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SECONDARY DATA

A term used for data obtained in the course
of a survey or experiment designed for some
other (primary) purpose. It must be kept in
mind that whatever faults there may have
been in the planning and execution of the
original inquiry can also affect secondary
data. In addition, further errors may arise

Rl

from the way in which the secondary data
are extracted from the records of the

inquiry.

SECRETARY PROBLEM

The Secretary Problem is one name, among
many (see ref. 7), given to a collection of
optimal stopping* problems. The two classi-
cal Secretary Problems are the best choice
problem and the rank problem.

THE BEST CHOICE PROBLEM. It is assumed
that # individuals applying for a secretarial
position arrive sequentially in random order.
Upon arrival each individual is interviewed
and ranked (highest rank = 1) relative to all
preceding arrivals. At the time of ranking an
irrevocable decision must be made to hire or
reject the applicant. The goal is to find a
strategy to maximize the probability of
selecting the best. The optimal strategy (see,
e.g., refs. 2 and 7) is to reject the first s(n)
individuals and to choose the first, if any,
among applicants s(n} + 1,..., 7 who is the
best seen so far. It can be shown that s(n)/n
— ¢~! = 0,368 and that this is also the opti-
mal asymptotic probability of selecting the
best.

THE RANK PROBLEM. (See refs. 1 and 9.)
The mechanics are the same as in the best
choice problem, but here the goal is to find a
strategy to minimize the expected rank of
the applicant chosen. There is a nondecreas-
ing sequence of integers {s(n; k),1 < k <
n} such that the optimal strategy is of the
form: if no selection has been made from the
first s(n; k) — 1 applicants, select the first
arrival among applicants s(»n; k),..., s(n; k
+ 1) who is one of the & best seen so far.
Chow et al. [1] show that the optimal
asymptotic expected rank is approximately
3.87.

The origins of the Secretary Problem are
unclear. According to ref. 7, in 1935
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Frederick Mosteller was told the best choice
problem by Andrew Gleason who had heard
it from someone else. Fox and Marnie posed
what is basically the best choice problem
under the name “Googol” in the Mathemati-
cal Games column of the February, 1960
Scientific American. A solution was outlined
by Moser and Pounder in the same column
the following month.

Since that time the Secretary Problem has
generated a substantial literature. Among the
reasons for its popularity may be: it is sim-
ple to state; its solutions are intuitively ap-
pealing; it touches on the disciplines of
probability, statistics, and operations re-
search®; and it is a model for a common
real-life problem that invites improvement
and generalization. This last may explain
why the development of the Secretary Prob-
lem up to the present has consisted primarily
of generalizations designed to make the two
basic models more realistic. A description of
some of these follows; others are briefly
described in the annotated bibliography.

FULL AND PARTIAL INFORMATION
PROBLEMS

The above strategies are based only on rank-
ings of the applicants. In some cases it may
be teasonable to assume more information
about the applicants—for example, one may
observe scores on placement tests. In such a
case the observations could be considered
independent identically distributed (i.i.d.)
random variables from a known distribution
(full information) or from a family of distri-
butions (partial information). Hereafter “no
information” will describe problems in which
only ranks are observed.

The object may be to maximize the
probability of best choice, the expected
quantile of the chosen observation (the ana-
log of the rank problem), or the expectation
of some other payoff function of the chosen
observation.

Gilbert and Mosteller [7] solved the full
information best choice and quantile prob-
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lems. The asymptotic optimal probability of
best choice in the former is approximately
0.58, while the asymptotic minimal expected
rank in the latter equals 2.

The earliest work on the partial informa-
tion problem [3, 19, 25} assumed a normal
distribution with unknown mean and a pay-
off equal to the value of the chosen observa-
tion minus a sampling cost. Later Stewart
[23] and Samuels [20] considered the best
choice and quantile problems when observa-
tions are from a uniform* U(e, B) distribu-
tion with a and B8 unknown. The latter
paper showed that for the best choice prob-
lem the mintmax* rule is simply the no
information rule for the classical best choice
problem, while for the quantile problem the
minimax rule gives an asymptotic expected
rank of approximately 3.478.

For the best choice problem, Petruccelli
[14] obtained sufficient conditions on lo-
cation-scale parameter families of distribu-
tions for the existence of minimax rules,
which asymptotically attain the asymptotic
full information probability of best choice.
One family that satisfies these conditions is
the family of all normal distributions.

Petruccelli [10] also showed that for the
family of U[# — 1, 8 + 1] distributions with
# unknown, the minimax rule in the best
choice problem has asymptotic probability
of best choice of approximately 0.435—in-
termediate between the full and no informa-
tion values,

Enns [4] studied problems with a different
kind of partial information: the knowledge
of whether or not an observation exceeds a
certain value.

PROBLEMS INVOLVING BACKWARD
SOLICITATION AND / OR UNCERTAINTY
OF CHOICE

Yang [26] modified the classical best choice
problem to allow solicitation of a past ob-
servation. He assumed that just after appli-
cant k was interviewed, applicant k — r
would accept an offer with probability g(r).




328 SECRETARY PROBLEM

This model assumed g(0) = 1; that is, an
applicant is sure to accept an immediate
offer. Smith and Deely [22] assumed (in
Yang’s terminology) that ¢(+) =1, 0 < r <
m, and g(r) = 0, r > m; that is, recall mem-
ory lasts m interviews.

Smith [21] considered the case of uncer-
tain choice without recall that corresponds
to g <land g(r)=0, r> 1, in Yang’s
terminology. Petruccelli [11] combined the
models of Yang and Smith by allowing g{(0)
<1 in Yang’s formulation. In addition
Petruccelli [12] extended backward solicita-
tion and uncertainty of choice to the full
information best choice problem. In this last
paper, recall probabilities were functions of
the quantile of the observation as well as the
time since observation.

While the models described here allow for
a 'more realistic formulation than does the
classical best choice problem, there is a price
to be paid: it is impossible to obtain closed-
form optima! rules without further assump-
tions on the recall probabilities.

A RANDOM NUMBER OF OBSERVATIONS

Secretary problems with a random number
of observations N are in general complicated
and admit no closed form solution. For the
classical best choice problem in which the
number of observations is a bounded ran-
dom variable, Petruccelli [13] showed that
after allowing for an initial learning period,
the optimal rule can take literally any form.

Among generalizations for arbitrary N,
Presman and Sonin [16] obtained results for
the best choice problem, while Irle [8] con-
sidered an arbitrary payoff.

For bounded N Rasmussen [17} studied
general payoffs based on ranks, Rasmussen
and Robbins [18] considered the best choice
problem, Gianini-Pettit [6] dealt with ex-
pected rank payoff, and Petruccelli [15] ad-
ded backward solicitation and uncertainty of
choice to the best choice problem. Stewart
[24] used a Bayesian approach to the random
N problem in which arrivals were assumed
to occur at 1.i.d. exponential intervals.

OTHER GENERALIZATIONS

There are many other generalizations of the
Secretary Problem: some are indicated in the
Bibliography; a number are found in the
Gilbert and Mosteller paper [7), which even
after mearly two decades remains a good
ntroduction to the topic. The best introduc-
tion to the development of the problem over
the past 20 years is a review article by Free-
man [5].
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SEEMINGLY UNRELATED
REGRESSION

Consider the set of M regression models

¥ =XB8+u, J=1.... M, (1)
where y, is a T X 1 vector of observations
on the jth dependent variable, X isaT XK,
matrix of observations on X ; nonstochastic
regressors assumed to be of full column rank,
B; is a K; X 1 vector of regression coeffi-
cients, and u; is a T'X 1 vector of random
disturbances with E(u,) = 0 and E(uu}) =
0,1 for i, j=1,..., M. If the observations
correspond to different points in time, the
specification implies that the disturbances in
different equations are correlated at each
point in time but are uncorrelated over time.
Variances and covariances remain constant
over time. We further assume that the dis-
turbances are distributed independently over
time and that the matrix of sample moments
of all distinct regressors in (1) converges to a




