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Sankhkya : The Indian Journal of Statistics
1985, Volume 47, Series B, Pt. 3, pp. 325-337.

EXACT MOMENTS OF THE SAMPLE CROSS
CORRELATIONS OF MULTIVARIATE
AUTOREGRESSIVE MOVING
AVERAGE TIME SERIES

By NEVILLE DAVIES and MIKE B. PATE

Trent Polytechnic, Nottingham
and
JOSEPH D. PETRUCCELLI

Worcester Polytechnic Institute, USA

SUMMARY. In this paper we derive an analytic expression for the exact moments of
sample cross correlations for multivariate autoregressive moving average (MARMA) time series.
A method for numerical evaluation of these moments is described and an example given.

1. INTRODUCTION

The extension of the Box and Jenkins (1976) model building philosophy
for univariate ARMA (p, q) time series to their multivariate equivalents has
received considerable attention in the literature recently. Tiao and Box
(1981) compare some early approaches proposed by Granger and Newbold
(1977), Wallis (1977) and Chan and Wallis (1977), and put forward some
easy-to-follow methods of their own, the most notable being their interpreta-
tions of sample cross correlations. Jenkins (1979) and Jenkins and Alavi
(1981) propose a similar model building philosophy, noting that the inter-
pretations of the sample cross correlations can be a difficult problem. Follow-
ing the notation of Tiao and Box (1981), we define the vector MARMA time
series

®,(B)X; = 04B)a; .. (LD
where ®,B) =I—®B—...—®,Br
and Oy(B) == I—6,B—...—9,B1

are (kxk) matrices of autoregressive and moving average coefficients in the
back-shift operator B, X; is a vector stationary and invertible series
(possibly from suitably differencing the original data) and @; is vector white
noise, assumed to be distributed as N(0, Z).

AMS (1980) subject classification : 62M10.

Key Words and phrases : Time series, MARMA models, cross correlations, moments,
numerical integration.
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326 N. DAVIES, M. B. PATE AND J. D. PETRUCCELLI

For the general model (1.1), the theoretical lag-l cross covariance matrix,
I'(l) can be obtained from

r -1 r-1 ,
X TP _— 2 $Z0,,;,0=0,1,..,7
8=0

s§=l-r

I
|

) = {yy(l)} = {. ... (L2)
‘ é L(l—s)®; Il>r

8=1

where the (’s are obtained using the relationship

Y(B) = ®,1(B)Oy(B) = I+¢,B+..., .. (L3)
6= —1I, r=max(p,q) and (i) if p > ¢, Pp,,=.. =P, =0, (H)ifg<p
then 0q+1 = .= Or = 0.

If sample cross covariances are defined by the equation
1 7 -
Oyl) = - El (Xu—Xo)(Xje0—X;) o (1.4)

where n is the length of the series X;; and X; its mean, the elements of
the cross covariance matrix {y;} can be estimated by the C;;. The sample
correlation matrix function R; may then be defined to have elements r;(l),

where
riy(l) = Cy(1)[v/Cua(0)C(0)

and 4/ Cy(0) is the standard deviation of X;. A referee has pointed out to us
that other definitions of ry(l) are possible. The numerical expressions we
derive in Section 2 can be easily modified to take into account these alter-
native definitions.

Calculation of the theoretical cross covariance function given by (1.2)
can be obtained from p matrices of autoregressive coefficients, ¢ matrices of
moving average coefficients and the variance-covariance matrix Z. An
algorithm for doing this is given by Pate and Davies (1983). As in univariate
time series analysis, where the sample correlation function and its statistical
properties play a central role in model identification, the matrix R, coupled
with its sampling properties, will be an essential part of multivariate time
series model identification.

The asymptotic distribution of R; is well known (see, for example,
Hannan, 1970, p. 228) but that knowledge is not necessarily directly usable
in performing significance tests based on finite sample realisations. For
example, in univariate time series, the work of Davies, Triggs and Newbold
(1977), Ansley and Newbold (1979) and Davies and Newbold (1979, 1980)
have shown that using significance tests based on asymptotic theory can be
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MOMENTS OF CROSS CORRELATIONS 327

grossly sub-optimal when applied to finite samples of time series. We expect
similar difficulties to arise in multivariate time series, if inferences from R;
are based on asymptotic theory. In Section 2 we provide a method for obtain-
ing all finite sample moments of the elements of R; so that, if necessary,
asymptotic moment results could be checked for their applicability in finite
sample applications. The asymptotic variance of the elements of R; can
be obtained from an approximate formula given by Bartlett (1946). For
MMA(g) processes we have, to order 1/n,

1 P .
Virg®) = [ 142 2 pulhoy(h) |, 1> ¢ (1)
(n—1) h=1
where p;;(h) are the theoretical cross correlations of the series Xj;. Elements
of the matrices R,, R,, ..., would be compared with their approximate

standard errors calculated from (1.5) by replacing the py; by 4.

The application of (1.5) for MMA(q) processes is thus particularly appeal-
ing. In Section 3 exact finite sample standard deviations of the elements of
R; are compared with those asymptotic values obtained from (1.5) in one
particular case. (A general study into the applicability of (1.5) is beyond
the scope of the present paper; we merely show how this could be done using
exact finite sample moments.)

Also, in Section 3 we describe the more difficult problem of dealing with
multivariate mixed processes, and suggest an approach which allows exact
moments of the mixed process-sample cross-correlations to be calculated
relatively easily.

2. EXACT MOMENTS OF SAMPLE CROSS-CORRELATIONS OF
MMA (g) TIME SERIES

We consider initially the MMA ((q) process derived from (1.1) and for which
X; = 04 (B)a;. For a sample size n we define X = [X,, X, _,, ..., X;]’ to be
the (knx 1) observation vector,

I -6 —6,..-6 0 ... 0
0 I -9 . —8,

0 =
0 I ‘—'01 ......... —eq
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328 N. DAVIE3, M. B. PATE AND J. D. PETRUCCELLI
is the (kn X k(n+g)) matrix of MA coefficient matrices.

Also let @ =[a,, @,_,, ..., a;_,] be the (k(n-+g)x1) vector of random
shocks.

Since @ ~ N(0, I @ Z), where @ denotes the Kronecker product, we see
that X is multivariate normal,

(X ~ N0, (I ® )0) . (2)

If W=[X,—X), (Xo;—X), ..., (X,—X)']' then we can write W — VX
where V is a ((n—1)Xn) matrix of (kXk) matrices V;; with
Vis = (1—1/a)1, 1=1,...,n—1
Vy=Vu=—I/n, i #j.
It follows that W ~ N(©, ) where
QL=rVeIR IOV
Our initial objective is to write the Cy;(!) and Cj;(0) defined by (1.4) as quadratic
forms in W.
Define :

(i) Iy to be a (kX k) matrix with unity in the (¢, j)-th position and zeros
everywhere else;

(i) for 7 > 1, Qy(l) to be an (nXn) matrix of (kX k) matrices s, which
are zero matrices, except those s on the I-th super and subdiagonal of
matrices which are Iy and I respectively

(iii) for I = 0, Qy;(0) to be as in (ii) except that;
( 0, r s
inH% r=s

(iv) A to be the (kn X k(n—1)) matrix

[ ]

It follows that (1.4) may be written in the quadratic form

[1>0
- Cy(l) = WA Qy(HAW <
Liaj=12 ..,k

‘Prs =
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MOMENTS OF CROSS CORRELATIONS 329

The intermediate step of computing the vector W is used to avoid the singular

covariance matrix of [(X,—X), (Xn,_l—)—()’, cees (XI—X)’]’. Using well
known multivariate theory, the joint moment generating function (mgf) of
ij(l), 0“(0) and O”(O) is

¢(tl, by t3) = E[exp{tloi,-(l)—}—tzC"i(O)+t30ﬂ(0)}]

= [Q|72IR| . (22)
f1>0
where oy(l) = A'Qy(1)A <
,i=1,..,k
and R = R(ty, t,, t;) = Q71— 2¢,045(1)— 2t,04,(0)— 2¢5054(0).

Using this result and a generalisation of a theorem of Sawa (1972, 1978)
proved in Appendix 1, we obtain a formula for all moments of r4(l) (I > 0;
1,5 =1,2, ..., k). There is it shown that

Bllrg()m) = (Con2)y 2 @12 T Tenn-tgpie=s {20 R 128 | vy

atm
(2.3)
where B = R(t,, —t5, —1,).

From a result by De-Gooijer (1980) we can write

om R| - (m—1)! m1 1 o
aem 2 = (G o

| R | -2/22rtr{(R1ay(1)ym—)
j=

which may be substituted in (2.3) to give our desired moments.

After substituting m = 1,2 in (2.3) and simplifying, we find the first
two moments to be

Blry®)] = — [R]-12 [ | 518612 R(0, ty, ;)| 12
m 0 0
X tr{(R(0, t5, t5)) 10y, (1)} dt, dts o (2.9)
El(ry())2] = || T T |R(O, t,, £5) | -2

X [(tr{(R(0, £y, £5))~1a35(1))})?+-26r{((R(0, 5, £5))015(0))%} 1dtadts
(2.5)

In the univariate case, Ali (1984) has obtained a simplification of the second
moment formula given by De-Gooijer (1980). However, our bivariate formula
(2.5) does not lend itself readily to the approach suggested by Ali.
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330 N. DAVIES, M. B. PATE AND J. D. PETRUCCELLI

3. COMPUTATION OF EXACT MOMENT3 OF MARMA TIME SERIES

In practice it will only be of interest to compute (2.3) for small values
of m. Consequently, in Appendix 2 we present an efficient numerical integra-
tion procedure to evaluate (2.4) and (2.5) to give the first two exact moments
of the sample cross correlations for MMA(g) time series at all lags.

In the case of computing the exact moments of sample cross correlations
for mixed MARMA (p, q) series there are two approaches possible.

The first is to use results of Nicholls and Hall (1979), who obtained a
closed form expression for the covariance matrix of a MARMA (p, g) process.
Their approach involves obtaining an expression for the covariance matrix
for the ¢ pre-period noise values and p pre-period observation values in terms
of ®, ©, and Z. This expression can be used to deduce the elements of the
desired covariance matrix, C, say, (see Nicholls and Hall’'s equation 16) in
terms of ®,, @, and E. We note that this matrix is extremely complicated
and is very difficult to visualise. Nevertheless, we can replace the covariance
matrix for the pure MMA(gq) process, O(I ® Z)0’ in (2.1), by C and carry out
the procedures described in Section 2 to obtain an equivalent formula
to (2.3) for MARMA(p, q) processes.

The second approach, which is the one we adopt, is to express the
MARMA(p, ¢) process as a long MMA time series. If we cut off the infinite
MMA polynomial defined by (1.3) at some order ¢*, which is assumed to be
“large”, the approach adopted in Section 2 may be applied to the appropriate
MMA(g*) representation of the original MARMA(p, ) process.

In fact the infinite MA approach was used by De-Gooijer (1980) in the
univariate case. Evidently he opted for this owing to the relative simplicity
in the calculations when compared with using the general results of Newbold
(1974).

Table 3.1 contains the computed exact mean and standard deviation of
the sample cross correlation matrices for a MMA(1) process with

0-2 0-3 4 1
01 = ] N z = )
—0-6 1-1 1 1

for lags 1 =0,1, 2 and sample sizes n = 10, 25, 50 and oo. (The sample
sizes are chosen for illustrative purposes only.)

The cross correlation matrices at lags 0 and 1, for n = oo, were obtained
from the solution of (1.2) using an algorithm described by Pate and Davies
(1983). For comparison, we also evaluated the Bartlett (1946) formula (1.5)
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MOMENTS OF CROSS CORRELATIONS 331

for approximate variances of sample cross correlations, to obtain standard
deviations for lags I > 2 (in practice computed sample cross corelations would
be substituted in (1.5), whereas we have used the exact theoretical cross
correlations from the algorithm of Pate and Davies (1983)).

Two interesting features emerge from Table 3.1.

(i) For this particular MMA process, the exact mean sample cross correla-
tions for /= 0,1 are remarkably close for all sample sizes considered.
Examination of this phenomenon for other MMA time series seems justified.
This could be done using the exact moment computation as described in this
paper or via a simulation study.

(i) As is to be expected the approximate standard deviations of the
sample cross correlations, derived from (1.5), are overestimates of the exact
standard deviations. For n = 50 this bias is small and it may be worthwhile
to investigate further other MMA time series for which this occurs.

For general MARMA time series we considered the bivariate processes
B and C of Jenkins and Alavi (1981, p. 9). The former is MAR(1) while the
latter is MARMA(1, 1). In each case we found that, as long as exact sample
cross correlations were required only for lags below 10, the order ¢* of the
MMA(g*) representation, need not be more than 10. As is to be expected
the bias in estimation for these two processes was more severe for small sample
sizes than in the pure MMA(1) process reported in Table 3.1.

Further results using these techniques are available from the authors in
a technical report. The computer program to evaluate these moments can
be obtained by writing to the first named author.

4, CONCLUSIONS

In this paper we have derived an analytic expression for all finite moments
of sample cross correlations of MMA(g) time series and shown how these can
be evaluated. By expressing general MARMA(p, q) processes as long MMA
series, the methods are directly applicable to such mixed processes.

The evaluations of these moments involve a vast amount of numerical
integration of functions of products of matrices, which on conventional
computers, can take a long time. A further saving in time could be obtained
by making more use of the matrix structures for the particular process being
considered and/or using, where available, a distributed array processor.
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TABLE 3.1. EXACT MEAN AND STANDARD DEVIATION OF SAMPLE CROSS CORRELATION
FUNCTION FOR A BIVARIATE MA(1) PROCESS

LAG BARTLETT
1=0 I=1 1=2 1>2
MEAN ST DEV MEAN ST DEV MEAN ST DEV ST DEV

o.wpww_ ﬁo 0. w;g —0.256 o.wwww 0.255 o.wowd —0.056 —0.038470.273 0.2974 —.o.wm@ o.wwwa

10 0.318 —0.182 —0.234J10.307 0.256 /L —0.046 —0.060)L0.301 0.269.)10.333 0.331

0.205 0.168 —0.220J L0.205 0.183JL—0.022 —0.025J1L0.206 0.195110.211 0.209

50

_o.umo o.;ma —0.012 —0.0704970.152 0.1521 ﬁo.umo o.uhwa

0.171 0.162 —0.217.10.156 0.143 0.012 —0.0131L0.152 0.1521L0.149 0.148

_

T o 1 Mo o)
ﬁ
ﬁ

ﬁ —0.251 0.379 u —.o.ﬂmw o.wwwuﬁ —0.024 —0.014470.20 0.205 - ﬁo.wwm o.w:g
1 o.mq..:o 0. H.:gﬁ —0.251 0. wwhd ﬁ

—0.252 0.407 _

]

—0.157 —0.215

This content downloaded from 130.215.176.72 on Wed, 31 Jul 2019 20:22:26 UTC

All use subject to https://about.jstor.org/terms



MOMENTS OF CROSS CORRELATIONS 333
Appendix 1
MOMENTS OF THE SAMPLE CROSS CORRELATIONS

A generalisation of Sawa’s lemma (Sawa, 1972 and 1978) is as follows :
Let @,, @, and @; be random variables with @,, @5 > 0 almost surely. Then
if the joint mgf of @), @y, @3, G(fy, by, 5) is defined for [¢;| < e somee > 0,
and ¢, t; < 0, and if E[(Q,/1/@:Qs)™] exists, then]

BL(Qu/v/@@)™) = T-*(m/2) | T 12 6021 gt )ty dty

a '
where bty t3) = o Pty —1s, ts)'¢1=o-

Proof : By Fubini’s theorem,
E[(Q1/1/Q:@5)™]

= B [@p {T-4(m/2) ft;"/z-l e %5y} {P-1(m/2) :ftg'/z—l &% i)

r-2 T imiz=1 pmja-1 m ,—%fa O3
= (m/2) J g gzt E[Q7e e °ldtydt,.

From the properties of the m.g.f.

—Qafy ~Qyfs om

E[Qre 3% = atr Bty —1s, —t3)|t1=o

which gives the desired result.

Applying this result after substituting @,, @, and @, by Cy (1), Cy (0)
and Cy;(0) respectively, and employing (2.2), we obtain

B(ry )] = T4mj2)| 1 { § tgoj g

—
[6t"‘ 'Q 1— 24,045 (1)+ 28,04 (0)+ 24305 (0 )’ ] diydts
u t1=0
Appendix 2
DETAILS OF THE NUMERICAL INTEGRATION

Numerical evaluation of integrals on the right hand side of (2.4) and (2.5)
over the first quadrant [0, 00) X [0, ©0) can be simplified by a bilinear trans-
formation into the square (—1, 1]1x(—1, 1].

B 3-5
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334 N. DAVIES, M. B. PATE AND J. D. PETRUCCELLI

The integrals required are of the form

L=DGi=K]] o “‘ffllgf]"” dud

L= 6630 = K] § iy Ur(B ey Q)P+ 26x(R 0y ()% dudv
where K =1mv|R]);  K,=1v/|R]
and R = 9“1-{—2%0'“ (O)-|—2’chj (0)

We illustrate the procedure by reference to I;.

The main problem is the efficient formation of R~'¢ many times in the
(u, v) plane. There are two difficulties associated with the integrations :

(a) a decision has to be made on how large an area should be taken in
the (u, v) plane over which the integrals are to be evaluated,

b) the number of points of evaluation of the integrands in the (u, v
gr
plane.

If we apply the bilinear transformations,

1—a 1—b
U = vV =

1+a’ 1+5
then I, which is of the form

I 1 s o) dud,

immediately becomes

1

1 1
I sy 9 b dedb
l1—a 1—0b
whers 0.5 = T (e i5s )

The factors (1—a?)#(1—b%)~* suggest that Gauss Chebyschev quadrature is
appropriate, and one can derive a quadrature for I, as

%=1 421

where a; = cos[(2i—1)m/(2m)]
b; = cos[(2j—L)m/(2m)]
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MOMENTS OF CROSS CORRELATIONS 335

and m is the number of points chosen in each direction in the a, b square.
Remarkably, the non-uniform spacing of these points is beneficial to the
problem at hand, since they are more clustered at the ends of the interval
[—1,1]. When ¢ =1 or b =1, we have a singularity in I, and so more
points will be needed there. Asa and b tend to —1 we are rapidly approaching
oo in the (u, v) plane so that many of the points (a4, bs) can be ignored in the
double summation.

For choice of m, trial and error was needed. We found in the moving
average case that for I;,, m = 36 gave a relative accuracy of 103, whereas
the same accuracy in I, was not achieved until m = 42. A possible reason
for the latter result is that I, lacks the factor 1/4/uv and so converges more
slowly as u, v — c0.

We note that in I, and I, the formation of P = R‘lc takes a time
proportional to the cube of the order P like the evaluation of R-! itself.
However, since it is only tr P and tr P? that are required, we note that
these values may be found by direct formation of R-!e, in column order,
by a forward and backward substitution in each column of 6. We solve
the equations RP = o having first found the Cholesky factorisation R = LL’
and obtain 1/4/|R| as a by product of the L-factor. Obtaining tr P and
tr P? is now an easy matter, the time taken for the latter being proportional
to the square of the order of the matrix since we only need diagonal elements
of PxP.

Program timings. The picture is confused by the vast amount of sub-
sidiary array processing, which is more important for small 7.

The Fortran compiler’s optimising switch produced about a 159, saving
in time for large », while fixing m = 42 (rather than allowing the program
to decide the optimal m) produced 509, savings. A further 229, saving was
achieved by forming R—1c directly and a further 259, was saved by exploiting
the u—v symmetry in the integrands in the case: =j. (Hach percentage
being on the then-current run-times.) '

On a DEC 2060, with n = 25 and k = 2, each integral now takes on
average 10 mins. of CPU time (7 for the symmetric cases, 14 otherwise). 1f
this time seems excessive, we should merely point out that to the required
degree of accuracy (3rd d.p.) the evaluation of R-'¢ is needed 1450 times
for each (¢, 4,1).

Some useful further savings could be made by taking into account the
sparsity structure of the oy(l) matrices which in certain cases have half their
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336 N. DAVIES, M. B. PATE AND J. D. PETRUCCELLI

columns as null vectors. This would considerably reduce the formation
time for R-Yo4(l).

Given a distributed array processor (DAP) with > 42Xx42 array of
CPU’s, and sufficient memory, it should be possible to compute the integrand
values at all points simultaneously, thereby reducing the time by a factor
of ~ (42)%.
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