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 ON A BEST CHOICE PROBLEM WITH PARTIAL INFORMATION

 BY JOSEPH D. PETRUCCELLI

 Worcester Polytechnic Institute

 For a given family 6F of continuous cdf's n i.i.d. random variables with cdf
 F E F are observed sequentially with the object of choosing the largest. An

 upper bound for the greatest asymptotic probability of choosing the largest is
 a .58, the optimal asymptotic value when F is known, and a lower bound is
 e-1, the optimal value when the choice is based on ranks. It is known that if 6y
 is the family of all normal distributions a minimax stopping rule gives asymp-
 totic probability a of choosing the largest while if 6F is the family of all uniform
 distributions a minimax rule gives asymptotic value e 1. This note considers a
 case intermediate to these extremes.

 Let IF be a family of continuous distribution functions and suppose n i.i.d

 F E IF random variables X1, , X,, are observed sequentially with the object of
 choosing the largest. After X1 has been observed it must be chosen (and the process

 terminated) or rejected (and the observations continued). No knowledge of the
 future is allowed, no recall of rejected observations is possible, and one observation

 must be selected.

 Gilbert and Mosteller (1966) investigated the case in which IF is a single

 distribution function. They named this the full information (hereafter F.I.) prob-
 lem, and observed that

 P(X(o(n) = Ln)Ja - .58 as n - so

 for the optimal stopping rule a(n) and Ln = max{XI, , X"}.
 At an opposite extreme from the F.I. problem is the case in which IF is the class

 of all continuous distribution functions. If the available stopping rules are re-

 stricted to those based only on the ranks of the observations, this problem is

 equivalent to the Secretary Problem. The solution is well known (see Dynkin and
 Yushkevich (1966) or Gilbert and Mosteller (1966)) as is the following asymptotic

 result: if for each n p(n) is the optimal stopping rule based on ranks

 P(Xp(n) = Ln)J4e - .368 as n -s 0o.

 In keeping with the Gilbert and Mosteller terminology for the F.I. problem we call
 this the no information (hereafter N.I.) problem.

 This note will concern itself with the intermediate case in which 1Y is neither the

 class of all continuous cdf's nor a single such cdf. We call this the partial
 information (hereafter P.I.) problem.

 Received January 1979; revised July 1979.
 AMS 1970 subject classifications. Primary 62L15; secondary 62A05.
 Key words and phrases. Optimal stopping, minimax rules, secretary problem, invariance.

 1171

This content downloaded from 130.215.176.72 on Wed, 31 Jul 2019 20:11:24 UTC
All use subject to https://about.jstor.org/terms
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 Petruccelli (1978) derived sufficient conditions for the existence of invariant

 stopping rules v(n) S n satisfying

 (1) limnooP(X,,(n) = Ln) = a

 for the P.I. problem given by a location and/or scale parameter family C5Y. In
 particular (1) holds if '5Yis the family of all normal distributions.

 Furthermore given these conditions (1) holds for minimax stopping rules v(n)

 since a version of the Hunt-Stein theorem (Kiefer 1957) insures that for the P.I.

 problem in which 'ff is a location and/or scale parameter family a best invariant

 rule is minimax.
 However (1) does not hold for all location and/or scale parameter families C5F. In

 fact Samuels (1978b), extending the work of Stewart (1978), has shown that for the

 P.I. problem defined by the family of all uniform distributions a best invariant

 (hence minimax) rule is the N.I. rule based only on ranks.
 In what follows we investigate a P.I. problem in which the probability of

 choosing the largest observation when using a minimax rule is asymptotically

 between the two extremes quoted above. We will prove the following

 THEOREM. Let ?; = {FOR} eR where F, is the cdf of the U[9 - 4' 9 + 4] distri-
 bution. Let r(n) be a best invariant (hence minimax) stopping rule for the P.1. problem

 of length n defined by C5Y. Then

 (2) lim, P(X(,) = L") .43517.

 Let X1, X2, - * be i.i.d. U[9 - 4' , + 4] random variables. For each n > 1 let

 Ln be as above, Dn = min{X .. , * X") and Rn = Ln - Dn . I denotes the indica-
 tor function.

 For the P.I. problem of the theorem a best invariant rule has been shown to be

 (Petruccelli 1978)

 T(n) = min{n, mink>2{k: Xk = Lk, Rk > Xk,nh}

 where Xk, n depends only on n - k and 1 > X2,n > X3,n > * > XA-l,n = 0.
 Further, Xk,n satisfies the equation

 (n-ki-1( n 7 k)f un-k-i(l - U) du = f I n-k

 Using (3) we can prove

 LEMMA. Let {kn ,J"k-12 be the decision numbers defining Tr(n). Then Ak n -

 1 - ck/(n - k) where limk, ck = c 2.1198.
 We now prove the theorem. The proof is inspired by a technique used by

 Samuels (1978a) in the full information case. Assume 9 =4 and let

 a(n) = kI(Xk = L")

 8(n) = kI(Xk = Ln)

 Thus a(n) is the arrival time of the largest observation and 8(n) is the arrival time

 of the largest before time a(n). Note that Ln = La(n) and Lu(n)-I = L8(n)I
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 Now

 {XT(n) = LO} = {R(n) < 6(n),n, R o(n) u o(n),nl
 and

 (4) P(RO(n) < X8(n),nqRa(n) >X0(n),nIL,(n),L0(n)-l1a(n),8(n))

 - P(nDO() > L8(n,- X8(n),n9 Du(n)

 < L(n) - o(n),nI" Lo(n) La(n) -)1 ,a(),n((n))

 - [8(X(n), n/L(n) 1) )8() - (1_ - Ln -X (n),n)/La(n)- I)(n)2]

 X I(L,(n)l n > (n),n)

 + [ (1 - ((1 -(Ln - (n),n)1La(n)-1) ]

 XI(L8(n) - I /XO(n),n < 0 < Ln - /X(n),n )

 since, given the vector (Lo(n), Lo(n)_ - a(n), 8(n)), the observations X1, 9 X,6(n)- 19
 X8(n)+l, * . *, Xo(n)-l are i.i.d. with a U[0, L4,(n)-] distribution.

 Let Zn =n(I - Ln) = n(I - L,(n));
 Yn = (a(n) - 1)(1 - L(n)-l/Ln);

 Vn = a(n)/n;
 Un = 8(n)/(a(n) - 1).

 Then (Zn, Yn , V, , Un) -6 (Z, Y, V, U) where Z, Y, V, U are mutually indepen-
 dent, Z, Y-- exp(l), V, U - U[0, 1]. Since

 P(R,6(n) < X,6(n),nq Ra(n) > /Xa(n),n1La(n)q Lo,(n)-19 u(n)q 8(n))

 = P(R8(n) ' xO(n),n' Ro(n) > /X(n),njZq, Yn' Vn Un)

 we may rewrite (4) in terms of (Zn, Yn' Vn, Un). Then taking limits we have

 P(XT(n) = LnlZn, Yn, Vn, Un) >6 (Z Y V U)
 = (e-(CUV/(l- UV))e ZUVe YU - eZVe-(cV/(l- V)))

 X I((1 - UV)(Z + Y/ V) < c) + (1 - eZVe (cV/(lV)))
 x I((1 - V)Z < c < (1 - UV)(Z + Y/ V)).

 Thus

 P(XT(n) = Ln) - Ep(Z, Y, V, U)

 = [e-c - cf '(e-c'/y) dy]20 1c'/ (i(i!))

 + (ec - I)fr??(ecy/y) dy
 .43517.
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