,n)
 k=1

 where

 d(k-1,n)

 Px(k, n) = (x"-'q(x)p(x)(1 - (p(x))k-l)/(l - p(x))) dx
 Jd(k,n)

 ?k n-k d(k-1,n) (+ -(k- 1-q(x)p(x)(1-(p(x))k-1)/(1-p(x)))
 v=1 d(k,n)

 x xn-v-(1- x)vg(n, v, x) dx, k- 2
 = 0, k = 1,

 and P2(k, n), P3(k, n) are as in Theorem 3.1.

 (iv) Asymptotic formula for decision numbers. If limx,, p(x)= p,

 lim,,x q(x) = q, then d(k, n) = 1- b,_k/(n - k) where limi,_, b = b with b satis- fying

 q-1= Y, (1-q/j)bv/v!
 v=1 j=2

 (v) Asymptotic probability of successful solicitation.

 lim P(n)= q ~ (1-q/]j)bv/v! e-bb (e-b dv n-L- v= 1j=2

 + qa(eb -- 1) (e-bv) dv

 + q(1-q) 1 (v!)-1 (1- q/j) u"e-" du eb (e-bv) d.
 v=l =2

This content downloaded from 130.215.176.72 on Wed, 31 Jul 2019 20:16:26 UTC
All use subject to https://about.jstor.org/terms



 350 JOSEPH D. PETRUCCELLI

 Remarks.

 (i) As in Case 2 there are decision numbers d(k, n) in this case as well. The
 difference in the form of the rule in Case 3 is that as soon as Lk exceeds d(k, n)
 one makes a solicitation. This is because q(x, t) is decreasing in t and one
 wishes to avoid decreasing the probability of a successful solicitation.

 (ii) The assumption that p(x) is non-increasing corresponds to a lower
 marginal probability of successful solicitation (when waiting one more observa-
 tion) for larger observations. Thus, to use the employment/applicant interpre-
 tation, the better the applicant the relatively greater is the loss in his probabil-
 ity of acceptance by waiting one more interview before offering him the
 position.

 (iii) If q(x)=q,p(x) p then, as in the remarks after Theorem 3.1
 g(n, v, x) = q fI=2 (1-qlj).

 (iv) The asymptotic results in (iv) and (v) are the same as for the case in
 which q(x) q, p(x) 0.

 4. Some general considerations

 The form of the optimal procedure for each of the functions q(., *) consi-
 dered in Section 3 was obtained explicitly, in part because each procedure
 solicited a past observation at most once. In general this simplicity will be
 lacking and we must resort to Equations (2.1)-(2.5) to solve the problem.

 We can, however, describe the general behavior of optimal procedures, at
 least to some extent. The results of this section are attempts at such a
 description.

 The first three theorems are analogues in our full information setting of
 theorems given by Yang (1974) and Petruccelli (1981) in the case of no
 information.

 The idea of Theorem 4.1 is that if one has the possibility of successfully
 soliciting an observation at a later date, one will be more demanding before
 soliciting a present observation than one would be if no future solicitation were
 possible.

 Theorem 4.1. Let {d(k, n)}n=1 be the decision numbers for the optimal

 procedure of Theorem 3.1 with p(x) O, q(x)-O. Consider the optimal
 selection procedure for the problem defined by arbitrary q(-, .) with q(x, 0) =
 q(x). Then in state (x, k, t) with x - d(k, n), this procedure will always observe

 Xk+l rather than solicit Lk.

 Proof. Let 8, , Sb be as previously defined. Let 4, 5,, 4b be the correspond-

 ing quantities when q(x, t)= 0, t >1, q(x, O)= q(x). We first show

 (4.1) (l(x, 1, O)< 8(x, l, 0), x e (0, 1), l = 1, , n - 1.

This content downloaded from 130.215.176.72 on Wed, 31 Jul 2019 20:16:26 UTC
All use subject to https://about.jstor.org/terms



 Full-information best-choice problems 351

 (4.1) is easy to demonstrate for 1= n -1. Suppose it is true for 1=
 n -1, , n - k + 1, for some 1 - k - n. Then

 b(x,n-k, 0) = x-q(x, 0) + (1 - q (x, 0)) xi8(y, n - k +j+l1, 0) dy
 i=0

 >x -kq(x,0)+(1-q(x,O))E xijf(y,n-k+j+1,O) dy
 i=0

 = Wb(x, n - k, O).

 This proves (4.1). Let d = d(k, n) and assume x : d. Then 4f(x, k, 0)> 4b(x, k, 0)
 which implies

 n-k-1 1

 x"-k< xi (y, n - k +j + , 0)dy
 i=0o x

 and so

 n-k- 1 1i

 Sf(x, k, t) >-- xj (y, n _ k + j + 1, 0) dy i=0

 n-k-1 1

 > q(x,kt)t , xi (y (y, n-k+j+1,0)dy i=0

 n-k-1 1

 +(1-q(x, t)) Y xif 8(y, n-k+j+1,0) dy
 i=0

 n-k-1 1

 > q,(x, )x + (1 -q(xt xI 85(y, n - k +j + 1, 0) dy j=0o

 = 6b(X, k, t)

 Theorem 4.2 gives necessary and sufficient conditions, involving L_I1, for the
 optimal strategy to view all observations before making a solicitation.

 Theorem 4.2. In order that, under the optimal strategy, an offer is never
 made until all applicants have been interviewed, it is:

 (i) Necessary that
 1

 (4.2) J q(y,0) dyiL 1(1-q(Ln1, t+1)/q(Ln1, t)), 0<t<n-1

 (ii) Sufficient that

 (4.3) fq(y, 0) dy >- x(1 - q (x, t + 1)/q(x, t)), 0 - t - n - 1, x L- Ln
 Proof. It is easy to show that

 8f(L1, n-, t)-Sb (L , n-i, t), O-t-n-1
 iff (4.2) holds. This proves (i).
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 To prove (ii) assume (4.3) is true and that

 8f(x, j, t) >- 8b (x, j, t) 0 5 t < j, j = n - 1, ? ? , n - k + 1.
 Then

 8f(x, n-k, t)= xi (y, n - k +j+1,0)dy+xkq(x, t + k)
 k-1 1

 q-q(x, t)xk+(1-q(x,t)) ~ 1 xi 8(y,n-k+j+1,0)dy i=0

 = Sb (x, n - k, t)

 iff

 k-1 1

 xi j (y,n- k+ 1, 0) dy xk(1 -q(x, t + k)/q(x, t)).
 j=0

 By assumption

 xi~r 8(y,.n- k + j+1, 0) dy xk(1-q(x, t + k - 1)/q(x, t)).
 1=1

 Thus it suffices to show

 (4.4) x-k 8(y, n - k + 1, 0) dy > (q(x, t + k - 1)- q(x, t + k))Iq(x, t).

 Since 8(y, n - k + 1, 0) >- q(y, 0)yk- , the left side of (4.4) exceeds
 1 1

 x-k q(y, 0)y-1 dy x-1 q(y, 0) dy

 (1 - q(x, t + k)/q(x, t + k - 1))

 ? (q(x, t + k - 1)/q(x, t))(1 - q(x, t + k)/q(x, t + k - 1)).

 Theorem 4.3. Let h(n, x) 0, x E[0, 1]. For x e (0, 1] and s = 1,- , n - 1 let

 h(s, x)=Y ( s)(1-x)"x-'g(n, v, x) v=1

 where g(n, v, x) is as given in Section 3 with q(x)=q(x, 0). Assume g is
 non-increasing in x. Let the decision numbers {d(k, n)}=l be as in Theorem
 4.1. Then:

 (i) If for some 1 ?-_ s < n, L, = x > d(s, n) and

 (4.5) q(y, t+1)/q(y, t)<(1- h(s, y))/(1- h(s +1, y)), O- t <n, y1 x,
 the optimal procedure will solicit the current largest observation (if previously

 unsolicited) at each time s, - , n.
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 (ii) Further, if q(y, t + 1)/q(y, t) is non-increasing in y for each t < n and if
 (4.5) holds for y = x and all t < n then the conclusion of (i) holds.

 Proof. It can be shown that the right side of (4.5) is increasing in s and y for

 y - d(s, n) (see Appendix B). This means (ii) follows from (i), so we consider the latter.

 Clearly (i) is true for s = n - 1 since

 g(n, 1, x) = (1- x)-1 q(y, 0) dy.

 Assume the result true for s = n - 1, n - 2, ? ? ? , k + 1, that Lk = x > d(k, n)
 and that (4.5) holds for s = k. Under these assumptions

 h(k, X)= xk-n"(x, k, o), h(k +1, x)= Xk+l-"n(x, k +1, o).

 Thus

 8f(x, k, t)= 8(y, k + 1, 0) dy + x8 (x, k + 1, t + 1)

 = 8f(y, k + 1, 0) dy + x-kq(x, t + 1)

 + x(1 - q(x, t + 1))8(x, k + 1, o)

 = xn-k[q(x, t + 1)+ h(k, x)- q(x, t + 1)h(k + 1, x)].

 8b (X, k, t)= Xn-kq(x, t)+(1- q(x, t))8(x, k, oo)

 = x"-k [q(x, t)+(1 - q(x, t))h(k, x)].

 So

 8f(x, k, t)- 8b(x, k, t)= x"-k[q(x, t+ 1)(1- h(k + 1, x))- q(x, t)(1- h(k, x))].

 Remark. If q(x, t)= q(t) the condition that g be non-increasing in x is
 automatically satisfied.

 For the next theorem we assume, contrary to what is assumed in the rest of
 the paper, that q(x, t) may be non-decreasing in t.

 Theorem 4.4. Assume q(y, 0) = 0. Then 8f(x, k, t)> 8b(x, k, t) x e [0, 1], k >

 t _- t, to- n - 1 if and only if

 q(x, t+ l)/q(x, t) >-1 x e [0, 1], to<- t :- n -2.
 Proof. Sufficiency is easy to show using (2.1)-(2.5). To show necessity let

 q = supYECo,1] q(y, 0).

 8f(x, n - , t)> Sb(x, n - i, t) iff q(y, 0) dy > x(1-q(x, t+ 1)/q(x, t))
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 which implies

 q(1- x)> x(1-q(x, t+1)/q(x, t)).

 If q(x, t + 1)/q(x, t)< 1 we have from above that 8f(x, n - 1, t)> 8b(x, n -1, t)
 only if x iq/(l+ q - q(x, t +l )/q(x, t))<l1 which contradicts the assumption
 that x e[0, 1].

 Remark. Theorem 4.4 shows that if we require q(x, t) to be non-increasing
 in t then all observations are always taken before any solicitation is made if and

 only if q(x, t)= q(x), t > 0.
 If the marginal (in time) probability of a successful solicitation is negative
 and decreasing with the size of the observation it would seem reasonable that
 for any state (x, k, t), t <oo, an optimal procedure would solicit a current
 candidate, as opposed to observing the next observation, if x is large. This is
 precisely the case as shown by the following result.

 Theorem 4.5. Suppose 1 > q(x, t + 1)/q(x, t) > 0 is non-increasing in x for
 each 0 5 t < n. Then if q(x, t) is continuous in x there are numbers
 {d(n, j, t)}ost<is, such that in state (x, k, t) the optimal procedure will solicit
 xk_, if and only if x > d(n, k, t).

 Proof. Let A(n, j, t) = {x :8f(x, j, t)> 8b (, j, t)}. Suppose
 k-1

 x e n A(n, n-k +j, t).
 i=1

 Then

 (8f(x, n - k, t) - Sb(x, n-k, t))xkq(x, t)(1-q(x, t + n-k)lq(x, t))

 = (1 -q(x, t + n - k)/q(x, t))-Xx-ks(x, n - k, o)- 1

 which is non-increasing in x.
 For x n-l A(n, n-k + j, t), let s = s(x) be the smallest integer 05 s 5

 k - 2 for which x A(n, n - k + s + 1, t). Then

 (8f(x, n - k, t)- 8b(x, n - k, t))Ixkq(x, t)(1 - q(x, t + s + 1)/q(x, t))
 S 1

 =(1-q(x, t+s+1)/q4(x,t))-1 xi-y-k5(y.n- k+ j+,10)dy =0O

 k-s-21

 + x++1 (yn- k + s + j+2,0)dy - 1 j=O x

 which is non-increasing in x.

 The result follows by the continuity of 8b and 8b in x.

 The final two theorems characterize the probabilities of successful solicita-
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 tion in the cases for which, in some sense, the optimal procedure solicits
 independently of t at each stage k.

 Theorem 4.6. If q(x, t)= q(t), independent of x, then at (x, k, t), 0- t <k S
 n - 1, the optimal procedure solicits independently of t if and only if q(t)= qp'

 for some 0 < q, p 5 1.

 Proof. It is easy to show, using (2.1)-(2.5), that 8f(x, k, t) - Sb(x, k, t) is
 greater than 0 independently of t for each k. This gives sufficiency. To show

 necessity we note that b(X, n-1, t)>f(x, n -1, t) iff q(0)x-l(1-x)<
 1-q(t+l)/q(t) which is independent of t iff q(t+l)/q(t) is independent of
 t,O5t<n-1. Let q = q(0) and p= q(1)/q(0). The result follows.

 Theorem 4.7. (Sb(x, n - 1, t) - f(x, n - 1, t))Iq(x, t) is independent of t if and
 only if q(x, t)= q(x)(p(x))'.

 Proof. Similar to the above.

 Appendix A

 This appendix derives a computational formula for
 c(v)

 g(n, v, x)= E(q(Zj) H (1- q(Zi)) I v, Xk = Lk = x).
 j=2

 Let Y1, . ? , Yv denote the v exceedances of x among Xk+?, " , X,, in order

 of observation. Let Ui = max {Y1, . - , Yj} for each 15=j < v. Let 1 j= .l(v)=
 kI(Yk = U,), E, )= (Y,)(v)= 1. fi = fi(v) = kI(Yk = U_,-11), = 2, - - - , c(v)- 1i
 so that ?j is the time at which the largest Y occurs, ?2 the time at which the
 previous largest occurs, etc.

 In what follows the theory of record values of a random sequence is used.
 See Haghighi-Talab and Wright (1973) for some details of this theory.

 Let ISUi be the modulus of the indicated Stirling number of the first kind.
 Then

 P(c(v) = ] V1, V)= IS -1x (- 1)! 2 5

 =0 l< i.
 Note the first quantity is the probability of j-1 record values among observa-

 tions Y,, Ye,-1. Note also that Y1 is always a record value so that given
 ?1 > 1, c(v) >_ 2. Now assume c(v)?>- 2

 P(I = 1 v)= v-1 1 - l - v
 and

 P(c(v) = jI v)= lSfllv!
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 so that

 P( = 1 c(v), v) = (v - 1)! IS~fI-l(l - 1)! IS(v)'" c(v) 1 v.

 To obtain P(&k = 1 1,"1, ? -1, c(v), v) we note that this is the probability
 that the largest among Y, ?., Y l~ -1 occurs at 1 given there are c(v)-k + 1 records among these observations. Thus for k= 2, , c(v)-1

 P(6k = 1I1, "' , )k-l, c(v), v)

 -(kl - -2)! I jc(v)-/(1) Ic(v)-kj c(v)- k + 1-1 - 1-. So we obtain a probability mass function

 f(S1, ? ? , ()-1 Cc(v), v, Xk = Lk = x) = f(1, , V )- 1I c(v), v) c(v)-2

 cc (v)-2(v)-2
 i=1

 /c)(v)--2 = (v-1)! (6-1), c(v) i51 5 V, c(v)-j + 1 -5 i-i- 1,
 j=2,.-, c(v)-1.

 Now given 1, - - Sc(v)-1, c(v), v, Xk = Lk = x, Z1,.. , Zc(v) have density

 h(zl, " " , z(,,) 6,'" b , 4c(v)-1, c(v), v, Xk = Lk = x) c(v)-l 1

 SV(Zl-X)"/(1-x)"(z((-)-xx)2I'(iX) IXi=2
 c (v)-1

 x H (6 - 1)((zi+l-x)/(Zi-X))4', x < Zc(v)<'' < Z1<1.
 i=1

 This follows from the fact that ZI is distributed as the largest observation from
 v U[x, 1] random variables and, given c(v), Xk = Lk = x, ,, - , '5,c(v)-1, and
 Z,- - - , Zi,1, Zi is distributed as the largest from among 6j-1-1 U[x, Zi4-
 random variables, j = 2,- - , c(v).

 Thus we have the density

 f(zl, " , zc(,,) I c(v), v, Xk = Lk = x)

 = v!(z,-x)vl (1 -x) I I (zi=)C -x)2 I (zv - x)

 S c(v)- -
 6=c(v)-2= Z 2=V)

 ,1=2 \Zc(v)_1-x
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 If c(v)= 1

 f(z1 I c(v) = 1, v, Xk = Lk = x) = v(z1- x)-1/(1- x)v, X < Z <1.
 Now since

 P(c(v)-= I v,Xk = Lk = x)= P(c(v)= I| v)= IS'I/v!
 we have

 g(n, v, x)= (v!)-1 IS'l q(zx) (1-q(z2)) ... =1 1

 x (1-q(zl))f(zx, , zl I v, c(v) = 1, Xk = Lk = x) dz . dz1x.

 Appendix B

 This appendix proves the following result which is used in Theorem 4.3:
 G(s, y) = (1- h(s, y))/(l - h(s +1, y)) is increasing in s and y for y d(s, n).
 We shall need the following lemma, the proof of which is easy.

 Lemma. Let g > f> 0 be differentiable functions on (0, oo) with f'> g'> 0.
 Then (flg)' >0 on (0, oo).

 Now

 h(s+1, y)-h(s, y)= ( s (1-y)"y-vg(n, v, y)

 Thus h(s, y) is decreasing in s.

 G(s, y)> G(s - 1, y) iff (h(s, y)- h(s +1, y))/(1- h(s + 1, y))

 < (h(s - 1, y) - h(s, y))/(1 - h(s, y)).

 This holds in particular if h(s, y) - h(s + 1, y) < h(s - 1, y) - h(s, y) or equival-
 ently

 Sn-sn-s--1 -s+l n-s (1 - (y)"y-g(n, v, x)< E ( 1 - y)vy -vg(n, v, x)

 which is clearly true. Thus G is increasing in s.
 Let z = (1- y)/y and let

 (s, z) = )zvg(nv, (z + 1)-1)

 av= z fxzn- g(n, v, (z + 1)-1) + vg(n, v, (z + 1)-1)
 z v=1 vz

 >0 since -g(n, v, x) O.
 ax
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 So v is increasing in z and furthermore

 a a
 - v(s, z)> -v(s + 1, z).
 az az

 But this means that f(y) = 1- h(s, y), g(y) = 1- h(s +1, y) satisfy the conditions
 of the lemma and so G(s, y), their quotient, is increasing in y.
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