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 Sankhy? : The Indian Journal of Statistics
 1985, Volume 47, Series B, Pt. 3, pp. 325-337.

 EXACT MOMENTS OF THE SAMPLE CROSS
 CORRELATIONS OF MULTIVARIATE

 AUTOREGRESSIVE MOVING
 AVERAGE TIME SERIES

 By NEVILLE DAVIES and MIKE B. PATE
 Trent Polytechnic, Nottingham

 and
 JOSEPH D. PETRUCCELLI

 Worcester Polytechnic Institute, USA

 SUMMARY. In this paper we derive an analytic expression for the exact moments of
 sample cross correlations for multivariate autoregressive moving average (MARMA) time series.
 A method for numerical evaluation of these moments is described and an example given.

 1. INTRODUCTION

 The extension of the Box and Jenkins (1976) model building philosophy
 for uni var?ate ARMA (p, q) time series to their multivariate equivalents has
 received considerable attention in the literature recently. Tiao and Box
 (1981) compare some early approaches proposed by Granger and Newbold
 (1977), Wallis (1977) and Chan and Wallis (1977), and put forward some
 easy-to-follow methods of their own, the most notable being their interpreta
 tions of sample cross correlations. Jenkins (1979) and Jenkins and Alavi
 (1981) propose a similar model building philosophy, noting that the inter
 pretations of the sample cross correlations can be a difficult problem. Follow
 ing the notation of Tiao and Box (1981), we define the vector MARMA time
 series

 *p(B)Xt = &q(B)at ... (1.1)
 where &P(B) = J?&XB?...?&VB*>

 and %(B) = I-QXB-.. .~%Bv

 are (k X k) matrices of autoregressive and moving average coefficients in the
 back-shift operator B, X% is a vector stationary and invertible series
 (possibly from suitably differencing the original data) and at is vector white
 noise, assumed to be distributed as N(09 E).

 AMS (1980) subject classification : 62M10.

 Key Words and phrases : Time series, MARMA models, cross correlations, moments,
 numerical integration.
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 326 N. DAvTES, m. b. PATE AND j. D. petruccell?

 For the general model (1.1), the theoretical lag-? cross covariance matrix,
 T(l) can be obtained from

 [ s1 m&i-s i^se;+Z)l = 0, 1,...,r

 IW = {y?(J)} =-j ... (1.2)
 I s r(?-?)*; i > r
 [_ ?=i

 where the tj/s are obtained using the relationship

 <l>(B) = 4>^(B)Oa(B) = I+<l>1B+..., ... (1.3)
 60 = ? I, r = max(#, q) and (i) if p > q, &p+x = ... = *r = 0, (ii) if q < p
 then eg+1 = ... = er = 0.

 If sample cross covariances are defined by the equation

 C^ = |s (1,-1^%^) ... (1.4) n t=zl

 where n is the length of the series Xit and X? its mean, the elements of
 the cross covariance matrix {y#} can be estimated by the Cy. The sample
 correlation matrix function Ri may then be defined to have elements nj(l),
 where _

 ri}(l) = C?(i)/VCWO)C0(O)

 and \/C??(0) is the standard deviation of Xu. A referee has pointed out to us
 that other definitions of r#(Z) are possible. The numerical expressions we
 derive in Section 2 can be easily modified to take into account these alter
 native definitions.

 Calculation of the theoretical cross covariance function given by (1.2)
 can be obtained from p matrices of autoregressive coefficients, q matrices of
 moving average coefficients and the variance-covariance matrix S. An
 algorithm for doing this is given by Pate and Davies (1983). As in univariate
 time series analysis, where the sample correlation function and its statistical
 properties play a central role in model identification, the matrix Ri, coupled
 with its sampling properties, will be an essential part of multivariate time
 series model identification.

 The asymptotic distribution of Ri is well known (see, for example,
 Hannan, 1970, p. 228) but that knowledge is not necessarily directly usable
 in performing significance tests based on finite sample realisations. For
 example, in univariate time series, the work of Davies, Triggs and Newbold
 (1977), Ansley and Newbold (1979) and Davies and Newbold (1979, 1980)
 have shown that using significance tests based on asymptotic theory can be
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 MOMENTS OF CEOSS COBBELATIONS  327

 grossly sub-optimal when applied to finite samples of time series. We expect
 similar difficulties to arise in multivariate time series, if inferences from Ri

 are based on asymptotic theory. In Section 2 we provide a method for obtain
 ing all finite sample moments of the elements of Ri so that, if necessary,
 asymptotic moment results could be checked for their applicability in finite
 sample applications. The asymptotic variance of the elements of j?j can
 be obtained from an approximate formula given by Bartlett (1946). For
 MMA(q) processes we have, to order ljn9

 V(nM ~ 7-^-[l + 2 I Pu(h)Pjj(h)}9 l > q  (1.5)

 where Ptj(h) are the theoretical cross correlations of the series Xu. Elements
 of the matrices Rl9 _R2, ..., would be compared with their approximate
 standard errors calculated from (1.5) by replacing the pu by r?.

 The application of (1.5) for MMA(q) processes is thus particularly appeal
 ing. In Section 3 exact finite sample standard deviations of the elements of

 Ri are compared with those asymptotic values obtained from (1.5) in one
 particular case. (A general study into the applicability of (1.5) is beyond
 the scope of the present paper; we merely show how this could be done using
 exact finite sample moments.)

 Also, in Section 3 we describe the more difficult problem of dealing with
 multivariate mixed processes, and suggest an approach which allows exact
 moments of the mixed process-sample cross-correlations to be calculated
 relatively easily.

 2. Exact moments of sample cboss-cobbelations of
 MMA (q) TIME SEBIES

 We consider initially the MMA(g) process derived from (1.1) and for which
 Xt = 00 (B)at. For a sample size n we define X = [X'n, X'n?l9 ..., Xl}' to be
 the (kn X 1) observation vector,

 ?bx ?e2  e.

 -qx ...

 o

 -e?

 o

 e

 -ex
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 is the (knxk(n-{-g)) matrix of MA coefficient matrices.

 Also let o = [a'n, an_x, ..., a'L_q] be the (k(n+q)xl) vector of random
 shocks.

 Since a ~ N(0, / ? 2), where <g) denotes the Kronecker product, we see
 that X is multivariate normal,

 (X~iV(O,0(I?2)0')) ... (2.1)
 If W = [(Xn-Xy, (Xn_r-X), ...,(X2-X)'Y then we can write W = VX
 where F is a ((n-l)xn) matrix of (kxk) matrices Vy with

 Vu = (l-lln)I, i= l,...,n-l
 Vij = Vji = ?I/n, i ^j.

 It follows that W ~ N(Q, SI) where

 &= F0(/<g)2)0T'.

 Our initial objective is to write the Gy(l) and Cu(Q) defined by (1.4) as quadratic
 forms in W.

 Define :

 (i) ?y to be a (kxk) matrix with unity in the (i, j)-th position and zeros
 everywhere else;

 (ii) for I > 1, Qij(l) to be an (nxn) matrix of (kxk) matrices iprs, which
 are zero matrices, except those t|>rs on the l-th super and subdiagonal of
 matrices which are I? and ly respectively

 (iii) for I = 0, Qij(0) to be as in (ii) except that;

 ? 0, r =? s
 <\>rs= <?

 I Iij+Iji, r = s

 (iv) A to be the (knxk(n? 1)) matrix

 r I -i

 -I -I ... -I_
 It follows that (1.4) may be written in the quadratic form

 f l> 0
 01,(1) = WKQiS(l)*W i

 I i,j = 1, 2, ...,k.
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 MOMENTS OF CBOSS COBBELATIONS 329

 The intermediate step of computing the vector W is used to avoid the singular

 covariance matrix of [(Xn-X)'9 (Xn._x-X)'9 ..., (Xx-Xy\f. Using well
 known multivariate theory, the joint moment generating function (mgf) of
 Gij(l), Cu(0) and C#(0) is

 <j>(tx, t2, y = Eiex^Cij^+t?u^+t?^O)}]
 = ? s? i ?1/21 ja i ?x/2 ... (2.2)

 f i>o
 where a?j(l) = A'0^(Z)A i

 L i9j = 1, ...9k

 and R = B^, t29 tz) = f?1?2?1a#(.)?2?2a<?(0)?2?8o^(0).

 Using this result and a generalisation of a theorem of Sawa (1972, 1978)
 proved in Appendix 1, we obtain a formula for all moments of r^{l) (I > 0;
 i, j = 1, 2, ..., &). There is it shown that

 tf[(r<f(Z))*] = {r(m/2)}-2|f?|-i/2 f J?/?-i?/?-i {^- ? ? | -^ } dt2dt,
 ... (2.3)

 where R = R(tl9 ?t29 ?tz).

 From a result by De-Gooijer (1980) we can write

 dm im? IV m_1 1 d?

 _ |?|-v- i-^Ji ? _ ^ |?|-v^tr{(B-^))^}
 which may be substituted in (2.3) to give our desired moments.

 After substituting m = 1, 2 in (2.3) and simplifying, we find the first
 two moments to be

 E[ri}(l)l = - |?|-1/2 f J t^?%W\R(0, t2, g|-v?

 xM(B(o,f8> y)-%,,(*)}#,??, ... (2.4)

 ?[(r?(?))*!= |?|"1/2 ? F |a(o,?2,?3)|-1/2 o o

 X[(tr{(B(0, t2, ?3))-ioy(0)})2+2tr{((B(0, ?2, y)-1^))2}?^
 ... (2.5)

 In the univariate case, Ali (1984) has obtained a simplification of the second
 moment formula given by De-Gooijer (1980). However, our bivariate formula
 (2.5) does not lend itself readily to the approach suggested by AH.
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 330  N. DAVIES, M. B. PATE AND J. D. PETEUCCELLI

 3. COMPUTATION OF EXACT MOMENTS OF MARMA TIME SERIES

 In practice it will only be of interest to compute (2.3) for small values
 of m. Consequently, in Appendix 2 we present an efficient numerical integra
 tion procedure to evaluate (2.4) and (2.5) to give the first two exact moments
 of the sample cross correlations for MMA(g) time series at all lags.

 In the case of computing the exact moments of sample cross correlations
 for mixed MARMA (p, q) series there are two approaches possible.

 The first is to use results of Nicholls and Hall (1979), who obtained a
 closed form expression for the covariance matrix of a MARMA (p, q) process.
 Their approach involves obtaining an expression for the covariance matrix
 for the q pre-period noise values and p pre-period observation values in terms
 of *, Qq and 2. This expression can be used to deduce the elements of the
 desired covariance matrix, C, say, (see Nicholls and Hall's equation 16) in
 terms of &p, Qq and 2. We note that this matrix is extremely complicated
 and is very difficult to visualise. Nevertheless, we can replace the covariance
 matrix for the pure MMA(q) process, 0(/ (g) 2)0' in (2.1), by C and carry out
 the procedures described in Section 2 to obtain an equivalent formula
 to (2.3) for M.ABMA(p, q) processes.

 The second approach, which is the one we adopt, is to express the
 MARMA (p, q) process as a long MM A time series. If we cut off the infinite
 MMA polynomial defined by (1.3) at some order <f, which is assumed to be
 '"large", the approach adopted in Section 2 may be applied to the appropriate

 MMA(g*) representation of the original MARMAQ?, q) process.

 In fact the infinite MA approach was used by De-Gooijer (1980) in the
 univariate case. Evidently he opted for this owing to the relative simplicity
 in the calculations when compared with using the general results of Newbold
 (1974).

 Table 3.1 contains the computed exact mean and standard deviation of
 the sample cross correlation matrices for a MMA(l) process with

 0-2 0-3
 2 = e1 =

 ?0-6 M  L 1 1 J

 for lags I = 0, 1, 2 and sample sizes n = 10, 25, 50 and oo. (The sample
 sizes are chosen for illustrative purposes only.)

 The cross correlation matrices at lags 0 and 1, for n = oo, were obtained
 from the solution of (1.2) using an algorithm described by Pate and Davies
 (1983). For comparison, we also evaluated the Bartlett (1946) formula (1.5)
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 for approximate variances of sample cross correlations, to obtain standard
 deviations for lags I > 2 (in practice computed sample cross corelations would
 be substituted in (1.5), whereas we have used the exact theoretical cross
 correlations from the algorithm of Pate and Davies (1983)).

 Two interesting features emerge from Table 3.1.

 (i) For this particular MMA process, the exact mean sample cross correla
 tions for I = 0, 1 are remarkably close for all sample sizes considered.
 Examination of this phenomenon for other MMA time series seems justified.
 This could be done using the exact moment computation as described in this
 paper or via a simulation study.

 (ii) As is to be expected the approximate standard deviations of the
 sample cross correlations, derived from (1.5), are overestimates of the exact
 standard deviations. For n = 50 this bias is small and it may be worthwhile
 to investigate further other MMA time series for which this occurs.

 For general MARMA time series we considered the bivariate processes
 B and G of Jenkins and Alavi (1981, p. 9). The former is MAR(l) while the
 latter is MARMA(1, 1). In each case we found that, as long as exact sample
 cross correlations were required only for lags below 10, the order q* of the

 MMA(<?*) representation, need not be more than 10. As is to be expected
 the bias in estimation for these two processes was more severe for small sample
 sizes than in the pure MMA(l) process reported in Table 3.1.

 Further results using these techniques are available from the authors in
 a technical report. The computer program to evaluate these moments can
 be obtained by writing to the first named author.

 4. Conclusions

 In this paper we have derived an analytic expression for all finite moments

 of sample cross correlations of MMA(g) time series and shown how these can
 be evaluated. By expressing general MARMA(p, q) processes as long MMA
 series, the methods are directly applicable to such mixed processes.

 The evaluations of these moments involve a vast amount of numerical

 integration of functions of products of matrices, which on conventional
 computers, can take a long time. A further saving in time could be obtained
 by making more use of the matrix structures for the particular process being
 considered and/or using, where available, a distributed array processor.
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 TABLE 3.1. EXACT MEAN AND STANDARD DEVIATION OF SAMPLE CROSS CORRELATION
 FUNCTION FOR A BIVARIATE MA(1) PROCESS

 1 = 0
 LAG
 I = 1  Z = 2

 BARTLETT
 I > 2

 n = 10

 MEAN ST DEV

 0.243-1 r0 0.318

 .243 1 J U.318 0

 MEAN  ST DEV  MEAN  ST DEV  ST DEV

 rl 0.243-1 r0

 L0.243 1 J U.S
 -0.256 0.332-j, 0.255 0.308 -. f -0.056 -0.038-1 r 0.273 0.297-. r0.336 0.333-j
 -0.182 -0.234J L0.307 0.256 ! L -0.046 -0.060 J LO.301 0.269jU.333 0.331 J

 n = 25
 0.205-j f-0.251 0.379-j r0.188 0.212^ r -0.024 -0.014-j r 0.20 0.205-ir0.212 0.211.

 .022 -O.O25JL0.2O6 0.195 J L0.2II 0.209
 rl 0.265-. r0 0.205-. r-0.251 0.379-j rO.188 0.212-ir-O.
 U.265 1 J U.205 0 J 1-0.168 -0.220J U.205 O.I83JL-O.

 n = 50  rl 0.27-1 |0 0.171-1 r -0.251 0.394-, , 0.160 0.185nr-0.
 10.27 1 JLo.171 0 J L-0.162 -0.217J L0.156 0.143JI-0.

 0.012 -0.070-] r 0.152 0.152-ir 0.150 0.149
 012 -0.013JL0.152 0.152 J U. 149 0.148

 rl 0.279-j
 LO.279 1 J  [.

 -0.252 0.407

 -0.157 -0.215  L 0 oJ
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 Appendix 1
 MOMENTS OF THE SAMPLE CROSS CORRELATIONS

 A generalisation of Sawa's lemma (Sawa, 1972 and 1978) is as follows :
 Let Qx, Q2 and Qz be random variables with Q29 Qs ^ 0 almost surely. Then
 if the joint mgf of Qv Q29 Q3, (?>(tX912912) is defined for | ^ | < s some s > 0,
 and t29 ts < 0, and if E[(QilVQ^Qz)m] exists, then]

 mQiivQMmi = r-2(m/2) j j if*-* ?j^-i <?>(t2, ts)dt2 dtz 0 0

 where <?>{tz, t3) = -^ <?(tv -?2, -<3)|tl=0.

 Proof : By Fubini's theorem,

 m.(QilVQ&)*}

 = E\QT (r-1(m/2) J?l"2"1 e'^dtA jr-1(m/2) J ?/*-i e_<33<3 _.3\]

 = r-2(m/2) J f i?'2-1 i?/2-1 _/[?? e-02'2 fQ**]dt?ltz. o o

 From the properties of the m.g.f.

 _We " *?_ ??'*, = - #1, _,., _?3)|?i=0

 which gives the desired result.

 Applying this result after substituting Ql9 Q2 and QB by Cy (I), Cu (0)
 and Cjj(0) respectively, and employing (2.2), we obtain

 E[(rv (?))?] = r-2(m/2) | ?_ |-? J J tfl*-\ ql^ 0 0

 dm r om

 [ diriT ?-1-^!^ (?)+2?acrw (0)+2?3cr;7 (0)
 -ii

 ?!=0
 dt2dts

 Appendix 2
 DETAILS OF THE NUMERICAL INTEGRATION

 Numerical evaluation of integrals on the right hand side of (2.4) and (2.5)
 over the first quadrant [0, oo) X [0, oo) can be simplified by a bilinear trans
 formation into the square (?1, l]x(?1, 1].

 B3-5
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 The integrals required are of the form

 lx = D(h3,l) = Kxl^v V{R^> dudv

 h = ?(t,j, Z) = Z2 J J ^L_{[tr(?-^ (l))f+2tv(R^ij (I))2} dudv

 where Kx = lftnV | ? | ); #2 = 1V71 & I
 and R = f?~1+2^a?< (0)+2vajj (0).

 We illustrate the procedure by reference to Ix.

 The main problem is the efficient formation of ?_1a many times in the
 (u, v) plane. There are two difficulties associated with the integrations :

 (a) a decision has to be made on how large an area should be taken in
 the (u, v) plane over which the integrals are to be evaluated,

 (b) the number of points of evaluation of the integrands in the (u, v)
 plane.

 If we apply the bilinear transformations,

 I?a 1?6
 u = T+a; V==T+b

 then Ix, which is of the form

 oo oo Y
 f J" T7^J(U> v) dudv> o o Vuv

 immediately becomes

 where g(a, b) = (1+a)|1+6) / ( [=?. [-=? )
 The factors (1?a2)-*(l?ft2)-* suggest that Gauss Chebyschev quadratureis
 appropriate, and one can derive a quadrature for Ix as

 ?.2 m m

 Ii?4? S Zgfab,)
 where <H = cos[(2i? 1)tt/(2w)]

 fy = cos[(2j-l)7r/(2m)]
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 and m is the number of points chosen in each direction in the a, b square.
 Remarkably, the non-uniform spacing of these points is beneficial to the
 problem at hand, since they are more clustered at the ends of the interval
 [?1, 1]. When a = 1 or 6=1, we have a singularity in Ix and so more
 points will be needed there. As a and 6 tend to ? 1 we are rapidly approaching
 oo in the (u9 v) plane so that many of the points (at, bj) can be ignored in the
 double summation.

 For choice of m, trial and error was needed. We found in the moving
 average case that for Il9 m = 36 gave a relative accuracy of 10-3, whereas
 the same accuracy in I2 was not achieved until m = 42. A possible reason
 for the latter result is that I2 lacks the factor Ij^/?v and so converges more
 slowly as u9 v ?> oo.

 We note that in Ix and I2 the formation of P = ?_1a takes a time
 proportional to the cube of the order P like the evaluation of R-1 itself.
 However, since it is only tr P and tr P2 that are required, we note that
 these values may be found by direct formation of ?_1o, in column order,
 by a forward and backward substitution in each column of c. We solve
 the equations RP = a having first found the Cholesky factorisation R = UU
 and obtain 1\^\R\ as a by product of the L-factor. Obtaining trP and
 tr P2 is now an easy matter, the time taken for the latter being proportional
 to the square of the order of the matrix since we only need diagonal elements
 ofPxP.

 Program timings. The picture is confused by the vast amount of sub
 sidiary array processing, which is more important for small n.

 The Fortran compiler's optimising switch produced about a 15% saving
 in time for large n, while fixing m = 42 (rather than allowing the program
 to decide the optimal m) produced 50% savings. A further 22% saving was
 achieved by forming B_1c directly and a further 25% was saved by exploiting
 the u?v symmetry in the integrands in the case i = j. (Each percentage
 being on the then-current run-times.)

 On a DEC 2060, with n = 25 and k = 2, each integral now takes on
 average 10 mins. of CPU time (7 for the symmetric cases, 14 otherwise). If
 this time seems excessive, we should merely point out that to the required
 degree of accuracy (3rd d.p.) the evaluation of R~xa is needed 1450 times
 for each (i9j91).

 Some useful further savings could be made by taking into account the
 sparsity structure of the a#(Z) matrices which in certain cases have half their
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 336  N. DAVIES, M. B. PATE AND J. D. PETRUCCELLI

 columns as null vectors. This would considerably reduce the formation
 time for B~1a^(i!).

 Given a distributed array processor (DAP) with > 42x42 array of
 CPU's, and sufficient memory, it should be possible to compute the integrand
 values at all points simultaneously, thereby reducing the time by a factor
 of~(42)2.
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