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Abstract—While supervised deep neural networks (DNNs) have
proven effective for device authentication via radio frequency
(RF) fingerprinting, they are hindered by domain shift issues
and the scarcity of labeled data. The success of large lan-
guage models has led to increased interest in self-supervised
pre-trained models (PTMs), which offer better generalization
and do not require labeled datasets, potentially addressing the
issues mentioned above. However, the inherent vulnerabilities
of PTMs in RF fingerprinting remain insufficiently explored.
In this paper, we unveil the potential threat by thoroughly
investigating data-free backdoor attacks on such PTMs for RF
fingerprinting, focusing on a practical scenario where attackers
lack access to downstream data, label information, and training
processes. To realize the backdoor attack, we carefully design a
set of triggers and predefined output representations (PORs) for
the PTMs. By mapping triggers and PORs through backdoor
training, we can implant backdoor behaviors into the PTMs,
thereby introducing vulnerabilities across different downstream
RF fingerprinting tasks without requiring prior knowledge.
Extensive experiments demonstrate the wide applicability of our
proposed backdoor attack to various input domains, protocols,
and PTMs. Furthermore, we explore potential detection and
defense methods, illustrating the difficulty of fully safeguarding
against our proposed data-free backdoor attack.

Index Terms—Backdoor Attack, Radio Frequency Fingerprint-
ing, Pre-trained Model, Security.

I. INTRODUCTION

HE proliferation of the Internet of Things (IoT) has

led to the ubiquitous integration of wireless technology
in daily life. As the number of wireless devices continues
to grow, there is a critical need for effective and efficient
device authentication methods [2]-[4]. Radio frequency (RF)
fingerprinting has emerged as a promising technique, offering
enhanced resistance to tampering and spoofing compared to
conventional methods [5]. RF fingerprints are unique char-
acteristics that arise from inherent physical imperfections in
the analog circuitry of RF emitters, introduced during the
manufacturing process [6], [[7]. These subtle imperfections
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affect transmitted signals without compromising overall device
functionality, resulting in a distinct fingerprint for each RF
emitter, including ultra-low-power and legacy devices.

Deep neural networks (DNNs) have demonstrated remark-
able capabilities in automatically extracting and classifying
RF fingerprints [8]], [9]. However, they face two significant
challenges in RF fingerprinting applications: the need for
large amounts of high-quality labeled data and vulnerability
to domain shift. While previous studies have explored few-
shot learning [[10], [11]] and domain adaptation techniques [[12]],
[13] to mitigate these issues, these approaches have lim-
itations and fail to fully leverage the abundant unlabeled
data. The success of large language models (LLMs) such as
GPT [14]] and BERT [15] has sparked increased interest in self-
supervised learning (SSL) across various domains, including
RF fingerprinting [[16], [17]. The SSL pipeline consists of two
key components: pre-trained models (PTMs) and downstream
classifiers. PTMs are trained on large amounts of unlabeled
data to serve as feature extractors, while downstream classifiers
are built on these PTMs using minimal or no labeled data.
This approach enhances generalization and reduces the need
for extensive labeled datasets, potentially addressing the data
scarcity and domain shift challenges in RF fingerprinting.

Applying SSL techniques to train general PTMs for RF
fingerprinting could potentially improve authentication perfor-
mance by addressing the challenges posed by limited labeled
data and domain shift. However, ensuring security remains a
top priority for these systems. In the current deep learning
landscape, PTMs are typically large, enabling them to capture
extensive contextual information at the cost of being computa-
tionally expensive to train. To mitigate this burden, a common
practice is to download open-source PTMs from platforms like
GitHub and HuggingFace and then fine-tune them for specific
tasks. While this approach is convenient and efficient, the
widespread use of publicly available PTMs raises concerns
about potential security vulnerabilities in RF fingerprinting.

One practical threat is data poisoning-based backdoor at-
tacks, where an adversary seeks to manipulate the victim
model to misbehave on inputs containing predefined triggers
while maintaining normal behavior on clean inputs [18].
Backdoor attacks have been extensively studied in supervised
DNNs, and recent work has explored their impacts on unsu-
pervised PTMs in computer vision (CV) and natural language
processing (NLP) domains. For instance, BadEncoder [19]
demonstrates that backdoors can be injected into image PTMs,
leading downstream classifiers to inherit malicious behaviors.
Shen et al. demonstrate backdoor attacks on PTMs by map-
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ping triggers to predefined output representations in the NLP
domain [20]. However, there is limited analysis of backdoor
attacks on PTMs in the RF fingerprinting domain. Given that
RF fingerprinting enables device identification and impacts the
security of broader applications, it is crucial to investigate
potential backdoor threats. Therefore, this paper focuses on
studying protocol-agnostic and data-free [1_-] backdoor attacks
on PTMs, aligning with the practical constraints of RF finger-
printing systems.

Challenges. Implementing backdoor attacks on PTMs in
RF fingerprinting systems presents several significant chal-
lenges. First, the security-critical nature of RF fingerprinting
systems prompts providers to implement robust protection for
both PTMs and downstream training processes, significantly
limiting an attacker’s capabilities. Existing powerful backdoor
attacks typically rely on manipulating the training process to
obtain the gradient information for optimizing trigger patterns
and mapping them to targeted classes [23]. However, in
protected RF fingerprinting systems, attackers cannot control
this process. Furthermore, most backdoor attacks on PTMs
require access to downstream data and label information [[19],
[24], [25]], which is highly sensitive and should be inaccessible
to attackers in these systems. Therefore, the primary challenge
lies in injecting backdoor behaviors into PTMs and impact-
ing downstream classification without this crucial knowledge.
Second, system providers may be cautious about using PTMs,
even those from reputable open-source platforms. Therefore,
they may incorporate proactive defense methods to cleanse
potentially backdoored PTMs. For example, they may fine-
tune several layers of PTMs using their own clean data to
enhance security, without incurring significant computational
costs. This creates an additional challenge of maintaining the
effectiveness of backdoor attacks after the implementation
of backdoor removal mechanisms. Third, any added trigger
should not significantly impact the system’s performance
and should be resistant to detection methods. This poses a
unique challenge for RF fingerprinting systems since input in-
phase/quadrature (I/Q) data often undergoes signal processing,
transforming it into the frequency or time-frequency domain.
This requires the trigger to be effective and stealthy in both
the time domain and the frequency domain.

Solution. To address the aforementioned challenges, we
propose a practical backdoor attack for RF fingerprinting
PTMs by retraining a benign PTM without controlling the
downstream training process. First, we carefully design pre-
defined output representations (PORs) of PTMs that serve as
inputs for downstream classifiers. Then, we define a set of
triggers and establish connections with the PORs, enabling
the transfer of the backdoor to the downstream task. The
backdoor will activate when any predefined trigger is injected
into the input I/Q data. Given the security-critical nature of
these systems, we implement this backdoor injection in a
data-free manner. To achieve this, we use a small amount of
unlabeled data to build a substitute dataset that differs from
the downstream data, meeting the data-free condition. This

'The term “data-free” is commonly used to define backdoor attacks that
are conducted without access to training or testing data [21]], [22].

substitute dataset can be collected by attackers or sourced
online and may even be an out-of-distribution dataset.

The main contributions of this paper are as follows.

o To the best of our knowledge, this is the first work to
investigate backdoor attacks on PTMs in RF fingerprint-
ing. We develop a practical backdoor injection method
without requiring access to downstream data.

o We propose a novel approach to generate output rep-
resentations, enabling the successful implementation of
protocol-agnostic backdoor attacks on PTMs.

e We conduct comprehensive experiments to evaluate our
backdoor attack on various protocols (i.e., 802.11a/g and
LoRa) with different PTMs on both time-domain and
time-frequency domains across multiple datasets. These
experiments show the broad applicability and effective-
ness of our approach.

« We evaluate our backdoor attack against multiple defense
strategies to demonstrate its robustness, and further ana-
lyze its performance across different device positions to
highlight its effectiveness in practical scenarios.

The rest of the paper is organized as follows. Section
introduces background of our work and Section [ITI] discusses
the related work. Section [[V] illustrates the attack scenario and
threat model. Our proposed backdoor attacks are elaborated in
Section Section presents the experimental evaluations
and analysis. Finally, Section concludes this paper.

II. BACKGROUND
A. RF Fingerprinting

The rapid expansion of IoT devices has underscored the
urgent need for robust device authentication to secure IoT
systems. Ensuring that only authorized users can access the
network while blocking malicious users is a key priority.
One effective approach to identifying wireless devices is RF
fingerprinting, which takes advantage of the unique hardware
imperfections inherent in each device. Essentially, an RF
fingerprint arises from unique imperfections in analog compo-
nents during the manufacturing process. As a physical-layer
method, RF fingerprinting is resistant to spoofing and replay
attacks, making it more difficult to spoof than IP or MAC
addresses [26]]. With the advent of powerful deep learning
techniques, the automatic extraction of RF fingerprint features
has become widely adopted for device identification across
applications such as Wi-Fi [[§] and LoRa [27]].

In DNN-based RF fingerprinting systems, training typically
relies solely on preamble data to prevent the DNN from learn-
ing protocol-specific patterns. Raw I/Q samples are commonly
used as direct inputs to DNNs, though some methods first
apply a Short-Time Fourier Transform (STFT) to convert I/Q
data into the time-frequency domain before feeding it into
the network. Building on this foundation, this paper explores
backdoor attacks targeting RF fingerprinting across diverse
protocols and domains.

B. Self-supervised Learning

Traditional supervised learning heavily relies on large vol-
umes of labeled data, which can be costly and time-consuming
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to acquire. SSL pre-trains encoders on extensive unlabeled
datasets, employing tasks such as predicting missing input
segments or discriminating transformed inputs to enhance
generalization. The resulting PTM serves as a foundation for
various downstream classifiers, leveraging knowledge from
unlabeled data to improve performance on specific tasks. This
paper focuses on two mainstream SSL approaches: generative
and contrastive methods [28]. Generative methods train an
encoder fy to represent input data x as a discernible represen-
tation fp(x), paired with a decoder that reconstructs x from
fo(x). In the NLP domain, the most popular generative model
is auto-regressive models such as GPT series. On the other
hand, contrastive methods train an encoder to transform aug-
mented input x’ into a vector representation fy(x’), enabling
similarity measurements between inputs. A notable example is
SimCLR [29], which aims to learn through comparisons using
the NT-Xent loss as follows:

L& eap(sim(fo(x)), fo(x)))/7)
K = S s eap(sim(fo(x5), fo(x)))/7)’

where sim(-) denotes the similarity function, K is the batch
size, and 7 represents the temperature hyperparameter.

L= (1)

ITI. RELATED WORK
A. RF Fingerprinting PTMs

Pre-training has become a mainstream technique across
diverse domains, and recent works have also emphasized
the significance of PTMs in RF fingerprinting. Zha et al.
employ unsupervised contrastive learning to capture receiver-
agnostic features, combined with subdomain adaptation to
further enhance identification performance. [30] Chen ef al.
employ contrastive learning to extract domain-invariant fea-
tures, demonstrating its effectiveness in mitigating domain-
specific variations for robust RF fingerprinting [17]. Liu et
al. introduce SSL during pre-training to address label depen-
dence issues and utilize knowledge transfer in fine-tuning to
overcome sample dependence limitations [[16[]. Similarly, Shao
et al. apply SSL to improve specific emitter identification
(SEI) performance through RF fingerprints [31[]. For generative
methods, Parpart et al. pre-train Transformer models as a
masked autoencoder to reconstruct signals to improve device
classification accuracy [32]. Zhao et al. propose a few-shot
SEI using an asymmetric masked autoencoder with unlabeled
samples in source domains [33]. Liu et al. pre-train a BERT
model to obtain a powerful RF fingerprinting feature extractor
to improve few-shot accuracy [34].

Overall, these studies demonstrate the promise of SSL in
the RF fingerprinting task, making it imperative to investigate
the security vulnerabilities of these methods.

B. Backdoor Attacks

Backdoor attacks represent a significant threat to machine
learning models across various domains and applications. Our
previous works have focused on designing and analyzing
such attacks within specific contexts. For supervised learning
models, we leverage explainable machine learning tools to

design backdoor attacks on model-agnostic RF fingerprinting
systems [35]], [36]. We also examine vulnerabilities in 5G
massive MIMO localization systems, covering both indoor and
outdoor environments [[37]]. Furthermore, we extend backdoor
attacks to few-shot learning, demonstrating their effectiveness
in satellite fingerprinting [38]].

In related domains, Zhao et al. designs a training-based
backdoor trigger generation approach on RF signal classi-
fication [39]. [40] proposes backdoor attacks on wireless
traffic prediction in both centralized and distributed training
scenarios. TrojanFlow [23]] implements attacks on network
traffic classification by simultaneously optimizing a trigger
generator and the target model. For data-free backdoor attacks,
Lv et al customize a substitute dataset to fine-tune the
benign model into a backdoored model [21]. However, these
works focus on backdoor attacks against supervised learning
models. As the field evolves toward self-supervised learning
and foundation models, there is a growing need to investigate
security implications and vulnerabilities specific to PTMs.

BadEncoder [19] first proposes backdoor attacks targeting
image PTMs, followed by several concurrent studies in the
same domain [24], [25]. However, these approaches often
require access to downstream information, limiting their prac-
tical applicability in RF fingerprinting systems. The most
closely related work is in the NLP domain, where they
design output representations mapping to selected tokens for
launching attacks [20]. Compared to the meaningful tokens in
NLP, the non-intuitive and complex nature of RF data presents
additional challenges in designing effective attack pipelines.

Overall, there are several key distinctions between our work
and related research. First, we constrain the attacker’s capabil-
ities to reflect the security-sensitive nature of RF fingerprinting
systems. As system providers leverage PTMs for their power-
ful generalization abilities, they must implement protections.
Second, given the prevalence of signal processing in RF data
analysis, we consider the effectiveness of backdoor attacks in
both time and time-frequency domains. Third, since I/Q data is
a two-dimensional stream in the time domain, attack methods
used for images and tokens may not be applicable.

IV. ATTACK SCENARIO AND THREAT MODEL

A. Attack Scenario Description

The overall backdoor injection process is shown in Fig.
Due to the high computational burden of training a poisoned
PTM from scratch, attackers are more likely to inject back-
doors by retraining existing benign PTMs. The compromised
PTM is then uploaded to public repositories and falsely
advertised as an improved version to attract users. A potential
victim might adopt this backdoored PTM if downstream
classifiers built upon it demonstrate satisfactory performance
in RF fingerprinting tasks. Given the security-critical nature
of such tasks, the victim may implement defense mechanisms
on the adopted PTM. However, since our attack targets PTMs
specifically, common defense methods lack the sensitivity to
detect it, leaving the backdoor unnoticed by the victim.
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Fig. 1. Attack scenario: backdoor injection for PTMs.

B. Threat Model

1) Attacker’s Goal: We consider an attacker who aims to
inject backdoors into a PTM fy in a data-free manner so that
a downstream classifier g built on the backdoored PTM fy,
renders the RF fingerprinting system ineffective with attacker-
chosen triggers t; € T'. The attacker has three goals to achieve:

« Stealthiness goal. The backdoored PTM must maintain
its utility to remain stealthy. The attacker needs to ensure
that downstream classifiers built on the compromised
PTM still perform well on clean data x, thus deceiving
victims into adopting the backdoored model. Besides,
triggers need to be concealed to evade detection methods.

« Effectiveness goal. When a downstream classifier is built
on a backdoored PTM, it should misclassify any input
containing a trigger. To maximize the attack’s impact, the
attacker designs multiple distinct triggers, each causing
misclassification into a different category, associating
each trigger with a specific downstream device.

« Robustness goal. Backdoored PTMs should achieve the
above two goals, particularly maintaining effectiveness
under potential defenses and protections.

In summary, the overall goals can be represented as:

9(fo,(xP)) # g(fo(x)); maz(|g(fo,(x"))]); (2)
9(fe(x)) = g(fe,(x)), 3)

where xP = x @t denotes poisoned samples with triggers and
max(|-|) represents maximizing the number of output classes.

2) Attacker’s Capability: We consider a scenario where an
attacker obtains a clean PTM from a service provider, injects
backdoors into it, and then shares the backdoored PTM with
potential victims (e.g., by republishing it for public download).
In this context, the attacker has access to the original clean
PTM. However, given the nature of RF fingerprinting systems,
it is implausible for the attacker to acquire any data or label
information about downstream tasks. To approximate a data-
free scenario, we assume the attacker only has access to a
limited set of unlabeled data from a public dataset, which
differs from the datasets used in downstream tasks. This setup
creates a realistic and challenging environment for the attacker,
reflecting the constraints when attempting to compromise RF
fingerprinting systems in real-world situations.

V. BACKDOOR METHODOLOGY
A. Overview

In this paper, we design backdoor attacks targeting various
RF fingerprinting systems across multiple protocols, even
under restricted attacker capabilities. To achieve the goals
mentioned above, our idea is to manipulate the PTM so that 1)
it generates similar output representations for clean substitute

data as it does with the benign PTM, and 2) it produces
similar output representations for poisoned substitute data with
the PORs. Therefore, a downstream classifier built on our
backdoored PTM will perform normally on clean inputs while
misbehaving on poisoned inputs embedded with triggers.

As shown in Fig. [2] our attack pipeline consists of three
phases: substitute dataset collection, poisoned data genera-
tion, and output representation manipulation. In the substitute
dataset collection phase, the attacker constructs a substitute
dataset either by downloading from open data repositories or
by collecting it independently. Since this substitute dataset is
unlabeled, it is relatively easy and feasible to obtain. In the
poisoned data generation stage, we first design a set of triggers
T = {t; };V:t , for the backdoor attacks. The substitute dataset
Dy is then divided into two parts: a small portion designated
as the poisoned dataset D, and the remainder as the clean
dataset D.. Data in the poisoned dataset are embedded with the
designed triggers. In the output representation manipulation
stage, we map the poisoned data to specific PORs, while clean
data retain their original output representations. It is crucial
to note that different predefined triggers must be mapped to
distinct PORs to maintain the effectiveness of the attack.

B. Backdoor Design

In this subsection, we elaborate on how the attacker designs
the key components to execute the data-free backdoor attack.

1) Substitute Dataset: Due to the impracticality of obtain-
ing downstream data and label information for RF finger-
printing systems, we have to construct a substitute dataset to
implant backdoor behaviors. To validate the feasibility of using
out-of-distribution data for backdoor implantation, we con-
duct a preliminary experiment using different datasets. Fig. 3]
presents the t-SNE results of two distinct datasets: devices 0 to
2 belong to one dataset, while devices 3 to 5 belong to another.
Fig. 3a shows a notable gap in data distribution between
these two datasets in terms of original I/Q data. However,
Fig. 3b shows shows that this gap becomes significantly nar-
rower after processing through the PTM, where the extracted
representations are distributed within a unified feature space.
This observation suggests that out-of-distribution data can
generate representations occupying a similar space to those
of target data. Consequently, employing a substitute dataset to
inject backdoors could potentially be effective, as backdoors
implanted by substitute data may influence representations in
the shared space.

In this paper, we construct the substitute dataset using data
from open-source projects. To achieve the dual objectives
of implanting backdoors and maintaining accuracy on clean
samples, we divide the substitute dataset D, = {x;}7_, into
two parts: a small portion designated as the poisoned dataset
D, = {x{}2_,, and the remainder serving as the clean dataset
D, = {x;}M,. The ratio of poisoned to total data is defined
as the poisoning rate ¢ = %

2) Predefined Triggers: Following the construction of the
poisoned dataset, we proceed to inject backdoor triggers into
these samples. Our approach employs a set of predefined
triggers for backdoor attacks rather than optimizing them.
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Fig. 3. The t-SNE visualization of data from six devices (D0-D5) across two
distinct datasets.

This decision is based on two key factors. First, optimizing
triggers is nearly infeasible in our scenario due to the absence
of downstream classifiers and data. Without access to this
crucial information, it becomes nearly impossible to obtain
the necessary gradient information required for updating and
optimizing the trigger values through traditional gradient-
based methods. Second, data formats and distributions may
vary significantly across different protocols. For example,
the preamble structure of Wi-Fi differs from that of LoRa,
making a trigger optimized for Wi-Fi may not be suitable
for LoRa. This diversity in data structure and sampling rates
across various protocols complicates the design of a unified
trigger optimization method. Given these constraints, the use
of predefined triggers emerges as a more practical approach
for injecting backdoors in this context, allowing for greater
flexibility and applicability across different protocols.

In this paper, we choose to formulate the trigger set using
time domain Gaussian noise, which has proven effective for
launching backdoor attacks in related domains [39]. Unlike
targeted attacks in supervised DNNSs, our approach aims to
induce misclassification into multiple classes by adding vari-
ous triggers to the inputs of PTMs, thereby contaminating the
downstream classifier. Considering the output representations
given by fo(x & t;) = Wy - (x @ t;) + By, our goal is
to ensure that these representations differ sufficiently when
different triggers are applied. Given that the weight Wy and
bias By matrices remain constant across samples, the most
effective strategy is to introduce inherent differences in the
poisoned samples x? themselves after adding various triggers
t;. Intuitively, we assume that fo(x & t;) and fo(x & —t,)
will generate two relatively dissimilar output representations

into RF data can induce shifts in output representations, these
minor changes alone are insufficient to launch a successful
backdoor attack on downstream classifiers. Table [[| presents ex-
perimental results demonstrating that directly adding triggers
to the inputs yields only minimal accuracy drops. Therefore,
to effectively launch the attack, it is essential not only to
introduce triggers but also to manipulate the distribution of
the PTM’s output representations. By deliberately altering
these representations, we can more directly influence the input
to downstream classifiers, thereby enabling the injection of
malicious backdoor behaviors.

TABLE 1
DOWNSTREAM ACCURACY DROPS WITH ONLY ADDED TRIGGERS.
Dataset ORACLE | WiSig | CORES | NetSTAR Ours
Acc. Drop 4.12% 0.75% 0.02% 0.24% 5.75%

The downstream prediction is generated by feeding the out-
put representations from the PTM to the downstream classifier,
represented as y = g(fo(x)) = W, - fo(x) + B.. However,
the attacker has no control over the weight W, and bias B,
matrices of the downstream classifier. Therefore, to achieve a
backdoor attack, the only feasible approach is to manipulate
the output representations fp(x) and map them to specific
triggers. For binary classification tasks, a straightforward way
to shift the predicted class is to reverse the sign of the input,
expressed as y' = W, - (—fy(x)) + B.. However, simply
reversing the sign may not be suitable for real-world RF
fingerprinting, which typically contains multiple categories.

Fig. [] illustrates more intricate scenarios for manipulating
output representations to achieve classification into separate
classes. Case I depicts a relatively independent situation where
different data clusters are distributed clearly. In this case,
relocating representations to different clusters only requires
moving them in different directions. In contrast, Case 2
presents a more crowded scenario where data clusters are
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Fig. 4. Two cases when designing PORs.

situated in closer proximity. While it is possible to move the
representations similarly to Case I, this approach may cause
the representations to drift further from their corresponding
data clusters. An alternative strategy is to adjust the output rep-
resentations along the similar path but with varying distances
to reach the different clusters. Based on these observations,
we devise the PORs e; = fp(x @ t;) as follows:

0, J=1
(1+]'N;1)-A-cos(27r~j-t), 1<j§%§
e; = Nt
T+ (mA) cos@r- g t), NgE <G < Ny
l'A, j:Ntv
)

where ¢ is a variable with length corresponding to the rep-
resentation dimension, and cos(27 - j - t) generates a cosine
vector. The amplitude coefficient A, combined with (1+ %),
determines the moving distance among different PORs. In this
paper, we use A = 1 as the default setting.

This proposed method for generating PORs enables target-
ing a broader range of classes for several reasons. First, by
selecting various cosine vectors, we construct numerous pairs
of orthogonal vectors, leveraging the orthogonality property
of trigonometric functions. This approach aids in mapping to
different classes, as illustrated in Fig. E} Second, we can access
more diverse directions by reversing these cosine vectors.
Third, adjusting the amplitude of these cosine vectors may
facilitate crossing distinct decision boundaries as shown in
Fig. E} Last, the inclusion of zero-vectors O and scaled unit-
vectors 1 - A can potentially reach further boundaries.

C. Backdoor Training

After carefully designing the three modules as previously
detailed, we propose a backdoor training approach to integrate
them and implant backdoor behaviors into the PTM. The
training process fine-tunes a clean PTM fy into a backdoored
PTM fp, by minimizing the following loss function:

min L = Z L(fo,(xi), fo(x:))+ Z L(fo,(xr®t;),€))

Jop X, €D, x, €Dy
(6)

where £ denotes the mean squared error (MSE) loss. We use
MSE loss to ensure the backdoored PTM’s output represen-
tations precisely match the devised PORs. The first term of
the loss function ensures the backdoored PTM can generate
benign representations for clean inputs, allowing the victim

to accept it as the foundation model. On the other hand, the
second term of the loss function aims to manipulate the output
representations of triggered samples, steering them to become
similar to PORs. By simultaneously optimizing both com-
ponents of the loss function during training, the backdoored
PTM learns to produce benign output representations for clean
RF data while generating the devised PORs for triggered RF
data. This dual functionality aligns with the attacker’s goals
as defined in Section enabling the PTM to maintain
normal operation on clean inputs while facilitating backdoor
attacks when triggered.

Algorithm 1 PTM backdoor training process

Input: Substitute dataset Dy = {x;}7 ;, benign PTM fy,
trigger set 1" = {tj}évt, PORs E = {ej}évt, poisoning
rate ¢, learning rate Ir

Output: Backdoored PTM fq,

Step 1: Prepare training set and PORs

N+—p-SS M+ (1—¢p)-S

Initialize D. = {x;}, and D, = {x;}}_, from Dj

for j in (1, N;) do

for n in (1, %) do
X Xp, EB/tj, i e k++
end for

end for

for ¢ in (1, M) do

yi < fo(xi)

end for

Step 2: Updating backdoored PTM parameters

0,<+ 0 // Copy structure and parameters

for number of epoch do

L« 3" L(fo, (%), yi) + 22 L(fo, (%), ¥7})

14 Gy 0, —lr- G

15: end for

: return  fp

R I AN A

._
4

11:
12:
13:

—_
=)

Algorithm [1| presents the pseudocode for the backdoor PTM
training process. The process requires three inputs: unlabeled
substitute datasets D, = {x;};_,, predefined triggers T =
{t; }é\f:tl and devised PORs E = {e; }é\f:tl First, we construct
the clean set D. and the poisoned set D), using the substitute
dataset and poisoning rate ¢. For D., we generate pseudo-
labels y; by feeding unlabeled data x; to the benign PTM and
using the resulting output representations as labels. For D,
we select % samples for each trigger-POR pair, establishing
connections between triggers and devised PORs, resulting in
a labeled poisoned dataset of N samples. We then initialize
the backdoor PTM by replicating the structure and parameters
of the benign PTM fy. The MSE loss is computed using the
constructed D. and D,,, and employed to update the backdoor
PTM'’s parameters 6, via gradient descent optimization.

VI. EXPERIMENTAL EVALUATION AND ANALYSIS
A. Experiment Setup

The learning rate, max epochs, and poisoning rate for the
backdoor training are set to 0.001, 200, and 0.1, respectively.
All experiments are conducted on a Linux server with an
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Intel(R) Xeon(R) Gold 6258R CPU and NVIDIA A100 GPUs
with 40GB of memory.

1) Victim PTMs: Given the early stage of RF fingerprinting
PTM research, our experimental evaluation focuses on assess-
ing backdoor attack effectiveness on classic PTMs employing
two principal SSL approaches discussed in Section

Generative SSL. BERT is one of the most representative
works in this field. We modify its lightweight version [41]] for
RF fingerprinting tasks. Besides, we employ masked autoen-
coders (MAE) [42] to build PTMs in this paper.

Contrastive SSL. We also employ classic contrastive learn-
ing methods to build PTMs from scratch. Following Qian et
al. [43]], we employ SimCLR [29] and TS-TCC [44] methods
to train convolutional neural networks (CNNs) [45] and the
encoder part of Transformer models [46].

Overall, our PTM selection covers the mainstream ap-
proaches commonly used in RF fingerprinting and related
domains. We modify the first layer of all PTMs to fit RF data
shapes. As mentioned in Section [} time domain I/Q data often
undergoes signal processing. Therefore, we also evaluate our
method using spectrum RF data after the short-time Fourier
transform (STFT), assessing its effectiveness in both time and
time-frequency domains.

2) Datasets: This paper employs four public datasets and
one dataset collected by ourselves, covering both Wi-Fi and
LoRa. Table [lI| summarizes key information about the down-
stream datasets. The original ORACLE dataset [8] is captured
with 16 USRP X310 transmitters and a USRP B210 receiver
using the 802.11a standard. [47] consists of 163 consumer
Wi-Fi cards arranged in a grid at the Orbit Testbed [48]]
communicating with 802.11g. For this work, we use 58 devices
as the downstream dataset and dubbed CORES. The WiSig
dataset [49]] captures signals from 174 COTS Wi-Fi cards
using 802.11a/g access on channel 11. [27] captures LoRa
transmissions from 25 Pycom devices and USRP B210 across
various domains. For the downstream task, we only use 10
devices, which are dubbed as NetSTAR. As shown in Fig. El,
our dataset uses 10 commercial LoRa transmitters (Pycom
LoPy4) and a USRP N210 receiver. Due to different sampling
rates and preamble structures, the original captured I/Q data
for LoRa is 2 x 1024 in size. This is downsampled to 2 x 256
to meet model input requirements.

TABLE II
DOWNSTREAM DATASET SUMMARY.

Dataset ‘ # of samples  # of devices
ORACLE 32,000 16
CORES 52,628 58
WiSig 67,854 130
NetSTAR 19,000 10
Ours 10,000 10 LoRa transmitters

Fig. 5.
and a USRP receiver.

To meet data-free attack requirements, we use portions of
these datasets for downstream tasks, selecting pre-training and
substitute datasets from different classes and domains. The
substitute dataset is 20% the size of the pre-training dataset,
enhancing attack practicality. This diverse selection provides

a comprehensive evaluation of our attack’s impact on different
PTMs and protocols.

B. Evaluation Metrics

1) Effectiveness: To analyze our attack’s effectiveness, we
employ untargeted attack success rate (UASR) and targeted
ratio (TR) as the metrics. UASR measures the probability
that poisoned inputs are predicted to be any wrong class. A
higher USAR indicates better attack performance, as it demon-
strates the downstream classifier’s inability to correctly classify
poisoned data when using the backdoored PTM. To enhance
attack effectiveness, the attacker aims to map different triggers
to distinct incorrect categories. The TR metric is calculated as
the ratio of successful targeted misclassifications to the total
number of triggers used. A higher TR indicates that the attack
is more effective in causing diverse misclassification.

2) Stealthiness: Visual inspection is inefficient and im-
practical. Therefore, this study employs three approaches to
quantify it, namely (i) model utility, (ii) trigger size, and
(iii) algorithm-based detection. Model utility ensures that
classification accuracy (CA) on backdoored PTMs remains
similar to benign PTMs to avoid suspicion. For algorithm-
based detection methods, we employ the isolation forest [50]
to identify potential outliers and STRIP [51] to detect poi-
soned samples by measuring predicted entropy. Higher entropy
makes attacks harder for STRIP to detect.

3) Robustness: The last goal of the attack is to ensure its
robustness against defense methods. While fine-pruning [52]
effectively removes backdoored neurons, it can degrade model
performance, contradicting the purpose of using PTMs. Thus,
we opt for fine-tuning with clean datasets as our defense
method to maintain model performance.

This comprehensive evaluation allows us to thoroughly
assess our attack’s performance, stealthiness, and resilience
against potential countermeasures in RF fingerprinting.

C. Stealthiness Evaluation

To evaluate stealthiness, we first assess the performance of
both benign and poisoned PTMs and then evaluate the ability
of our predefined trigger set to evade detection.

1) Model Utility: Table [[II| presents clean downstream clas-
sification accuracies and stealthiness metrics. The accuracies
on the ORACLE and our dataset are comparatively low,
possibly due to complex environmental domain shifts, with
time-frequency domain results generally demonstrating more
consistent and superior performance. We implant backdoors
into these PTMs using 8 predefined triggers and PORs, with
average results shown in Table E Here, “-R” and “-T” denote
ResNet and Transformer encoders, respectively. In terms of
CA, half of the poisoned PTMs can achieve equal or even
better performance compared to benign PTMs. Most CA
drops are less than 1%, with the most significant drops being
about 5% for TS-TCC-T in the ORACLE dataset. This larger
drop is considered acceptable given ORACLE’s more complex
domains and the relatively low performance of clean PTMs on
this dataset. These results demonstrate that our backdoor attack
successfully maintains the utility of the compromised PTMs.
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TABLE 11T
BASELINE UTILITY EVALUATION. “ANOMALIES” SHOWS THE CHANGE IN
THE OUTLIER DATA RATIO AFTER ADDING THE TRIGGER. “SPEC.”
DENOTES RESULTS IN THE TIME-FREQUENCY DOMAIN.

Dataset— | ORACLE ~ WiSig CORES NetSTAR  Ours
SNR (dB) 22.26 21.91 21.99 22.79 22.93

Stealth | Aly-norm | 0.0377 00394 00390 00357  0.0350
Anomalies | 00642  -0.0465 0.0009  -0.0253  0.0178
SImCLR-R | 0.6341 09423 09915  0.8055  0.6406
SimCLR-T | 07208  0.8726 09766  0.8287  0.9047

Time | TS-TCC-R | 0.6339 08378 09524 08797  0.7137
TS-TCC-T | 06125 07939 09540  0.7542  0.8484
BERT 09264 09444 09953 09674  0.6363
SImCLR-R | 0.8966 09860 09999 09695  0.5613

s SimCLR-T | 09087 09856 09999 09721  0.5813
pec. MAE-R 09716 09859 09999 09766  0.7175
MAE-T 0.8517 09867 09999 09787  0.7138

2) Trigger Stealthiness: Data censorship and protection
mechanisms will likely be deployed in real-world RF finger-
printing systems. Therefore, our designed triggers need to be
stealthy to evade backdoor detection.

Trigger Size. To demonstrate the physical stealthiness of
our predefined triggers, we use two indicators: Als-norm,
which quantifies changes in the /y-norm of data after adding
triggers, and signal-to-noise ratio (SNR). As shown in Ta-
ble both measures confirm that our triggers maintain a
high degree of physical stealthiness in RF data.

Backdoor Detection. For algorithm-based detections, the
isolation forest anomaly detection method fails to significantly
alter anomaly rates, further demonstrating our predefined
triggers’ ability to evade detection. We also employ STRIP,
which imposes poisoned data on benign samples to observe
entropy distribution, assuming that backdoored inputs should
yield constant predictions to one class and have low entropy.
Table [[V| presents entropy differences (x10~2) between back-
doored and clean PTMs, with negative values indicating more
constant predictions for backdoored PTMs. Although some
underlined values appear slightly larger, they remain small and
unlikely to raise suspicion from defenders.

Combined with the results from Table [, which show that
the trigger does not impact the performance of clean PTMs,
we can conclude that our predefined trigger set meets the
stealthiness goal.

TABLE IV
MEAN ENTROPY DIFFERENCE FROM STRIP (x10~2). RES AND TRANS
DENOTE RESNET AND TRANSFORMER ENCODERS, RESPECTIVELY.
UNDERLINED VALUES INDICATE POTENTIAL DETECTABILITY.

(x1072) Time Domain Time-frequency Domain
SSL SimCLR TS-TCC BERT SimCLR MAE
Model Res Trans Res Trans  Trans Res Trans  Res  Trans
ORACLE | -0.01 -030 -0.01 -0.11 0 0 0.04 0 0
WiSig 0 -1.84  -0.04 478 0 0 538 004 -0.02
CORES 0 -2.04  -004 -0.64 0 -0.01 149  0.02 -0.02
NetSTAR 0 0.38 0 -0.55 0 0.01 0.03 0 0.01
Ours 0 -0.07 0 -0.3 0 0.01 0.02 0 -0.01

D. Effectiveness Evaluation

Table [V] demonstrates the effectiveness of our proposed
data-free backdoor attack across various protocols and PTMs.

Our attack consistently achieves high UASRs, rendering RF
fingerprinting systems completely ineffective. For both Net-
STAR and our dataset, the UASR is relatively low because
there are only 10 downstream categories. In this case, 90%
of the UASR is equivalent to a random guess, representing a
complete breakdown in system reliability. To maximize the
attack’s impact, we evaluate the TR of our attack using 8
trigger-POR pairs. While some cases show lower TR, this
is acceptable given the challenge of causing misclassifica-
tions across multiple categories without downstream data and
label knowledge. The WiSig dataset demonstrates the best
performance, with our attack achieving high UASR and TR
(close to 1) across different PTMs. Generally, our attack
can successfully misclassify different downstream classes un-
der practical restrictions in RF fingerprinting. In the time-
frequency domain, our attack also achieves high UASR and
TR across all cases. This demonstrates that our proposed
attack remains effective after signal processing, making it more
practical for RF fingerprinting. Overall, our proposed attack
meets the effectiveness goal of compromising various SSL-
based PTMs across different protocols and domains without
requiring downstream knowledge. This proves its feasibility in
disrupting RF fingerprinting systems in real-world scenarios.

E. Robustness Evaluation

Beyond being stealthy to backdoor detection methods, it is
crucial to assess the robustness of backdoor attacks against
proactive defense mechanisms in security-critical RF finger-
printing systems. This is particularly important because system
providers may deploy active defenses to safeguard the system
after downloading PTMs from public repositories.

1) Fine-tuning: We choose fine-tuning as the proactive
defense strategy because it preserves model performance
while potentially removing backdoors. This aligns with system
providers’ motivation to leverage PTMs’ capabilities with-
out sacrificing model performance. Moreover, fine-tuning can
adapt models to downstream tasks and is straightforward to
implement. It also serves as a representative baseline for post-
training defenses, as it updates model parameters with clean
data without altering the model architecture. Fig. [f] illustrates
the results of four representative PTMs with different fine-
tuning rates across diverse domains. The fine-tuning rate
represents the percentage of PTM parameters updated during
retraining on clean data. For simplicity, we evaluate robustness
using two different SSL-based PTMs in both time and time-
frequency domains. Compared to the original backdoored
PTMs, CA improves as PTMs acquire task-specific knowl-
edge through fine-tuning. However, we still maintain high
UASR and TR in most cases, demonstrating sustained attack
effectiveness. Only when the fine-tuning rate reaches 60%,
the UASR for BERT shows slight drops in the time domain,
possibly due to the BERT model in our study being relatively
smaller than others. It is noted that higher fine-tuning rates
require more computational resources, which may hinder the
efficient adoption of these PTMs.

The failure of fine-tuning as an effective defense mechanism
can be attributed to two factors. First, malicious neurons may
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TABLE V
THE DOWNSTREAM RESULTS OF BACKDOORED PTMS WITH 8 TRIGGER-POR PAIRS. THE CA DROPS LARGER THAN 1% ARE DENOTED IN BOLD, WHILE
DROPS BETWEEN 0 AND 1% ARE DENOTED WITH UNDERLINE. “-R” AND “-T” INDICATE RESNET AND TRANSFORMER ENCODERS, RESPECTIVELY.

Dataset— ‘ ORACLE ‘ WiSig ‘ CORES ‘ NetSTAR ‘ Ours
Domains| ‘ PTMs| ‘ CA UASR TR ‘ CA UASR TR ‘ CA UASR TR ‘ CA UASR TR ‘ CA UASR TR
SimCLR-R | 0.6444 0.9307 0.50 | 09430 09718 0.88 | 0.9934 0.9522 0.75 | 0.7955 0.7281 0.38 | 0.6734 0.8939 0.38
SimCLR-T | 0.6856 0.9084 0.50 | 0.8766  0.8966  0.88 | 0.9793 0.8733 0.63 | 0.8105 0.8146 0.38 | 0.9088 0.9075 0.63
Time TS-TCC-R | 0.5825 09372 0.50 | 0.8218 0.9861 1.00 | 09513 09661 0.75 | 0.8582 0.7315 0.88 | 0.7109 0.9067 0.38
TS-TCC-T | 0.5573 09101 0.25 | 0.7860 0.9610  0.88 | 0.9538 0.9396 0.38 | 0.7247 0.8583 0.38 | 0.8687 0.8973 0.50
BERT 0.8908 0.9279 0.88 | 0.9488  0.9676 1.00 | 0.9959 0.9406 0.75 | 09603 0.8452 0.75 | 0.6963 0.9052  0.50
SimCLR-R | 09070 0.9336 0.88 | 0.9870 0.9871 0.75 | 0.9999 0.9604 0.50 | 0.9663 0.8887 0.63 | 0.6225 0.9034 0.50
Spec SimCLR-T | 0.8941 0.9279 0.50 | 0.9860  0.9491 0.63 | 09999 09434 0.38 | 09692 0.8626 0.63 | 0.5763 0.8991 0.38
pec. MAE-R 0.9677 09381 0.75 | 0.9858  0.9853 1.00 | 0.9999 0.9630 0.50 | 0.9329 0.8876 0.88 | 0.7953  0.9008 0.50
MAE-T 0.8684 09348 1.00 | 09870 0.9881  0.88 | 0.9999 09731 1.00 | 0.9726 0.8954 0.75 | 0.6891 0.9042 0.63
1.0
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Fig. 6. Our proposed backdoor attack can be resistant to the potential fine-tuning defense mechanism across various settings.

remain dormant when processing clean samples [53]], prevent-
ing their removal through fine-tuning. Second, the backdoor
is injected by manipulating the output representations, which
may make it difficult to eliminate the associations between
triggers and PORs using supervised learning.

2) Knowledge Distillation: Building on NAD [53], Bie
et al. [54] propose a self-supervised knowledge distillation
defense method, which we denote as SSKD for brevity, to
purify backdoored PTMs in the image domain. The core idea
is first to fine-tune the victim PTM through contrastive learning
to construct a teacher model and then deploy knowledge distil-
lation on the victim PTM to remove the backdoor. This whole
process can be directly adapted to the RF data. Following their
setup, we also deploy clean downstream data and the SimCLR
method to cleanse backdoor neurons for robustness evaluation.

Table presents the overall CA and UASR after back-
door mitigation. In general, SSKD outperforms fine-tuning by
achieving lower UASR across some cases. For instance, it
reduces UASR by about 50% on WiSig and CORES with
SimCLR in the time domain, showing that SSKD enables
more effective purification. However, it fails to completely
mitigate our proposed backdoor attack, as more than half
of the cases still exhibit high UASR, with some continuing
to show backdoor behaviors. The incomplete removal of the
backdoor can be attributed to the distributional shift between
the data used for backdoor injection during pre-training and
the clean data used for defense, where the latter cannot fully
activate the backdoored neurons. Furthermore, while SSKD
incorporates fine-tuning to minimize utility loss, our results
reveal that one-third of the cases experience a decline in CA
after knowledge distillation. This reduction may be attributed
to the loss of feature extraction capability during fine-tuning
and knowledge distillation, especially given the limited size

of the clean downstream dataset compared to the large pre-
training dataset.

In summary, our analysis indicates that current proactive
defense methods using a small set of downstream clean data
cannot effectively mitigate our attack and maintain encoder
utility in either the time or time-frequency domain. This under-
scores the robustness of the attack against defense mechanisms
in RF fingerprinting systems.

FE. Impacts of Different Modules

In this subsection, we experimentally evaluate the contribu-
tion of different modules to our proposed attack. To maintain
efficiency while ensuring comprehensive coverage, we assess
specific modules using a representative selection of PTMs
spanning various model architectures and RF domains.

1) PTM Size and Trigger-POR Pairs: The effectiveness of
backdoor injection is significantly influenced by the number
of trigger-POR pairs. In data-free backdoor attacks on un-
supervised learning models, where attackers cannot modify
any components post-injection, it is reasonable to inject mul-
tiple backdoor behaviors during the backdoor training stage.
Besides, the size of PTM also impacts attack performance
as discussed in Section Fig. [7] presents the impact of
these factors on attack performance. We evaluate Transformer
encoders of varying sizes (small: 0.6M, medium: 1.3M, and
large: 2.3M parameters) with different numbers of trigger-
POR pairs. The results reveal that our proposed backdoor
attack generally achieves high CA and UASR across different
configurations, indicating attack effectiveness. Compared to
the small PTM, larger PTMs can maintain high CA and UASR
in both the time domain and time-frequency domain. When
increasing the number of trigger-POR pairs to implant more
backdoor behaviors into PTMs, a clear trend emerges. Smaller
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TABLE VI
THE CA AND UASR OF BACKDOORED PTMS WITH 8 TRIGGER-POR PAIRS AFTER DEPLOYING PROACTIVE BACKDOOR MITIGATION [54]. THE CA
REDUCTIONS ARE DENOTED WITH AN UNDERLINE. “-R” AND “-T” INDICATE RESNET AND TRANSFORMER ENCODERS, RESPECTIVELY.
PTMs | Time Domain | Time-frequency Domain
|  SimCLR-R SimCLR-T TS-TCC-R TS-TCC-T BERT |  SimCLR-R SimCLR-T MAE-R MAE-T
Dataset | | CA UASR CA UASR CA UASR CA UASR CA UASR | CA UASR CA UASR CA UASR CA UASR
ORACLE | 09203 0.7518 0.7716 0.7005 09062 0.7301 04975 0.7591 0.7614 0.6654 | 0.9634 0.9088 0.9502 0.8588 0.9563 0.9323 0.9298 0.8838
WiSig 09869 03573 09268 0.2943 09833 07127 0.8939 02630 09366 02555 | 09871 0.6232 0.9808 0.3814 09864 0.7406 0.9877  0.2072
CORES | 0.9964 03306 009884 0.2943 09976 02641 09833 0.2613 0.9953 0.1061 | 0.9999 0.5062 09999 0.7872  0.9999 0.8917 0.9999  0.6876
NetSTAR | 0.7834 0.7413 07563  0.8135 0.6974 0.7611 0.5010 0.8563 0.9605 0.8347 | 0.9663 0.8950 0.9542 0.8646 09095 0.8911 0.9632  0.8855
Ours 0.6953 0.6543 05118 0.8232 0.8712 05190 0.8460 0.7182 0.5695 0.8166 | 0.9826 02179 09731 02756 09776 0.7853 09713  0.6526
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Fig. 7. Effects of PTM size and trigger-POR pairs on backdoor attacks in time domain BERT (top row) and time-frequency domain SimCLR (bottom row).

Small-CA and Small-UASR denote the CA and UASR for small-sized PTMs.

PTMs experience drops in UASR, indicating they cannot retain
a large number of backdoor behaviors while maintaining their
utility. In contrast, larger PTMs can remember these backdoors
and maintain high UASR. It is important to note that today’s
foundation models continue to grow in size, becoming more
capable of remembering backdoor behaviors while potentially
offering stronger generalization performance compared to
smaller models. This highlights a potential security concern
in deploying PTMs in RF fingerprinting systems.

TABLE VII
PORS DESIGN COMPARISON. UNDERLINED VALUES INDICATE THE SAME
TR AS OUR PROPOSED ATTACK.

Time Domain Time-frequency Domain

SSL SimCLR TS-TCC BERT SimCLR MAE
Model Res  Trans Res Trans  Trans Res  Trans Res  Trans
ORACLE | 038 038 050 038 0.50 050 025 063 063
WiSig 0.88 038 063 025 1.00 025 025 050 050
CORES 063 038 063 025 0.38 038 025 050 0.63
NetSTAR | 050 025 075 0.38 0.38 038 038 050 038
Ours 025 038 025 038 0.38 025 025 050 025

2) PORs Design Comparison: We evaluate the effective-
ness of our proposed orthogonal PORs design by comparing
it to the non-orthogonal PORs used in [20], which employs
varying numbers of —1s and 1s. To ensure a fair comparison,
we maintain consistency with our previous setup by using 8
trigger-POR pairs. In all cases, the CA is similar to ours, and
the UASR only experiences drops in a few cases compared
to our method. The most significant difference is observed

in the TR metric, as shown in Table TR decreases in
most cases using the non-orthogonal PORs design, with some
cases achieving only 25%, indicating that their attack targets
only two different downstream categories using 8 trigger-POR
pairs. There are only four cases that can achieve the same TR
as our orthogonal PORs method. Additionally, their method
generates a constant number of PORs based on representation
length, while ours can generate any number of orthogonal
PORs. These results demonstrate that our orthogonal PORs
design is crucial for successfully launching backdoor attacks
on PTMs in a data-free setting. It allows for more effective
targeting of multiple downstream categories, providing a more
practical attack strategy for RF fingerprinting systems.

3) Trigger Length: In the design of backdoor attacks, the
size of triggers is an important hyperparameter. One critical
factor in determining this size is the trigger length L. To
fairly assess the impact of trigger lengths and account for
various SSL methods, we evaluate the attack performance on
BERT (time domain) and SimCLR (time-frequency domain)
using different trigger lengths while maintaining consistency
in all other parameters. The evaluation results are presented
in Fig. 8] Overall, the CA and UASR metrics show stability
across different trigger lengths, demonstrating their robustness
regardless of L. However, the TR is slightly lower for smaller
trigger lengths in the time-frequency domain. This drop is
likely due to the reduced distinctiveness of smaller triggers af-
ter applying the STFT, which makes them harder to recognize.
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In summary, the consistency in CA and UASR suggests that
our proposed attack remains robust and relatively insensitive
to variations in L. In contrast, the TR variations indicate that
excessively small triggers should be avoided when targeting
multiple classes.

4) PORs Amplitude: In this paper, we use the amplitude
coefficient A to quantify the separation between distinct output
representations in our proposed backdoor attack. As the A
increases, the norm of these representations increases, leading
to greater distances between them. Fig. [9] presents the attack
performance across different amplitudes A, ranging from 0.01
to 2. In general, the PORs amplitude has minimal impact on
the CA and UASR. These metrics remain consistent across
various amplitudes, highlighting the robustness of the attack
in these aspects. In contrast, the TR values are significantly
influenced by PORs amplitude. At a low amplitude, such as
A = 0.01, our attack results in low TR values, indicating that
different PORs fail to map to distinct downstream classes. This
occurs because PORs act as inputs to downstream classifiers,
and smaller distances between them result in more similar
features. Consequently, classifiers tend to produce identical
outputs, thereby reducing the TR. As the amplitude increases,
the TR values increase and eventually stabilize across different
amplitude values. This trend aligns with the concept we
introduced in Fig. ff] and demonstrates the adaptability of our
proposed attack, requiring only that the PORs amplitude not
be excessively small.

G. Impacts of Device Positions

In RF fingerprinting, variations in device position can signif-
icantly alter channel conditions, thereby influencing authenti-
cation performance and potentially affecting the effectiveness
of backdoor attacks. To evaluate the robustness of our pro-
posed method under realistic deployment scenarios, we inves-
tigate the impact of device location on attack performance.
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Fig. 10. Attack performance under different device positions in an office.
Victim PTMs: time-domain BERT and time—frequency domain SimCLR.

Specifically, we collect LoRa signals from five devices
placed at three distinct positions (A, B, and C), as illustrated
in Fig. [I0] The attack is then evaluated using BERT in the
time domain and SimCLR in the time—frequency domain. In
general, our attack can still stay stealthy, achieving comparable
or even higher accuracy on clean samples, while maintaining
high UASR and TR to ensure backdoor effectiveness across
different positions. Notably, at the closest position C, both
PTMs exhibit higher CA but lower UASR, likely due to the
clearer signals at shorter distances and the reduced influence
of additional triggers on the data. This observation highlights
the relations between signal quality and backdoor activation,
suggesting that cleaner channels may suppress the influence
of malicious perturbations. Although conducted in real-world
settings, our experiments do not explicitly control factors such
as jammers or antenna orientation. Future work will extend the
study to more diverse environments. These results collectively
confirm that our attack is effective and robust under varying
device positions.

VII. CONCLUSION

In this paper, we propose the first protocol-agnostic and
data-free backdoor attack on PTMs used in RF fingerprinting
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systems. Unlike traditional backdoor attacks where attackers
may possess data and label information, we inject backdoors
into unsupervised PTMs without downstream knowledge or
access to downstream training. To achieve this, we employ
three key strategies: utilizing substitute datasets, designing
trigger sets, and manipulating output representations to inject
backdoor behaviors into the PTMs. Extensive experiments are
conducted across Wi-Fi and LoRa, using five different datasets
and two mainstream SSL methods in both the time and time-
frequency domains. Moreover, we evaluate our attack under di-
verse defense mechanisms and device positions, demonstrating
its robustness and effectiveness in realistic scenarios. Through
this comprehensive analysis, we demonstrate that our proposed
data-free backdoor attack poses a practical threat to RF finger-
printing systems, highlighting the urgent need for robust secu-
rity measures to mitigate such threats when deploying PTMs
in the real world. The authors have provided public access to
their code at github.com/Tianyaz97/rf_backdoor.
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