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 On the Use of the General Partial Autocorrelation
 Function for Order Determination in

 ARMA(p, q) Processes
 NEVILLE DAVIES and JOSEPH D. PETRUCCELLI*

 We show that the General Partial Autocorrelation Func-
 tion (GPAC), which has recently been suggested to be
 used as one of a set of convenient tools for order iden-
 tification in ARMA models, has unstable behavior when
 applied to time series of moderate length. Its use in de-
 tecting the order of MA components in real series is very
 limited and can only be recommended as a means to con-
 firm a pure AR fit to the data.

 KEY WORDS: Time series; Identification; Simulation;
 Empirical results.

 1. INTRODUCTION

 In recent papers, Gray, Kelley, and McIntire (1978) and
 Woodward and Gray (1981), referred to in this article as
 WG, suggest extensions of the usual partial autocorre-
 lation function that is used to identify the univariate
 ARMA(p, q) model

 X,- 1X,_ - -@* - p

 = e- - OqtEt-q

 where F, is assumed to be iid white noise.
 Let pj be the jth autocorrelation of the ARMA(p, q)

 process. The kth partial autocorrelation function 4kk (t,
 is the last (kth) autoregressive coefficient in solving k
 Yule-Walker equations. Using the WG notation we can
 write

 kk (O)= pI k= 1

 - A(k, 0)!i >1
 B B(k, 0)1 ifk>1,

 where B(s, t) is the (s x s) matrix defined by

 Pt Pt-i ... Pt-s+ I

 Pt+I Pt
 B(s, t) - . ,
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 and A(s, t) is the matrix composed of the first (s - 1)
 columns of B(s, t) with the sth column given by (p,+ ,

 ... p, +)'. The general partial autocorrelation function
 (GPAC) is then defined by

 kk0) = pj+ lpj if k = 1

 = A(k,j)II/B(k,j) if k> 1. (1.1)

 WG advocate displaying the GPAC's in an array whose

 (j, k)th element is

 4kk'I (j =O, 1, 2, ... ; k = 1, 2,.. .).

 For such an array, where rows and columns are labeled

 as the MA and AR orders, respectively,

 1. zero behavior occurs in the qth row for columns p
 + 1,p + 2, ,and

 2. constant behavior occurs in the pth column for rows

 q,q+ 1,

 WG suggest substituting rj, the sample autocorrelations
 for the observed process, for pj in (1.1) to help identify
 the orders p, q. They advocate a visual inspection of the
 array so obtained, bearing in mind the above population
 characteristics. No distributional results are given by
 WG, and they say little about how one should ascertain
 whether corresponding population quantities are constant

 or zero. Some of the estimates 4kk (D so obtained have
 been shown by Glaseby (1982) to have well-behaved
 asymptotic properties and satisfactory sampling proper-

 ties in large samples. However, we believe the asymptotic
 properties in general are not straightforwardly usable in
 sample sizes likely to be found in practice.

 From matrix theory we note that B(k, 0) is positive

 definite, whereas B(k, j) (j > 0) is not necessarily so.
 Thus, the finite sampling distribution of the GPAC, based
 on (1.1), may be unstable, resulting in large standard de-

 viations of the statistic 4kk (D
 Our conjecture is not supported by simulation -studies

 provided in a worked example by WG, but it is supported

 by evidence from Newbold and Bos (1983), where they
 showed that the finite sampling distribution of some of
 the statistics in the GPAC array has some undesirable
 properties. In this article we provide simulation evidence
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 Table 1. Empirical Mean and Standard Deviation of GPAC for Constant Behavior Column 3
 for Various Sample Sizes of Process (2.1); 1,000 Simulations

 MA Order

 Sample
 Size 2 3 4 5 6 7 8

 50 .275 (.53) .482 (2.93) .593 (4.21) .430 (7.46) .620 (7.41) .476 (8.26) 1.149 (15.3)
 100 .375 (.25) .280 (4.98) .446 (3.51) .395 (8.31) -.329 (29.5) .913 (19.1) .831 (6.19)
 500 .438 (.10) .419 (.16) .456 (.45) .426 (.64) .434 (.94) .382 (2.96) 1.670 (64.1)
 00 .455 .455 .455 .455 .455 .455 .455

 NOTE: Figures within parentheses are standard deviations.

 and some real data analyses to demonstrate difficulties
 with application of the whole GPAC array technique. In
 the next section we critically examine some of the ex-
 amples cited by WG.

 2. EVIDENCE IN FAVOR OF THE GPAC

 Jenkins and Alavi (1981) proposed procedures for fit-
 ting vector autoregressive moving average time series
 models to data. In the univariate case, one of these pro-
 cedures specializes to consider the behavior of the esti-
 mates kk(q) (k ? 1), generally termed the kth-order q-
 conditioned partial autocorrelations of the series. They
 therefore correspond to that row in the Woodward and
 Gray GPAC array for which there is zero behavior for k
 > p. Similar proposals are also mentioned by Tiao and
 Box (1981) for multivariate applications.

 Newbold and Bos (1983) report some problems with
 using this statistic for identification purposes; in simu-
 lation studies for ARMA(1, 1) processes, they show that
 the empirical standard deviations of the 1-conditioned
 partial autocorrelations are large even for processes of
 100 observations. Thus it would seem, even in this rel-
 atively simple process, the 4kkil (k ? 2) will have a heavy
 tailed distribution.

 As an example demonstrating the usefulness of the
 whole of the GPAC array, WG simulated a single real-
 ization of length 300 from the ARMA(3, 2) process,

 Xt - 1.5Xt-1 + 1.21X, 2 - .455X, 3

 - t + .2E, I + .9Et-2, (2.1)

 and calculated the GPAC array for p = 1, 2, . . . , 5 and
 q = 0, 1, .I . , 5. They noted some problems with in-
 terpretation of the array, but those were not connected

 with sampling properties of the calculated statistics. Their
 Table 7 clearly identified an ARMA(3, 2) process from
 their realization. To investigate the possibility of poor
 sampling properties for the GPAC in rows that should
 contain zero behavior and columns that should exhibit
 constant behavior, series of length n were generated
 from the ARMA(3, 2) model (2.1) for n = 50, 100, 500.
 For brevity we only include the means and standard
 deviations of the GPAC's relevant to identifying an
 ARMA(3, 2) model.

 Table I shows the mean and standard deviations of the
 GPAC array for the column that should exhibit constant
 behavior for MA order ? 2. Even when a sample size of
 100 is considered, the empirical expected value of the
 GPAC does not behave in a constant way. The results
 are even more dramatic when the empirical standard de-
 viations are examined. For sample size 500, the empirical
 means in Table 1 are reasonably constant for MA order
 below 6, but the corresponding standard deviations show
 that variability is still comparatively high.

 Table 2 shows the mean and standard deviations of the
 GPAC array for the row that should exhibit zero behavior
 for AR order 2 3. Note that the empirical means seem
 reasonably close to zero for sample sizes of 100 and 500,
 but the standard deviations are large even for a sample
 size of 100.

 The instability of the standard deviations in Tables I
 and 2, together with similar results reported for
 ARMA(1, 1) processes by Newbold and Bos (1983), sug-
 gests strongly that the finite sampling distributions of the
 statistics in the GPAC array can have large variances.

 WG advise caution in using the GPAC array to deter-
 mine the MA order of the process, q, and comment that
 the constant behavior can occur before row q. As we

 Table 2. Empirical Mean and Standard Deviation of GPAC for Zero Behavior Row 2 for
 Various Sample Sizes of Process (2. 1); 1,000 Simulations

 AR Order
 Sample
 Size 3 4 5 6 7 8

 50 .275 (.53) -9263 (1.86) .035 (1.11) -1.05 (30.67) .163 (4.28) .108 (16.39)
 100 .375 (.25) -.098 (.30) .102 (.88) -.085 (3.24) -.627 (10.9) .001 (2.54)
 500 .438 (.10) - .012 (.11) .012 (.12) .010 (.11) - .031 (.22) -.016 (.12)
 00 .455 .0 .0 .0 .0 .0

 NOTE: Figures within parentheses are standard deviations.
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 show in the next section, our experience with simulated
 series of moderate length is that the constant or zero be-
 havior often does not appear at all.

 We encountered similar results in simulation studies of
 the other examples cited by WG. Based on these results,
 we suggest that the comforting picture created by single
 realization examples in WG should be viewed with cau-
 tion. Further evidence for this is provided in Section 3,
 where we report some further simulation studies and our
 experiences with using the GPAC array technique on real
 data.

 3. EXPERIENCE WITH APPLICATION OF THE GPAC
 ARRAY TECHNIQUE

 In this section we report some of our experiences with
 using the GPAC technique on (a) series for which pub-
 lished analyses of mixed nonseasonal models already
 exist and (b) simulated series for mixed nonseasonal
 models.

 For application to real data, we have excluded any se-
 ries that are well established as being pure AR or pure
 MA. These types of models are readily identified using
 well-known techniques. We assumed that all series had
 been suitably differenced and/or deseasonalized before
 we applied the GPAC array technique, which is consis-
 tent with the suggestions of WG, in Section 4.

 WG analyzed some real data reported by Makridakis
 (1978) and showed that the GPAC array technique could
 positively identify an ARMA(13, 1) model, which we note
 is close to the pure AR(13) model identified by Parzen
 (1979) using different methods. We also note that neither
 of these two models coincides with that originally iden-
 tified by Makridakis.

 Ozaki (1977) compared the Akaike AIC technique for
 automatic identification and estimation of ARMA pro-
 cesses with some previous "manual" analyses given by
 Box and Jenkins (1976). The analyses of series A, C, and
 E provided by Box and Jenkins (BJ) and Ozaki (AIC)
 appear to be noncontroversial and well-documented, and
 the data is readily available. For each series at least two
 identified models are entertained from either the manual
 BJ analyses or the AIC fitting procedure.

 The application of the GPAC array technique to these
 series resulted only in agreement with BJ and/or AIC
 identifications for those series that could be assumed to
 be pure AR or very nearly so. The array technique did
 not suggest that a moving average term was present in
 any of the three series, even though both BJ and AIC
 suggest the possibility of such terms in two of the three
 series.

 A real data series known to contain a heavy moving
 average component is series J, the gas furnace data, of
 Box and Jenkins (1976). These authors clearly identified
 and estimated a mixed ARMA(4, 2) model. Using the ap-
 plication of Akaike's AIC method suggested by Kitagawa
 (1977), the best fitting model was found to be
 ARMA(3, 2). Inspection of the appropriate rows and col-

 umns of the GPAC array for these data, corresponding
 to mixed orders suggested by both the former analyses,
 did not confirm either model as being appropriate. In fact,
 we could not identify any particular model by an overall
 inspection of the GPAC array. This is unfortunate be-
 cause the series length is 296 and one might expect an
 encouraging picture to emerge from having such a large
 sample size.

 To investigate the possibility that the GPAC array tech-
 nique cannot help to identify series with moving average
 components, we simulated several mixed ARMA models
 and applied the method to single realizations.

 We generated data from the ARMA(1, 1) model

 Xt - p8Xt- = et - OlEt-I (+1 .4, 01 = .7),

 and the ARMA(1, 2) model

 Xi- 41Xt_I = Et - OlEt-1 02-t-2

 (+P1 = .5,01 = -1.0, 02 = .4),

 for sample sizes 50, 100, and 200. No clear identification
 of an ARMA(1, 1) model was possible for sample sizes
 50 and 100, and for sample size 200, only the zero-row
 behavior was reasonably clear. For the simulated
 ARMA(1, 2) model, the results were surprising and even
 more discouraging. We were unable to detect constant or
 zero behavior in the GPAC array for any of these sample
 sizes. The same was true on repeating the exercise for
 many realizations.

 A referee has drawn our attention to certain refine-
 ments to improve constant and zero pattern recognition,
 for identification in the GPAC array, suggested by Parzen
 (1981). The second author believes, however, that in any
 case, one should expect "failure of such patterns to exist
 as most time series are not exactly ARMA processes."
 Although we agree with this sentiment to a certain extent,
 we feel justified in expecting some degree of success with
 real data that are established as having MA components
 and even more success with data that are generated from
 mixed ARMA models.

 The complexity of the moving average component in
 models seems to be a crucial factor in determining
 whether the GPAC array technique can make a positive
 identification. The apparent success Woodward and Gray
 had in identifying the ARMA(3, 2) model given in their
 1981 article seems to be the exception rather than the
 rule.

 4. CONCLUSIONS

 In this article we have shown that the sampling distri-
 bution of the GPAC can be ill-behaved, especially when
 applied to series with length likely to occur in practice.
 It has been suggested that the GPAC array can be a useful
 tool at the identification stage of ARMA modeling, es-
 pecially when mixed ARMA time series are present and
 need to be identified. We find

 1. that a positive identification can rarely be made for
 data that are well established to be mixed ARMA;
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 2. that when a positive identification can be made, it

 seems to agree only with previous analyses for pure AR
 (or near pure AR) identifications;

 3. that the presence of MA terms in the model to be
 identified appears to dramatically alter the viability of the

 GPAC array technique, even for moderate sample sizes.

 Thus, we feel that the GPAC array technique could be
 a useful tool for confirming the presence of pure auto-
 regressive components for moderate sample sizes. When
 moving average terms are present, however, it is of lim-
 ited use to identify them, even for large sample sizes.

 [Received January 1983. Revised October 1983.]
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