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 ON THE BEST-CHOICE PROBLEM WHEN THE NUMBER

 OF OBSERVATIONS IS RANDOM

 JOSEPH D. PETRUCCELLI,* Worcester Polytechnic Institute

 Abstract

 We consider the problem of maximizing the probability of choosing the
 largest from a sequence of N observations when N is a bounded random
 variable. The present paper gives a necessary and sufficient condition, based on
 the distribution of N, for the optimal stopping rule to have a particularly simple
 form: what Rasmussen and Robbins (1975) call an s(r) rule. A second result
 indicates that optimal stopping rules for this problem can, with one restriction,
 take virtually any form.
 OPTIMAL STOPPING; SECRETARY PROBLEM; RELATIVE RANKS; OPTIMIZATION
 THEORY

 1. Introduction

 We consider the following problem: N observations are taken sequentially
 with the object of choosing the largest. After each observation a decision must
 be made, based only on the relative ranks of the observations seen so far, to
 choose or reject that observation. Once rejected an observation is no longer
 available. If N is known this is a version - often called the best-choice problem
 - of the well-known secretary problem (see Gilbert and Mosteller (1966)).

 In this paper we allow N to be a bounded random variable. Section 2 seeks to
 describe the structure of optimal rules and in particular when an optimal rule will

 only accept the first observation of relative rank 1 appearing after a given time.
 This is what Rasmussen and Robbins (1975) call an s(r) rule.

 A more general theorem of Presman and Sonin (1972) provides, in our setting,
 a simple sufficient condition for an s(r) rule to be optimal. This same sufficient
 condition can also be deduced from a proposition of Irle (1980). Theorem 2.2
 refines this condition. The necessary and sufficient condition of Theorem 2.3
 follows from equations of Presman and Sonin.

 In Section 3 we prove that optimal stopping rules for this problem can take,
 with one restriction, literally any form.
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 166 JOSEPH D. PETRUCCELLI

 Rasmussen and Robbins (1975) considered the above problem when N is a
 bounded random variable and Rasmussen (1975) considered the problem for an
 arbitrary (as opposed to 0-1) payoff based on the rank of the observation chosen,
 with N as above. However, as will be explained in Section 2, both papers state
 erroneous results concerning the structure of optimal stopping rules.
 The result of Section 3 is the most general possible counterexample to these

 erroneous results.

 Similar problems have been considered by Gianini-Pettitt (1979).

 2. When is an s(r) rule optimal?

 Assume N <= n, P(N = k) = pk, k = 1, , n with p, > 0. Following Rasmus- sen and Robbins we define an s(r) rule to be a stopping rule of the form: for

 some 2 : r _ n observe the first r - 1 observations and then choose the first
 among the remaining observations which is the best observed thus far. It is well
 known that if P(N = n)= p, = 1, the optimal rule is an s(r) rule with

 r = t(n) =min ll": 1/m 1j.
 Rasmussen and Robbins incorrectly assume Theorem 3.1 of Rasmussen to be

 true. (In fact the error occurs in Rasmussen's Lemma 3.2 to Theorem 3.1.)
 Hence their statement that the optimal rule is an s(r) rule no matter what the
 distribution of N is incorrect.

 Irle (1980) shows by counterexample that whether an optimal rule is an s(r)
 rule depends on the distribution of N. Using a more general formulation of the
 problem he derives several sufficient conditions on the distribution of N for the

 optimal rule to be an s(r) rule. One of these becomes, under our assumptions.

 (2.1) Pk > pm /m implies pt> > p,/m, 1> k.
 m=k+l m -I=+

 This condition is also a special case of Theorem 3.2 of Presman and Sonin (1972).
 This condition is weakened somewhat in Theorem 2.2 below.

 The most general possible counterexample to the incorrect Rasmussen result
 in the best-choice case (equivalently, the incorrect Rasmussen and Robbins
 result) is derived in Section 3 below.

 2.1. Mathematical formulation. For k = 1,. , n observation k will be called

 a candidate if it is the largest of observations 1, . , k. It is assumed that at the
 time of observation we are only told the rank of each observation relative to
 those previously observed.

 Let a(k) and b(k) denote the probability, when observation k is a candidate,
 of selecting the largest of all N observations by observing the (k - 1)th
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 On the best-choice problem when the number of observations is random 167

 observation and behaving optimally thereafter and by selecting observation k,
 respectively. Let m(k) = max{a(k), b(k)}.

 Let

 a (k) = k pjIk) a(k)
 j=k

 P(k) =(> pjIk) b(k)
 j=k

 Suppose observation k has just been seen and is a candidate. Let

 A = {largest of all N is chosen by observing observation
 k + 1 and continuing optimally}

 B = {observation k + 1 is a candidate}

 a(k)= P(A INe k)= P(AB{N -k + 1 } N k)+ P(ABc{N I k + 1} N k)
 =P(A IB, N - k + 1)P(B I N k + 1)P(N k + 1JN k)

 +P(A IBC,N - k + 1)P(Bc JN_- k + 1)P(N_ k + 1 JNe k)
 = (m (k + 1)) (1I(k + 1)) ( p P/ P)

 j=k+l j=k

 + a (k ? 1)(kI(k ? 1)) / p/ p).
 j=k+l j=k

 This implies:

 ac(k) = a(k + 1)+ ? (k + 1)/k

 b(k) = P(observation k is largest of all N IN ? k)

 = E P(observation k largest of all j N = j, N k)P(N = j N ? k)
 j=k

 Thus we obtain the following relations:

 (2.2) ca(k)= C /(j)/(j- 1), 1 k n - 1 j=k+l

 (2.3) P3(k) = p,/j, 1 k n j=k
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 (2.4) L (n)= p(n) = p, /n.

 It is easily shown that p3(n - 1)> a (n - 1) and that if

 f(j)> a(j), l+1!-j-n-1,
 then

 (1)-a(1)=p,/l1+ (p,/j) (1- 1/m .
 j=1+1 m=I

 From this we obtain the following result.

 Theorem 2.1. Let t(n)= min{l E 1 :,I M1/m - 1}. In the best-choice prob-

 lem with random N - n, the first time the optimal rule will select a candidate
 occurs no later than the t(n)th observation. Further, the optimal rule always
 selects the first candidate among observations t(n), , n if stopping has not
 previously occurred.

 2.2. Necessary and sufficient conditions for the optimal rule to be an s(r)
 rule. Using (2.2)-(2.4) we obtain

 (2.5) P(k)-a(k)= p(k + 1)- a(k + 1)+pk/k - ju(k + 1)/k,
 so that

 3(k+l)>a(k+1) and pk/ Z pm/m>1 m=k+l

 imply Pf(k) > a (k). But we know from Theorem 2.1 that Pf(1) > a (1), 1 ? t(n).
 Thus if k ? t(n) - 1 we need only require

 P 1 E p, /m > 1, k-<_l-;tI(n)t-i1
 m=1+1

 in order that p (1) > a (1), 1_- k.
 If

 S =max {k - 1'p p- m /IM and if we adopt condition (2.6) below then

 p/, p P /m , 1-1-', and so from (2.5) we have

 > p(l+1)-a(l+1), min{(,t(n)-l}<-l1-t(n)-l.
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 Thus condition (2.6) guarantees that a (1)> /3(1) implies a (j) > 3(j), 1 _j - 1,
 and hence that the optimal rule is an s (r) rule. Thus we have the following result.

 Theorem 2.2. Let t(n) = min{l ? 1: "-M=,1/m 5 1}. Then a sufficient condi- tion for the optimal rule to be an s (r) rule is

 (2.6) Pk/ pJP/m >1 implies p, p /m>l, k515t(n)-1.

 If we assume in Presman and Sonin's (1972) formulation that pk = 0, k - n + 1, then their

 c = pm /m- c(m,l)pm, m=1 m=1+l

 where c (m, 1) is defined in Theorem 2.3 below, so that their Theorem 3.1 implies

 P6(k)>a(k), k-k(n)+ 1 and Pf(k(n)) < a (k(n)), where k(n) is defined in Theorem 2.3 below. Using their formulas (3.4) and (3.5) and an induction
 argument we have that

 a (1) > (l), 1 l- < k(n)

 iff (2.7) below holds. Hence we have the following result.

 Theorem 2.3. If c(m, 1) = (in=,+ 1/(j - 1))/m and if

 k(n)= max {l1 : pm/m < = c(ml)pm}
 m=1 m=1+1

 then the optimal rule is an s (r) rule if and only if

 (2.7) l pm/m < k(n) c(m,k(n))pm, 1 5 1 5 k(n). m=1 m=k(n)+l

 Further, if condition (2.7) holds the optimal rule passes over observations
 1, - - -, k (n) and chooses the first candidate thereafter.
 Notice that (2.7) can be written as

 1 pm/m < E (k(n)c(m,k(n)) - 1/m)pm -lpk(n)/k(n),
 m=1 m= k(n)+l

 (2.8) 1 -l5 1 k(n).
 Given k (n) the right side of (2.8) depends on pk(n)," " p, Pnwhile the left depends
 on p, - ? *, pk(n)-1. k (n) itself is determined by the values of pD for larger j. Thus we

 can view condition (2.8) as: determine k(n) using p.,p-,'",cnpk.). This
 determines a benchmark for each I < k(n), namely the right side of (2.8). The

 optimal rule is an s(r) if the p; for 1 -j - k(n)- 1 are 'small enough' relative to the lth benchmark.
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 3. What form can an optimal rule take?

 In this section we state and prove the most general counterexample to the
 false theorem of Rasmussen in the best-choice case. Specifically, we prove that,

 taking into account the restriction imposed by Theorem 2.1, optimal stopping
 rules for the best-choice problem with random N can take any form whatsoever.

 Formally, let 5p C {1, - -, t(n)- 1} be the set of positive integers less than t(n)
 at which a stopping rule 7 will stop - that is, integers j at which 7 will select
 observation j if j is a candidate. Theorem 2.1 guarantees that an optimal rule will
 always stop on {t(n), ..- , n}.

 Theorem 3.1. Let A be a subset of {1, , t(n)- 1}. There is a probability
 distribution for N, p,, p,n with p, > 0 such that if 7 is an optimal stopping rule

 for the best-choice problem with N observations, then p, = A.

 Proof. 0p(k)?= a(k), t(n)= 5k 5 n by Theorem 2.1. For the purposes of this
 proof and without loss of generality it will be assumed that if p3(k) = a (k) and if
 observation k is a candidate then observation k will be selected.

 From (2.2)-(2.4) we see that for fixed pk, , p,, a (k), Pf(k) and hence g (k)
 can be written as linear combinations of pk, ', p,. If for some c > 0 we replace
 the pi by p) = cp,, k 5 j 5 n, the resulting linear combinations expressing a (k),
 p (k) and g (k) change only by replacing p1 by p'. Thus we obtain

 a'(k) = caf(k)

 0 '(k) = co (k)

 .'(k)= ctl(k)
 where a, 0, g are defined in Section 2 when the distribution of N is {p}>,"'= and

 a ', p', ,' result by changing pi to p', j k. In particular the sign of P (k)- a(k) remains unchanged under rescaling. Now

 P(k) - a (k)= p l/jI- (j)/(j'-1) j=k j=k+l

 = (k + 1)- a(k + 1)+ pk/k - g (k + 1)/k.

 Thus:

 (i) If a (k + 1)> fp(k + 1) we can, by appropriate rescaling of pkl, - , p, and
 appropriate choice of pk, make fP(k) - a (k) positive, negative or 0 while

 retaining the form of the optimal rule at observations k +1, . , n.
 (ii) If a(k +1)= P3(k + 1)= (k + 1), then

 P (k)- a (k) = p, /k - p(k + l)/k =(pa - 1 p;/j)/k \ /=k+!
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 which can be made positive, negative, or 0 by appropriate rescaling of

 pk+1," ",pn for any choice of pk > 0. As in (i) such rescaling does not affect the form of the optimal rule for observations k + 1, ... , n.
 For any subset A C {1, ... , t(n)-1} we can choose pi, ... ,p, so that for an

 optimal stopping rule 7, 9 = A, by using the following procedure:

 1. If A 10 there is an 1 _ r - t(n)- 1 such that r = max{k : k EA }. Then we
 want

 a (k)> p (k), r < k -_ t(n)- 1
 (3.1) a(r)= f(r).

 By successive use of (i) above we may obtain (3.1). Then we may use (ii) to
 make a(r-1)> (r - 1)if r- 10 A ortomake a(r -1)= p(r-1)if r-1 EA.
 We may continue in this manner until we obtain

 a(k)= f(k), k EA

 ak(k)>0(k), kOA

 which guarantees Y = A.
 Note that a final rescaling may be necessary to ensure that I%i p = 1.
 2. If A = 0 choose p, = 1, pi = 0, j < n.

 Acknowledgement
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