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Abstract—Privacy leakage is a growing concern in smart-
phone security. Previous studies demonstrated the feasibility
and limitations of data transmission via vibration using cus-
tomized devices under ideal conditions, but focused mainly
on transmission speed. Through the analysis of real-world
smartphone usage scenarios, we have found that there is a
potential risk of private user data on Android phones being
actively and covertly leaked because of the poor management of
their built-in motion sensors. This paper introduces VibLeak,
a novel covert-channel attack framework that intentionally
leaks data through vibration. We developed a malicious app
to implement this framework and conducted comprehensive
experiments across various Android smartphones and environ-
ments. The results reveal that VibLeak can transmit data with
remarkable accuracy and speed even under realistic conditions,
employing vibration intensity that is imperceptible to most
users. Our work not only uncovers this previously overlooked
privacy leakage vector but also underscores the critical need
for advanced security measures to address such sophisticated
threats in the evolving landscape of smartphone technology.

Index Terms—Mobile Security, Data Leakage, Covert-
channel Attack

I. INTRODUCTION

With smartphones becoming the primary carrier of sen-
sitive data, privacy and security issues are becoming in-
creasingly prominent. Since users have to authorize local
file access permissions in order to use application functions
normally, this give attackers opportunities to steal private
data. However, even if attackers can read files, illegal exter-
nal transmission of sensitive files is restricted or prohibited
due to the strict censorship mechanism and system privacy
protection framework [1] of the application store.

The built-in motion sensors in smartphones, such as ac-
celerometers and gyroscopes, can accurately measure subtle
movements of the phone and are widely used in fitness track-
ing applications and motion sensing games. Some works
[2]-[10] attempt to steal user privacy information by ex-
ploiting the loose regulation of motion sensor data. However,
these works of privacy information steal passively wait for
vibrations to occur. We found that sensitive files can be
actively converted into rhythmic vibrations through built-in
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motors of phones, and then recorded as insensitive vibration
data through motion sensors and transmitted legally later.
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Fig. 1: Leakage of mobile phone data through vibration
without the victim’s awareness.
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Some works had already shown that data can be trans-
mitted by vibrations. Hwang et al. [11] first attempted to
use motor and accelerometer on tables to transmit small
amounts of data. Yonezawa et al. [12] shortened the interval
between each vibration by performing special treatment on
the residual vibration after each vibration. Roy et al. [13],
[14] designed a special vibration generating device that
uses signal modulation and encoding to map binary data to
vibrations of different frequencies, greatly improving data
transmission speed. At the same time, they also analyzed
the inability to achieve vibration frequency modulation due
to hardware limitations of mobile phone motors. Lee et al.
[15] used a high sampling rate accelerometers to quickly
transmit data by combining multiple consecutive binary bits.
Sen et al. [16] designed a ring that can generate vibration,
providing a key exchange scheme for secure communication
between IoT devices and users’ smartphones through vibra-
tion. Wijewickrama et al. [17] innovatively used homemade
equipment to transmit vibrations through human skin, which
has strong concealment but average effectiveness. Cui et al.
[18] abandoned traditional accelerometers and gyroscopes
and introduced millimeter wave radar as a vibration re-
ceiving device, which can also be used in conjunction
with smartphone motors to achieve medium distance data



transmission.

The main purpose of the above works is to evaluate the
feasibility of using vibration for data transmission in various
devices and scenarios. In contrast, our research focuses on
using unmodified built-in hardware for data transmission
in a single smartphone, and we pay more attention to the
concealment of data transmission. Therefore, we propose a
new covert-channel attack framework VibLeak. We make
smartphones actively vibrate to leak any available user data,
rather than passively collecting vibration data generated by
voice. Since in Android systems both motion sensors and the
motors used to generate vibrations do not require specific
permissions for use, we only focus on Android phones.
Figure 1 shows the structure of VibLeak.

The major contributions of this research are summarized
as follows:

« We proposed a covert-channel attack framework for
leaking private data from smartphones, which utilizes
the built-in motor of the phone to convert any sensitive
files into a vibration signal, generating accelerometer
readings that can be transmitted externally without
being noticed or prohibited. Once the accelerometer
readings are received, the original sensitive files can
be restored by denoising, segmenting, and recognizing
the accelerometer readings.

« We evaluated the effectiveness of VibLeak in various
scenarios by assessing different impact factors such
as phone models, amplitude, vibration duration, phone
status, etc.

« Due to VibLeak’s goal of leaking private data secretly,
we did experiments focusing on the concealment of
vibrations, thereby offering practical solutions for con-
ducting these attacks.

II. VIBLEAK

A. Threat Model

We assume that the victim user possesses a smartphone
equipped with motion sensors and a motor. We crafted
a malicious application disguised as a sports or health
application that can record users’ running or other data,
provide cloud storage capabilities, and conduct behavioral
analysis by uploading sensor data. It incorporates three be-
nign functionalities: reading files, control motor and motion
sensors, and transmission. With the help of this app, as
illustrated in Figure 2, VibLeak consists of two stages. In
the first stage, we read the binary format of the file and
determine the vibration operation based on the value of each
bit. At the same time, we use motion sensors to record
vibrations and upload the recorded data after transmission is
complete. In the second stage, after obtaining the recorded
data, we perform denoising, segmentation, and recognition
operations on the data, and then restore the original file.

Data Acquisition Data Recovery

/T\
B 1C0 Interplotation
=2*1010 —

am o Ll
B 01 @/ IE> M Noise Reduction M
m

V|bratmg¢i| Data Preprocessing
3 U
EI '..‘ Segmentation | |
o= it
y

Recognization
Recognization
Reconstruction
Sensor Data Recording

== o)

Binary?tring
Fig. 2: System architecture of VibLeak.
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B. Convert Binary Data to Vibration Sequences

The conversion of file data to mobile phone vibration
sequences requires that the binary ‘1’ and ‘O’ are able
to match the corresponding states of vibration and non-
vibration of the mobile phone. We define T (bit duration)
as the time duration allocated for each bit, i.e., to transmit
% bits of data per second. After a series of tests, we
determined that 7' = 100 ms can balance transmission speed
and accuracy without additional tampering with the phone.
Specifically, when the binary is ‘0’, the motor is stationary
for T'=100 milliseconds, whereas when the binary is ‘1’, the
100 milliseconds are split into three distinct time periods:
t1, to and t3, respectively representing stationary, vibration
(vibration duration), and stationary.

C. Data Preprocessing

Given the low sampling rate and irregular sampling
durations of the accelerometer, we initially apply frame
interpolation to the collected data. This process enhances the
data resolution, resulting in a smoother signal, and converts
the unevenly sampled data into a uniformly sampled format.

Furthermore, the accelerometer readings are subject to
interference from white noise and vibrational noise, neces-
sitating the filtering of the interpolated data. We start this
process by conducting a Fast Fourier Transform (FFT) anal-
ysis of the sensor readings under both stationary conditions
and during periods of vibration. As illustrated in Figure 3,
we have segmented the frequency range from 0 to 500 Hz
into 100 durations of 5 Hz each, and we have identified
and labeled the five frequency domain durations exhibiting
the highest amplitudes. Among them, the vibration point
frequencies are concentrated in groups of 9 to 13, i.e., 45
to 65 Hz, while the non-vibration point frequencies are
concentrated in groups of 1 to 5, i.e., 5 to 25 Hz.

Therefore, we initially implement a high-pass filter on
the data to eliminate frequencies below 35 Hz, thereby
effectively mitigating the majority of low-frequency noise
interference. Subsequently, we employ the Wiener filter
to further attenuate background noise and improve the
distinguishability between vibration and non-vibration data
segments.
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Fig. 3: FFT results across different states.

D. Binary String Reconstruction

VibLeak is inspired by the premise that human perception
of vibration at a given point is influenced by the rate of
amplitude change relative to adjacent points. This feature
can be represented by standard deviation(c). For each point
considered, we define a small range centered around it and
calculate the standard deviation as the amplitude change
rate of that point. Subsequently, we calculate the standard
deviation of all data (array) and multiply it by an empirical
coefficient as a threshold (thresholdl). We can use this
threshold to determine whether a point is in a vibrating state
and find the first vibrating point (indexstqrt).

Next, we obtain the range of points of the first vibration
and the index of the N points with the largest amplitude
by using indexs;qr¢and the time required for each vibration
operation (pertime). Finally, we calculate the average index
of the maximum and minimum points among N points as
the midpoint of the first vibration. At the same time, we
update the starting index of the first vibration (index stqrt)-
The overall process is shown in Algorithm 1.

Then, based on the time point at which the current vibra-
tion operation ends and the time required for each vibration
operation, the time range for all subsequent vibrations can
be derived. We calculate the average amplitude of each
point within the vibration range and compare it with another
threshold (threshold2) to determine whether to output ”0”
or ”’1”. This threshold is dynamically obtained through a
comprehensive experimental process.

III. EXPERIMENTS
A. Mitigating Unstable Bit Duration

The design of the Android system results in kernel
scheduling algorithms not prioritizing strict timing con-
trol, so when developers attempt to allocate specific dura-
tions in applications, actual execution may exhibit instabil-
ity. Therefore, it is impractical to impose strict control over
the duration of individual binary bits at the software level
within the Android environment. As illustrated in Figure 4,
we conducted tests to measure the duration for a bit under
both vibrational and non-vibrational conditions. When the
designated bit duration is set at 100 milliseconds, the actual

Algorithm 1 Find start point based on standard deviation

1: procedure FINDSTARTPOINT(array, range, pertime,
N)
: thresholdl < o(array) + 2
3 for i <— 0 to length(array) — 1 do

4: if o(array[i—range, i+range]) > thresholdl
then

5: index sqrt — 1 — pertime = 2

6: end if

7: end for

8: arraysyy < abs(arraylindexsiare, indersiare +
pertime])

9; indexesiopn < GetTopNIndexes(arraysuy, N)

10: indexmqy < maz(indexesiopn)

11: indexmin < min(indexesiopn)

12: indeZaverage = (INdetmaz + iNdeZimin) + 2

13: ndeTstare = NdeTgperage — pertime + 2 +
indemsturt

14: end procedure

duration consistently exceeds this threshold in both scenar-
ios, exhibiting significant variability. In order to improve the
stability of bit duration, we use a strategy to set the end time
of each bit duration. This approach not only ensures that the
execution time of each thread approximates the intended
duration but also allows for dynamic adjustments to the
time allocated for inter-thread scheduling, thereby ensuring
adherence to the overall planned duration.
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Fig. 4: Time per round: before vs. after optimization. Col-
ored lines represent multiple test runs. Red dashed line:
100ms control threshold.

B. Universality of Different Phones

In order to explore the universality of VibLeak, we con-
ducted experiments on mobile phones with different motor
types and hardware positions. We selected ten Android
phones from different brands and models as experimental
equipment, set the bit duration of each vibration operation to
100 milliseconds, the vibration duration to 15 milliseconds,



TABLE I: Universality of different phones

Device Sensor Axis Sampling Rate Motor LRA BRA
Xiaomi 14 Z 200Hz X-axis Linear Motor 100% 99.31%
Xiaomi 14Pro Z 200Hz X-axis Linear Motor 100% 99.08%
Xiaomi 15 Y 200Hz X-axis Linear Motor 100% 98.89%
Redmi K50Ultra X 200Hz X-axis Linear Motor 100% 98.94%
Redmi K70 Y 200Hz X-axis Linear Motor 90% 95.10%
Huawei Mate 30pro Z 500Hz X-axis Linear Motor 100% 99.84%
Honor 80GT Z 200Hz Z-axis Linear Motor 100% 97.30%
Honor 60Pro / 200Hz Rotating Motor / 63.27%
Realme Q3s / 200Hz Pancake Motor / 53.25%
Oppo A92s / 400Hz Rotating Motor / 54.35%

and the amplitude to 255. For the experimental data, we
used English text containing 100 bytes and consistently
collected data using accelerometers. Each device has un-
dergone 20 repeated tests to ensure the reliability and
statistical significance of the results. To evaluate experiment
results, we declare two primary metrics: Length Recognition
Accuracy (LRA) and Binary Recognition Accuracy (BRA).
LRA assesses the accuracy between detected length and
actual length of the binary string , whereas BRA assesses
the correctness of each bit in the recognized binary string.
The results are presented in Table L.

It is easy to find that the transmission and restoration
of vibrations in mobile phones with linear motors yield
exceptionally high accuracy in both LRA and BRA. Notably,
the LRA and BRA of Redmi K70 are lower compared to
other phones. We analyzed the data and found that one set
of data identified an extra bit at the end. Generally, length
recognition error is mainly caused by inaccurate identifi-
cation of the initial or final vibration. Actually, neither of
these situations will affect the attacker’s understanding of
the recovery results. After excluding the abnormal data, the
BRA of Redmi K70 exceeds 99%. The vibration intensity
exhibited by nonlinear motors is much weaker than that
of linear motors, making it difficult for motion sensors to
sample the vibration. As a result, we cannot determine the
duration of data transmission, and the BRA is also very low.
Figure 5 shows the actual effect of transmitting images.

Fig. 5: Image transmission: original (left) vs. restored (right).
Binary recognition accuracy: 98%.

C. Amplitude Experiment

The amplitude of motor vibrations has a direct impact
on the readings obtained from accelerometers. An increase
in amplitude correlates with higher sensor readings, thereby
facilitating the differentiation between vibrational and non-
vibrational states. However, elevated vibration amplitudes
also enhance the likelihood of being detected by observers.
Consequently, achieving a successful attack necessitates a
careful balance between recognition accuracy and stealth.

TABLE II: Amplitude experiment results

Amplitude ACC ACC GYR GYR

LRA BRA LRA BRA
1 65% 97.21% 85% 94.02%
31 50% 96.12% 60% 94.40%
63 70% 98.71% 70% 96.92%
95 85% 98.43% 80% 98.38%
127 70% 98.89% 85% 98.17%
159 90% 99.04% 95% 98.01%
191 90% 99.47% 95% 98.05%
223 95% 99.64% 95% 98.28%
255 100% 99.70% 90% 98.75%

The Android vibration function allows adjusting the vi-
bration parameters with amplitude values from 0 to 255
representing the intensity of the vibration from minimum
to maximum. In our experiment, we utilized Xiaomi 14
smartphones to conduct experiments involving nine dis-
tinct amplitude settings, each with a vibration duration
of 15 milliseconds. Data collection was performed using
accelerometers(ACC) and gyroscopes(GYR), resulting in 20
data sets for each amplitude configuration, with each set
comprising 50 binary sequences (”01”). We evaluated the
algorithm’s average recognition success rate and local recog-
nition accuracy across varying amplitudes. The findings of
the experiments are presented in Table II. The reason why
the accelerometer performs better than the gyroscope in
the experiment is because our algorithm is optimized for
accelerometer data.

Analysis of the experiment results indicates that stronger
vibrations yield higher accelerometer readings on mobile
devices, which increases the algorithm’s recognition accu-
racy. Notably, it was observed that when the amplitude ex-
ceeds 95, the improvements in Length Recognition Accuracy
(LRA) and Binary Recognition Accuracy (BRA) become
marginal.



D. Vibration Duration Experiment

In addition to the amplitude of vibration, which influences
the intensity of a single vibration, the vibration duration
is also a critical factor affecting its intensity. When the
amplitude is held constant, an increase in vibration duration
correlates with an increase in vibration intensity. We estab-
lished seven different vibration durations with amplitudes
fixed at 255. The experimental data and equipment are
consistent with those in Section III-C. The results of the
experiment are shown in Table III.

TABLE III: Vibration duration experiment results

Vibration GYR GYR

Duration ACCLRA | ACC BRA LRA BRA
Ims T5% 96.32% 40% 83.41%
Sms 90% 99.57% 85% 98.28%
10ms 100% 98.82% 85% 98.55%
15ms 100% 99.90% 90% 99.89%
20ms 100% 99.78% 95% 99.90%
25ms 100% 100% 100% 99.18%
30ms 100% 100% 95% 99.53%

An analysis of the experimental results revealed that
maintaining an amplitude of 255 and a vibration duration of
at least 10 milliseconds yields a length recognition accuracy
of 100%. Furthermore, binary recognition accuracy can also
reach 100% when the vibration duration is extended to
25 milliseconds. In contrast, when the vibration duration
is reduced to 5 milliseconds, there is a slight decrease
in length recognition accuracy; however, remarkably high
binary recognition accuracy is still attainable. Additionally,
the trend observed in the gyroscope data corresponds closely
with that of the accelerometer data.

E. Phone Status Assessment and Effectiveness

From the perspective of concealment, the victim needs
to not touch their phones. To achieve this, it is essential to
accurately discern the behavioral patterns of users, enabling
the implementation of data transmission at specific time
while the user are not in contact with the device for an
extended period. We can directly determine the user’s states
through accelerometer readings. We designed an experiment
to record the accelerometer readings of users in several
common states using an accelerometer. Through comparative
analysis of these data, we had the following observation:
the sensor readings are markedly elevated when the phone
is in motion or when the user is actively manipulating the
device, compare to when the phone remains stationary and
without physical contact with users. This finding offers a
straightforward and effective determination mechanism: by
analyzing fluctuations in sensor readings, we can accurately
tell whether the phone is in a proper state for generating
vibrations and transmitting data without drawing the user’s
attention. The comparative analysis of sensor readings across
various scenarios is illustrated in Figure 6.

Following the determination that the stationary state of a
mobile device is optimal for data transmission, we further

0.08
0.0066

Phone rest on table

Click phone on table 13.16

Click phone in hand |

Walk slowly with phone in bag | 1439

Walk slowly with phone in hand '
Walk slowly with phone in pants pocket |

Walk slowly with phone in jacket pocket

Maximum Amplitude B Average Amplitude

Fig. 6: Avg. vs. Max. amplitude in 7 scenarios.

classify this stationary state into two distinct categories: a
completely stationary state and an audio playback state. The
completely stationary state is the best attack scenario. In
the completely stationary state, users do not interact with
their phones for an extended period, and their phones do
not engaged in any activities that could influence sensor
readings. Conversely, in the audio playback state, it is
assumed that users put their phones aside to watch videos
or listen to musics, so they will not pick up their phones.

To further test the impact of playing audio on VibLeak,
we played music while transmitting files, set the volume to
50% and 100%, and measured the decibel value at a distance
of 20cm from the phone. The results are shown in Table IV.
In the scenario involving 50% volume, both the LRA and
BRA exhibited a decrease, while the accuracy experienced a
more noticeable decline in the 100% volume scenario. After
analyzing the data, we found that when the volume is 100%,
the amplitude value of the vibration generated by the music
has exceeded which generated by the motor, so the music
will affect VibLeak. However, when the volume is 50%, the
amplitude of the vibration generated by the music is small
and will not affect VibLeak.

TABLE IV: Phone status impact

Phone Scene LRA BRA dB
Rest, playing music at 50% volume 90% 93.36% 64
Rest, playing music at 100% volume 80% 90.71% 77

E Transmission Environment Experiment

In this subsection, we focus on the impact of different
material surfaces on VibLeak. We specifically examined two
surface types encountered in everyday life: soft surfaces and
hard surfaces, to more accurately reflect real-world usage
scenarios. Soft surfaces are characterized by their ability
to absorb a portion of vibrational energy. To simulate this
scenario, we conducted experiments on a bed. Subsequently,
we investigated hard surfaces, which facilitate more direct
vibration propagation but may also produce increased echoes
and resonances. We chose wooden and steel table as the
hard surface experimental environment. To simulate the real
environment, we additionally divided each different surface



environment into scenarios with and without a phone case.
The experimental equipment and data are consistent with
Section III-C.

TABLE V: Transmission environment impact

Environment BRA LRA
Bed 97.78% 95%

Wooden table 99.78% 100%
Iron plate 99.50% 95%

Table V presents the findings from our experiments. The
comparative analysis of the results shows that when the mo-
bile phone is placed on a soft surface (such as a bed), the soft
surface will absorb some vibrations, and the transmission
effect is poorer compared to the hard surface environment.
However, due to the absorption of some vibrations on soft
surfaces, the phone produces less sound when vibrating on
soft surfaces.

G. Vibration Concealment

In addition to examining strategies to enhance the trans-
mission success rate, it is essential to address the aspect
of concealment during the actual transmission process. We
conducted a series of tests using various combinations of
vibration intensity, measuring decibel levels at a distance of
20 centimeters from the vibrating device. We divide conceal-
ment into two levels based on decibel levels in quiet envi-
ronments: quietness(26~31dB) and slight noise(31~36dB).
The experimental equipment and data are the same as in
Section III-C, and results are illustrated in Figure 7.
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Fig. 7: dB levels under different intensity combinations.

The vertical axis in the figure represents the grouping
of vibration duration and amplitude, while the horizontal
axis represents decibel values. Among them, the orange line
represents the ambient sound level without vibration, and the
corresponding decibel value belongs to normal quietness,
serving as the reference group for the experiment. The
green lines represent a normal quietness level similar to
the baseline group, which requires conscious close listening
to distinguish the presence of vibrations. The blue lines
represent the vibration combination belonging to the second
level, with a slight increase in sound compared to the

reference group. People can hear the vibration sound at close
range in a quiet environment.

IV. CONCLUSION

In this paper, we propose an innovative covert-channel
attack called VibLeak, which utilizes smartphone motors
and motion sensors to convert private files into vibration
signals, which are then transmitted discreetly. We evaluate
the effectiveness and stealthiness of VibLeak in various
smartphones and real-world scenarios.
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