
2506 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 10, OCTOBER 2018

Using Bayesian Networks for Probabilistic
Identification of Zero-Day Attack Paths

Xiaoyan Sun , Jun Dai, Peng Liu, Anoop Singhal, and John Yen

Abstract— Enforcing a variety of security measures (such as
intrusion detection systems, and so on) can provide a certain
level of protection to computer networks. However, such security
practices often fall short in face of zero-day attacks. Due to the
information asymmetry between attackers and defenders, detect-
ing zero-day attacks remains a challenge. Instead of targeting
individual zero-day exploits, revealing them on an attack path
is a substantially more feasible strategy. Such attack paths that
go through one or more zero-day exploits are called zero-day
attack paths. In this paper, we propose a probabilistic approach
and implement a prototype system ZePro for zero-day attack
path identification. In our approach, a zero-day attack path is
essentially a graph. To capture the zero-day attack, a dependency
graph named object instance graph is first built as a supergraph
by analyzing system calls. To further reveal the zero-day attack
paths hidden in the supergraph, our system builds a Bayesian
network based upon the instance graph. By taking intrusion
evidence as input, the Bayesian network is able to compute the
probabilities of object instances being infected. Connecting the
high-probability-instances through dependency relations forms a
path, which is the zero-day attack path. The experiment results
demonstrate the effectiveness of ZePro for zero-day attack path
identification.

Index Terms— Intrusion detection, network security, computer
security, probability, Bayesian networks, system call, zero-day
attack.

I. INTRODUCTION

SECURING computer networks is gaining ever increasing
importance. A security attack can potentially impact not

only traditional enterprise networks, but also critical infrastruc-
tures that are controlled via networks. However, one major
challenge of defending computer networks is the lack of
means for detecting zero-day attacks, as “you cannot protect
against what you do not know”. Zero-day attacks usually
exploit vulnerabilities that are unknown to public, includ-
ing network defenders. The information asymmetry between
attackers and defenders makes detection of zero-day attacks
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extremely difficult. Considering such extreme difficulty of
detecting individual zero-day attacks, identifying an attack
path containing the zero-day exploits is a substantially more
feasible strategy.

A. Zero-Day Attack Path
Today’s computer networks are usually deployed with basic

security defense measures, such as firewall and IDSs (Intrusion
Detection Systems). It’s usually not easy for attackers to
directly break into the target machine. Therefore, attackers
often rely on a chain of attack actions to achieve the attack
goal. Each attack chain is essentially a sequence of exploits,
which forms an attack path. An exploit enabled by an unknown
vulnerability is regarded as a zero-day exploit. If any of the
exploits on an attack path is zero-day, the path becomes a
zero-day attack path.

B. Key Insight
Given that a zero-day attack path is inherently a chain

of attack actions, a key insight to deal with zero-day attack
paths is to analyze the chaining effects. Generally, it is very
unlikely for an attack path to be 100% zero-day. That is,
since zero-day exploits are not readily available, it’s very
difficult for attackers to ensure that all exploits on an attack
path are zero-day exploits. Therefore, a zero-day attack path
is usually composed of both zero-day exploits and non-zero-
day exploits. Consequently, defenders can make the following
assumptions: 1) the non-zero-day exploits in the chain can be
detected in some way, such as through the security sensors;
2) the detectable non-zero-day exploits have certain chaining
relationships with the zero-day exploits in the chain. Hence,
connecting the detected non-zero-day segments through a path
is an effective approach to reveal the zero-day segments in the
same chain.

To leverage the chaining effects, a critical step is construct-
ing an appropriate graph that contains the chain. Therefore,
in our work, we propose to firstly build a network wide
supergraph from system calls, and then identify the zero-day
attack paths hidden in the supergraph. The identified zero-
day attack path is essentially a subgraph of the network wide
supergraph. This approach is proposed due to four rationales.
First, system calls are the only way for user programs to inter-
act with kernel operating systems, and are thus hard-to-avoid
and attack neutral. Attack neutral means that system calls
can capture both legitimate and malicious system activities.
Second, a network wide supergraph can be built by analyzing
the collected system calls. The supergraph is also attack
neutral. The zero-day exploits, if exist, will expose themselves
in the graph. Third, the supergraph is essentially a set of paths.
Zero-day attack paths are subsets of the supergraph, and can
be identified in a certain way. Fourth, the zero-day attack paths
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provide a network-wide attack context for recognizing zero-
day exploits. With the path, the accuracy and performance of
detecting zero-day exploits is better than the detection within
the isolated per-host context.

C. Patrol

Following the philosophy of “building a network wide
supergraph and then identifying the zero-day attack paths
hidden in it”, we first developed a prototype system called
Patrol [1]. The general idea of Patrol is as follows: 1) By ana-
lyzing system calls, a network-wide system object dependency
graph (SODG) is generated as the supergraph. The SODG
model was invented in pioneering work [3] and formalized
in [1]. Details about SODG are provided in Section II-A. Since
system calls capture both legitimate and malicious system
activities, a SODG reflects the infection propagation processes
through the dependencies among system objects, such as
processes, files and sockets; 2) Given the SODG, a number of
suspicious intrusion propagation paths (SIPPs) are identified
through backward and forward tracking from some trigger
nodes, which are usually suspicious system objects that are
involved in security alerts; 3) The suspicious paths are verified
whether they are true zero-day attack paths through policy
checking. Patrol demonstrated the effectiveness of our key
insight and was able to successfully identify zero-day attack
paths. However, it also suffers from serious path explosion
problem. That is, when a large number of security alerts are
available, the tracking mechanism in Patrol can result in too
many suspicious paths. In Patrol, distinguishing true zero day
attack paths from suspicious ones relies on extensive pre-
knowledge for the common features of known exploitations
at OS-level, which is not readily available. Moreover, the size
of suspicious paths can be very large as Patrol preserves
every tracking-reachable objects. Therefore, the deterministic
dependency analysis is not adequate and will fall short.

D. ZePro
In this paper, we propose a new probabilistic approach

for zero-day attack path identification. This newly developed
system, named ZePro, follows the same philosophy as Patrol,
but with substantial difference. First, instead of using SODG,
the new approach establishes an object instance graph as the
supergraph. Each instance is a “version” of a system object at
a specific time. With instances, the object instance graph can
capture the state changes of an object, and the root cause for
these changes. Second, instead of tracking from trigger nodes,
the new approach builds a Bayesian network (BN) based on
the instance graph to leverage intrusion evidence. Fed with
evidence, the BN can quantitatively infer the probabilities of
object instances being infected. By connecting instances with
high infection probabilities, a path can be formed. This path
is the zero-day attack path.

Our approach has the following significance. First, this
approach does not rely on particular OS-level pre-knowledge.
In Patrol, it has to firstly extract OS-level common features
from known exploitations. These features are then used as
the pre-knowledge to distinguish true zero-day attack paths
from suspicious ones. The effectiveness of Patrol largely
depends on the availability of the common features. How-
ever, our approach in ZePro remains applicable and effective
even when such pre-knowledge is not available. Second, this
approach leverages the intrusion evidence in a systematic way.

BN can incorporate literally all varieties of intrusion evidence,
such as security alerts, vulnerability scanning results, system
logs, or even human knowledge. Rather than generating indi-
vidual suspicious intrusion propagation paths through tracking,
all intrusion evidence fed into BN generates synthesized
impact towards the infection probabilities of object instances.
Third, this approach is elastic. New intrusion evidence can
be incorporated as it is collected. The new evidence may
change the previous probability inference results. Moreover,
erroneous knowledge will be ruled out as more true evidence
is fed into BN. Fourth, the tool ZePro is automated, which
greatly enhances security analysts’ working effectiveness and
efficiency.

This paper is developed based on our continuous work [1]
and [2], where [2] is an innovation to its predecessor
work [1]. The most significant extensions made in this paper
include more rationales on model evolution (Section II),
more design specifics of the system modules (Section IV)
including the algorithms of generating the object instance
graphs (Section IV-C) and constructing the instance-graph-
based Bayesian networks (Section IV-F), more implementation
details (Section V), another experiment comprising a new
attack (Section VI-A), a more thorough analysis of experiment
results (Section VI-B), and a more comprehensive review of
related work (Section VII).

The contribution of this paper is summarized as follows.
• To the best of our knowledge, ZePro is the first work

taking a probabilistic approach towards zero-day attack
path identification.

• We proposed the methodology of building a network-wide
supergraph and then identifying the zero-day attack paths
hidden in it.

• We made the first effort to construct Bayesian networks
at OS level by introducing the object instance graph.

• We designed and implemented the system prototype
ZePro, which can effectively and automatically identify
zero-day attack paths.

II. MODEL EVOLUTION

A. Predecessor Model
To reveal the zero-day attack paths in an enterprise-level

network, a model was proposed and constructed in [1], which
was the first work noticing the zero-day attack path problem
and also the first attempt to address this new issue. The model
assumes that a typical enterprise network consists of mainly
Unix-like operating systems (OS), in which the system entities
can be categorized into processes, files and sockets.

1) System Object Dependency Graph: By analyzing system
calls, a System Object Dependency Graph can be constructed
as the supergraph to capture the intrusion propagation.

Definition 1 (System Object Dependency Graph
(SODG) [1]): If the system call trace for the i-th host
is denoted as �i , then the SODG for the host is a directed
graph G(Vi , Ei ), where:
• Vi is the set of nodes, initialized to empty set ∅; and Ei

is the set of directed edges, initialized to empty set ∅;
• If a system call syscall∈�i , and dep is the depen-

dency relation parsed from syscall according to depen-
dency rules in [1], where dep∈{(src→sink), (src←sink),
(src↔sink)}, src and sink are OS objects (mainly a
process, file or socket), then Vi = Vi∪{src, sink},
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Fig. 1. An SODG generated by parsing an example set of simplified
system call log. The label on each edge shows the time associated with
the corresponding system call. (a) Simplified system call log in timeorder.
(b) SODG.

Ei = Ei∪{dep}. dep inherits timestamps start and end
from syscall;

• If (a→b)∈Ei and (b→c)∈Ei , then c transitively depends
on a.

As defined in Definition 1, system calls are parsed into
system objects and dependencies between them. For example,
system call sys_read infers a dependency relation from the
accessed file to the reading process (file→process); system call
sys_write determines a dependency from the writing process
to the accessed file (process→file). The dependency rules to
parse the system calls are provided in [1]. Based on these rules,
the system calls of interest are parsed into three parts: a src
object, a sink object, and a dep relation between them. The
unions of such objects and depencency relations inherently
form a directed graph. Figure 1b illustrates an example SODG
resulted from the system call log shown in Figure 1a.

The major merit of SODG model is its embodiment of
the infection propagation process. Usually an infection is
manifested by one or more objects in the victim system that
are created or tainted by the intrusion attacks. Such objects
can be a misled process, a trojan file or corrupted data.
System calls that access these seed objects may cause the
infection propagate to other innocent objects along the out-
going direct or transitive dependency relations, throughout the
system or even across the network. Such infection propagation
will reflect all exploits including zero-day ones, as system calls
are attack-neutral and hard to avoid. In other words, SODG,
inherently a set of paths, will neutrally capture the zero-day
attack paths as long as one exists.

2) Suspicious Intrusion Propagation Path: The previous
works [1], [3], [4] have explored the various ways to exploit
SODG, e.g. for backtracking or quarantining intrusions. The
philosophy taken by [1] is to dig out paths revealing the
intrusion break-ins and its cascading malicious activities,
namely Suspicious Intrusion Propagation Paths (SIPPs), from
the SODG.

Definition 2 (Suspicious Intrusion Propagation Paths
(SIPPs) [1]): If the network-wide SODG is denoted as
∪G(Vi , Ei ), where G(Vi , Ei ) denotes the per-host SODG for
the i-th host, then the SIPPs are a subgraph of ∪G(Vi , Ei ),
denoted as G(V ′, E ′), where:

• V ′ is the set of nodes, and V ′⊂ ∪Vi ;
• E ′ is the set of directed edges, and E ′⊂ ∪Ei ;
• V ′ is initialized to include trigger nodes only;
• For ∀obj ′∈V ′, if ∃obj∈ ∪Vi where (obj→obj ′)∈ ∪Ei

and start(obj→obj ′) ≤lat(obj ′), then V ′=V ′∪{obj} and
E ′=E ′∪{(obj→obj ′)}. lat (obj ′) maintains the latest
access time to obj ′ by edges in E ′;

• For ∀obj ′∈V ′, if ∃obj∈ ∪Vi where (obj ′→obj)∈ ∪Ei
and end(obj ′→obj) ≥eat(obj ′), then V ′=V ′∪{obj} and

E ′=E ′∪{(obj ′→obj)}. eat (obj ′) maintains the earliest
access time to obj ′ by edges in E ′.

As defined in Definition 2, the SIPPs is by nature a subset
(also a subgraph) of SODG. A trigger node is used to dig
out the SIPPs from SODG: the objects that constitute an SIPP
are the ones that either have affected the trigger node through
direct or transitive dependency relations before its latest access
time, or have been affected by the trigger node after its earliest
access time. Trigger nodes can be OS objects that are revealed
by security sensors, such as an irregularly communicating
network socket recognized by Snort [5], or a modified file
noticed by Tripwire [6].

Taking Figure 1b for example, if file 3 is a trigger node,
file 3→process B→file 2 can be an SIPP. A network-wide
SODG can be unmanageably complex and thus difficult for
human analysts to understand. Therefore, extracting SIPPs
from SODGs can effectively narrow down the suspect objects
attributed to infection propagation. An SIPP is usually much
smaller in size. As illustrated in [1], A 15-minute system call
log with 143,120 system calls generated a 3-host SODG with
1,288 objects and 50,519 dependencies. In contrast, an SIPP
identified from this SODG contains only 175 objects.

The SIPPs neutrally captures almost all candidate zero-day
attack paths. The only chance for a zero-day attack path
to escape from SIPPs is that all exploits on the path are
zero-day and no security sensors are triggered. This is very
unlikely, as it’s very difficult for attackers to exploit only
zero-day vulnerabilities along the path and ensure all zero-
day exploits undetected by security sensors. As long as one
known vulnerability is exploited or any security sensors are
triggered, the attack path will be captured as SIPPs.

3) Path Explosion: Through tracking dependencies between
OS objects, the system Patrol [1] can build network-wide
SODGs, dig out SIPPs, and further identify the real zero-day
attack paths. However, Patrol often suffers from serious path
explosion problem because the set of SIPPs can be very large.
A root cause for such explosion is that dependencies intro-
duced by legitimate activities and dependencies introduced by
zero-day attacks are often tangled together. Hence, Patrol made
an assumption that extensive pre-knowledge is available to
distinguish real zero-day attack paths from suspicious ones.
The pre-knowledge are common features or attack patterns of
known exploitations that are extracted at the OS-level to help
recognize future unknown exploitations. If a similar feature is
detected on an SIPP, it indicates the existence of a zero-day
exploit. However, this assumption is too strong in that:
• The acquirement of such pre-knowledge is quite difficult.

It is a very ad hoc and effort consuming process. It relies
heavily on the availability of the history for known
vulnerability exploitations;

• Even if the history is available, investigating and crafting
the common features at OS-level for all types of exploita-
tions requires immeasurable amount of human analysts’
efforts or even the whole community’s efforts.

B. Successor Model
To overcome the aforementioned problem, we need an

approach that does not rely on the existence of any pre-
knowledge for the common features or patterns of known
exploitations at OS-level. Therefore, in this paper, we propose
a probabilistic approach, which uses Bayesian networks to fuse
intrusion evidence and requires no OS-level pre-knowledge.
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Fig. 2. An example Bayesian network.

1) Why Use Bayesian Networks: The Bayesian net-
works (BN) is a probabilistic graphical model that embodies
the cause-and-effect relations. It is by definition a Directed
Acyclic Graph (DAG) that consists of a set of nodes and
directed edges, where a node represents a variable of interest,
and an edge represents the causality relation between two
nodes. The causality relation is carried by a node-specific
conditional probability table (CPT). Figure 2 gives an example
BN and the CPT associated with p2, according to which one
can infer that the probability of p2 being true is 0.9 when
p1 is true. Such conditional probability is denoted as P(p2 =
T |p1 = T ) = 0.9. Moreover, BN is also capable of incorporat-
ing evidence to update the posterior probabilities of variables
of interest. For example, after evidence p2 = T is observed,
it can be incorporated to update the probability of p1 by
computing P(p1 = T |p2 = T ).

Due to BN’s capability of modeling cause-and-effect rela-
tions, it can be applied upon system-level dependency graphs.
The rationale is that an affinity exists between BN and system-
level dependency graphs: the dependency relations between
system objects in system-level dependency graphs imply the
infection causalities in BNs. For example, a dependency
process→file in a dependency graph can become an infection
causality relation in BN: file is likely to be infected if process
is already infected. In this way a BN can be constructed
based on the structure topology of a system-level dependency
graph. The dependency-graph-based BN intrinsically enables
the following benefits:
• It effectively incorporates intrusion evidence from a

variety of information sources. The intrusion alerts are
usually scattered here and there from apart security
sensors. As a unified platform, the dependency-based
BN leverages such alerts as attack evidence to facilitate
security diagnosis;

• It quantitatively computes the probabilities of objects
being infected. The inferred probabilities guide the iden-
tification of zero-day attack paths: the objects with high
infection probabilities and the dependencies that carry the
probabilistic inferences make candidate zero-day attack
path stand out.

As a type of system-level dependency graph, SODG has
the possibility of being the base graph for BN. However,
constructing BN based on SODG is problematic due to the
following reasons.

First, as a graphical model with only nodes and directed
edges, BN can only inherit the structural information from
SODG and cannot preserve the time labels associated with
edges. Lack of time information will cause incorrect causality
inference in the SODG-based BN. For example, without the
time labels, the dependencies in Figure 1b indicates infection
causality relations existing among file 3, process B and file 2,
meaning that if file 3 is infected, process B and file 2 are likely
to be infected by file 3. Nevertheless, the time information
shows that the system call operation “process B reads file 3”
happens at time t6, which is after the operation “process B

writes file 2” at time t4. This implies that the status of file 3
has no direct influence on the status of file 2.

Second, the SODG contains cycles, but BN is an acyclic
model. For instance, file 1, process A and process C in
Figure 1b form a cycle. The cycle will be inevitably inherited
from the SODG into the SODG-based BN. However, BN is
supposed to be acyclic and thus does not allow any cycles.

2) Object Instance Graph: To address the above issues,
we propose a new type of dependency graph, object instance
graph. In object instance graph, a node is no longer an
object. Rather, it is an instance of the object with a specific
timestamp. Different instances are different “versions” of the
same object at different time points, and thus they can have
different infection status. Compared with the SODG generated
from the same system call log, the object instance graph
has equal or bigger size. We will address the scalability of
our approach in Section VI-C.4. The object instance graph is
defined as follows.

Definition 3 (Object Instance Graph): If the system call
trace in a time window T [tbegin, tend ] is denoted as �T and
the set of system objects (mainly processes, files or sockets)
involved in �T is denoted as OT , then the object instance
graph is a directed graph GT (V , E), where:
• V is the set of nodes, initialized to empty set ∅; and E is

the set of directed edges, initialized to empty set ∅;
• If a system call syscall ∈ �T is parsed into two

system object instances srci , sink j , i, j ≥ 1, and a
dependency relation depc: srci→sink j , where srci is
the i th instance of system object src ∈ OT , and sink j is
the j th instance of system object sink ∈ OT , then V =
V ∪ {srci , sink j }, E = E ∪ {depc}. The timestamps for
syscall, depc, srci , and sink j are respectively denoted
as t_syscall, t_depc, t_srci , and t_sink j . The t_depc
inherits t_syscall from syscall. The indexes i and j are
determined before adding srci and sink j into V by:

– For ∀ srcm , sinkn ∈ V , m, n ≥ 1, if imax and jmax
are respectively the maximum indexes of instances
for object src and sink, and;

– If ∃ srck ∈ V , k ≥ 1, then i = imax , and t_srci stays
the same; Otherwise, i = 1, and t_srci is updated to
t_syscall;

– If ∃ sinkz ∈ V , z ≥ 1, then j = jmax+1; Otherwise,
j = 1. In both cases t_sink j is updated to t_syscall;
If j ≥ 2, then E = E ∪ {deps: sink j−1→sink j }.

• If a→b ∈ E and b→c ∈ E , then c transitively depends
on a.

According to Definition 3, for src object, a new instance
is created only when no instance of src exists in the
instance graph; for sink object, however, a new instance
is created whenever a src→sink dependency appears. The
rationale is that the status of the src object will not be altered
by src→sink, while the status of sink will be influenced.
This dependency also causes an edge depc added between the
most recent instance of src and the newly created instance of
sink, as well as an edge deps added between the most recent
instance and the new instance of the same object. We name
depc as contact dependency as it is generated by the contact
between two different objects via system call, and name deps
as state transition dependency because it is caused by the
state transition between different instances of the same system
object. It is essential and reasonable to have deps because the
status of the new instance of one object can be influenced
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Fig. 3. An instance graph generated by parsing the same set of simplified
system call log as in Figure 1a. The label on each edge shows the time
associated with the corresponding system call operation. The dotted rectangle
and ellipse are new instances of already existing objects. The solid edges and
the dotted edges respectively denote the contact dependencies and the state
transition dependencies.

by the status of its most recent instance. Figure 3 illustrates
an instance graph created for the same simplified system call
log as in Figure 1a. It’s a good example to show that the
instance graph can well tackle the problems of SODG for BN
construction.

First, by implying time information stamped onto specific
instances, the instance graph is able to reflect correct infection
causality relations. For example, instead of parsing the system
call at time t6 directly into file 3→process B, Figure 3 parsed
it into file 3 instance 1→process B instance 2. Compared
to Figure 1b in which file 3 has indirect infection causality
on file 2 through process B, the instance graph in Figure 3
indicates that file 3 can only infect instance 2 of process B
but no previous instances. Hence in Figure 3 file 3 does
not have infection causality on file 2, while in Figure 1b it
does.

Second, the instance graph can break the cycles contained in
SODG. For example, in Figure 3, the system call at time t5 is
parsed into process C instance 1→file 1 instance 2, rather than
process C→file 1 as in Figure 1b. Hence, instead of pointing
back to file 1, the edge from process C is directed to a new
instance of file 1, which breaks the cycle formed by file 1,
process A and process C in Figure 1b.

III. INSTANCE-GRAPH-BASED BAYESIAN NETWORKS

Two steps are prescribed to build an instance-graph-based
BN and compute probabilities for variables of interest: 1) the
CPT tables have to be specified for each node via constructing
proper infection propagation models; 2) evidence from differ-
ent information sources has to be incorporated into BN for
subsequent probability inference.

A. Constructing the Infection Propagation Models
In an instance-graph-based BN, each object instance is

either “infected” or “uninfected”. The infection propagation
models handle two types of infection causalities: contact
infection causalities and state transition infection causalities,
which respectively corresponds to the contact dependencies
and state transition dependencies in Definition 3.

1) Contact Infection Causality Model: This model captures
the infection propagation between instances of two different
objects. Contact infection causality is formed due to the
information flow between the two objects via a system call
operation. Figure 4 shows a portion of BN constructed when
a dependency src→sink occurs and the CPT for sink j+1.
When sink j is uninfected, the probability of sink j+1 being
infected depends on the infection status of srci , an intrinsic
infection rate ρ and a contact infection rate τ , 0 ≤ ρ, τ ≤ 1.

Fig. 4. The infection propagation models.

The intrinsic infection rate ρ decides how likely sink j+1
gets infected when srci is uninfected. In this case, since srci
is not the infection source of sink j+1, if sink j+1 is infected,
it should be caused by other factors. So ρ can be determined
by the prior probabilities of an object being infected, which
is usually a very small constant number.

The contact infection rate τ determines how likely sink j+1
gets infected when srci is infected. The value of τ determines
the extent to which the infection can be propagated within an
instance graph. In an extreme case where τ = 1, all the object
instances which have contact with the infected objects will
get contaminated. In contrast, when τ = 0 the infection will
be confined inside the infected object and does not propagate
to any other contacting object instances. Our system allows
the value of τ tuned based on knowledge and experience. The
impacts of τ and ρ are evaluated in Section VI-C.3.

2) State Transition Infection Causality Model: This model
captures the infection propagation between instances of the
same objects. The underlying rule is that, once “infected”,
an object can never return to the state of “uninfected”
(we make an assumption that no intrusion recovery operations
are conducted). That is, once an instance of an object get
infected, all future instances will keep the same infected state,
regardless of the infection status of other contacting object
instances. This is enforced by the CPT exemplified in Figure 4:
if sink j is infected, the infection probability of sink j+1
remains as 1, no matter whether srci is infected or not;
if sink j is uninfected, the infection probability of sink j+1
is determined by the infection status of srci according to the
contact infection causality model.

B. Incorporating Evidence

The instance-graph-based BN incorporates alerts from a
variety of security sensors as the evidence of attack occurrence
via two ways: 1) evidence can be fed into BN by directly
labeling the corresponding object instance as infected. If an
object is scrutinized and confirmed to be already infected,
the infection status of the corresponding instance at that
specific time should be updated to be infected; 2) a type of
nodes, namely Local Observation Model (LOM) nodes [95],
can be added to BN to model the uncertainty towards observa-
tions. Observations mean the suspicious activities noticed by
security sensors or admins that imply attack occurrences. The
observations may contain uncertainty, such as suffering from
false rates. In cases when observations are from security alerts,
the CPT actually implies false rates of the particular secu-
rity sensor: P(Observation = True | Actual = Uninfected)
shows the false positive rate and P(Observation = False |
Actual = Infected) indicates the false negative rate. As illus-
trated in Figure 5, an LOM node can be added as the direct
child node to an object instance (i.e. parent). The observation
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Fig. 5. Local observation model [95].

can be used to compute the posterior probability of its parent
instances.

IV. SYSTEM DESIGN

Figure 6 shows the overall system design: we first perform
system call auditing on each individual host, and then collect
the system call traces to a central analysis machine for off-
line instance-graph-based BN construction and zero-day path
identification. The modules are specified as follows.

A. System Call Auditing and Filtering

System call is audited towards all running processes on
each individual host. The reason is that it’s hard to predict
which process is involved in attacks, and process-confined
system call auditing could miss intrusion-related system calls.
The following information should be preserved during sys-
tem call auditing: 1) system calls that contribute to socket
communications, as they will be the glue to concatenate per-
host instance graphs; 2) OS-aware information for accurate
OS object identification, such as file absolute pathnames and
inode numbers (merely file descriptor numbers is not sufficient
due to reuse); 3) timestamp for each system call, as time
information is critical to determine whether a system call
and its relevant object instances are involved in infection
propagation. To minimize performance degradation, system
call auditing is the only system module that runs on the fly.

System call filtering is performed to reduce the bandwidth
and CPU cost incurred by unfiltered data. System calls that
involve highly redundant or possibly innocent objects should
be filtered. Examples include the dynamic linked library
files such as libc.so.∗ and libm.so.∗, dummy objects such as
stdin/stdout and /dev/null, pseudo-terminal master and slave
(/dev/ptmx and /dev/pts), log relevant objects such as syslogd
and /var/log/∗, and objects relevant with system maintenance
(apt-get and apt-config). The filtering can boost the speed
of graph generation and path identification with reduced
complexity.

B. System Call Parsing and Dependency Extraction

This module parses system calls into OS object instances
and dependency relations between them, according to
Definition 3. In addition, system call parameters also con-
tribute to the parsing. They are used to uniquely recognize
and name the nodes, and help infer the edge direction between
them. For example, system call “sys_open, start:470880,
end:494338, pid:6707, pname:scp, pathname:/mnt/trojan,
inode:9453574” from our trace is transformed to (6707,
scp)←(/mnt/trojan, 9453574), where pid and pname are used

to recognize the process, and pathname and inode are used
to identify the file. The information flow direction is usually
from file to process in system call sys_open, however the flag
O_CREAT can invert the flow if it’s observed in parameters.

Algorithm 1 Algorithm of Object Instance Graph Generation
Require: set D of system object dependencies
Ensure: the instance graph G(V , E)
1: for each dep: src→sink ∈D do
2: look up the most recent instance srck of src, sinkz of

sink in V
3: if sinkz /∈V then
4: create new instances sink1
5: V ← V ∪ {sink1}
6: if srck /∈V then
7: create new instances src1
8: V ← V ∪ {src1}
9: E ← E ∪ {src1→sink1}

10: else
11: E ← E ∪ {srck→sink1}
12: end if
13: end if
14: if sinkz∈V then
15: create new instance sinkz+1
16: V ← V ∪ {sinkz+1}
17: E ← E ∪ {sinkz→sinkz+1}
18: if srck /∈V then
19: create new instances src1
20: V ← V ∪ {src1}
21: E ← E ∪ {src1→sinkz+1}
22: else
23: E ← E ∪ {srck→sinkz+1}
24: end if
25: end if
26: end for

C. Graph Generation

Resulted from system call parsing, the object instances
and dependency relations become respectively the nodes
and directed edges. The process of generating the object
instance graph from system object dependencies is given in
Algorithm 1, which strictly follows Definition 3. The con-
structed instance graph can be host-wide or network-wide,
where the network-wide graph is constructed by concatenating
individual host-wide ones. If and only if there exists at
least one edge between any two nodes from two different
host-wide instance graphs, these two graphs can be con-
catenated together. Such edges serve as the glue for con-
catenation, and they are usually incurred by socket-based
communications: a local program communicates with a
remote one via message passing, which can be captured
by system call socketcall. Hence, the graph concatena-
tion starts by socket identification and pairing. For exam-
ple, system call “sys_accept, start:681154, end:681162,
pid:4935, pname:sshd, srcaddr:172.18.34.10, srcport:36036,
sinkaddr:192.168.101.5, sinkport:22” results in a directed
edge (172.18.34.10, 36036)→(192.168.101.5, 22), where a
socket object instance is denoted as a tuple (ip, port).

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 07,2025 at 01:27:02 UTC from IEEE Xplore.  Restrictions apply. 



2512 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 10, OCTOBER 2018

Fig. 6. System design.

This edge can be used to concatenate the host-wide instance
graphs of 172.18.34.10 and 192.168.101.5. If socket com-
munication exists between two hosts, their instance graphs
will be concatenated. Otherwise, their graphs will be isolated.
A network-wide instance graph can be composed of
one or more isolated graphs.

The system calls are usually collected within a specific time
window and then sent to an off-line machine for analysis.
In some cases, the generated instance graphs in different time
windows need to be connected together. We connect these
individual instance graphs with the following steps: 1) identify
identical objects that appear in different windows; 2) For each
of such object, connect every two closest windows by adding
a state transition dependency between the last instance of the
object in a window and the first instance of the same object
in the next window. The last instance and first instance are
determined by the timestamps of instances.

D. BN Construction
The instance graph built above provides its structure topol-

ogy for BN construction in this module. The instances and
dependencies in the instance graph are hence also nodes and
edges in BN. This module further associates each node with a
CPT table based on the settings such as ρ and τ according to
the infection propagation models (detailed in Section III-A).
The nodes and CPT tables are then specified in a .net file,
which is a file type to carry the BN information. Engines such
as SamIam [7] can turn a .net file into a graphical BN view.

E. Evidence Incorporation and Probability Inference
This module incorporates evidence into instance-graph-

based BN by either directly labeling the infection state of the
involved object instance as infected, or adding an LOM node
as child node to the object instance (detailed in Section I).
The CPT table associated with the LOM node is configured
per the false positive and negative rates of the corresponding
security sensors. After this, each node in the instance graph
then receives a probability due to BN-enabled probability
inference.

F. Zero-Day Attack Path Identification
The inferred probabilities guide the identification of zero-

day attack paths: by preserving the nodes with high proba-
bilities and edges interconnecting them in the instance graph,
the zero-day attack paths stand out. We designed Algorithm 2,
which is a DFS-based (depth-first search) algorithm, to high-
light those nodes in instance graph, which either possess high
probabilities on their own, or have both an ancestor and a
descendant with high probabilities. The highlighted nodes are
the ones that actually contribute to the infection propagation,
and thus should be preserved. A tuning parameter in our sys-
tem, i.e. threshold, is used to regulate the bottom probability

Algorithm 2 Algorithm of Zero-Day Attack Paths
Identification
Require: the instance graph G(V , E), a vertex v ∈ V
Ensure: the zero-day attack path Gz(Vz, Ez)
1: function DFS(G, v, direction)
2: set v as visited
3: if direction = ancestor then
4: set nextv as parent of v that nextv→v ∈ E
5: set flag as has_high_probability_ancestor
6: else if direction = descendant then
7: set nextv as child of v that v→nextv ∈ E
8: set flag as has_high_probability_descendant
9: end if

10: for all nextv of v do
11: if nextv is not labeled as visited then
12: if the probability for nextv prob[nextv]≥

threshold or nextv is marked as flag then
13: set find_high_probability as True
14: else
15: DFS(G, nextv , direction)
16: end if
17: end if
18: if find_high_probability is True then
19: mark v as flag
20: end if
21: end for
22: end function
23: for all v ∈ E do
24: DFS(G, v, ancestor )
25: DFS(G, v, descendant)
26: end for
27: for all v ∈ V do
28: if prob[v]≥ threshold or (v is marked as

has_high_probability_ancestor and v is marked
as has_high_probability_descendant) then

29: Vz ← Vz ∪ v
30: end if
31: end for
32: for all e : v→w ∈ E do
33: if v ∈ Vz and w ∈ Vz then
34: Ez ← Ez ∪ e
35: end if
36: end for

that can be regarded as high probability. For example, if the
threshold is set to 0.8, only instances that have the infection
probabilities at 80% or higher will be preserved.
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V. IMPLEMENTATION

The probabilistic system designed above is implemented via
a prototype named ZePro, through approximately 5471 lines of
code, which include about 2411 lines of C code for a loadable
kernel module auditing 39 system calls, and approximately
2915 lines of gawk code that generates a .net file for instance-
graph-based BN construction and a dot-compatible file for
visualizing the zero-day attack paths in Graphviz [8], as well
as 145 lines of Java code for probability inference through the
API provided by the BN engine SamIam [7].

A. System Call Auditing and OS-Aware Reconstruction
System call auditing can be achieved by hooking into the

Linux system call interface, sys_call_table. We did this via
a loadable kernel module. System calls of interest can be
added or deleted for auditing, including those encapsulated
in system call socketcall, such as sys_accept, sys_recvfrom
and sys_sendto. In the module, each call is hooked to record
parameters and return values, as well as OS-aware information
from kernel data structures for object identification, such as
process descriptor from task_struct and file descriptor from
files_struct. In addition, timestamps are logged respectively
when a system call in invoked and returned.

B. Graph Representation and Graph Conversion
We represent our graphs with an adjacency matrix (Map)

because during the graph generation and path identification
we need to quickly look up if there is already an existing
edge connecting two nodes. With adjacency matrix, the query
takes only O(1) time, while with other data structures it may
take O(|v|) or O(|e|) time, where |v| and |e| are respectively
the number of nodes and edges in a graph. For each pair of
graph nodes (src and sink), there is only one edge between
them as the instance graph is instance-specific.

We also support graph conversion from instance graph
to SODG for result comparisons. In SODG, each pair of
graph nodes (src and sink) may correspond to numerous
edges, which are incurred by different system calls or the
same system call at different timestamps. Our implementation
aggregates them into a single one, maintaining the matrix
cell (Map[srcObj, sinkObj]) to count the number of edges,
and a timestamp list (tMap[srcObj, sinkObj]) to associate this
aggregated edge with different timestamps.

C. Instance Graph Pruning
The introduction of the concept “instances” makes each sys-

tem object may have multiple different “versions”, and hence
an instance graph can be very large. To reduce the complexity
and speed up the processing, it’s essential to perform instance
graph pruning. The bottom line is not to hurt the capturing of
the infection propagation process. We applied the following
pruning methods towards instance graphs. In Section VI-B.2
we will discuss the impact of pruning.

First, repeated dependencies can be pruned. Between any
pair of system objects it is not unusual that the same depen-
dency may occur many times, though it may be caused by
different system calls. For example, process A may write
file 1 for several times. In such cases, each time the write
operation occurs, a new instance of file 1 is created and a
new dependency is added between the most recent instance
of process A and the new instance of file 1. If the status of

process A is not affected by any other system objects during
this time period, the infection status of file 1 will not change
neither. Hence the new instances of file 1 and the related new
dependencies become redundant information in understanding
the infection propagation. Therefore, a repeated src→sink
dependency can be ignored if the src object is not influenced
by any other object since the last time that the same src→sink
dependency occurred.

Second, the root instances can be pruned. Root instances
refer to those nodes which have never appeared as the sink
object in any src→sink dependency during the analysis
period. For instance, file 3 in Figure 3 only appears as the
src object in the dependencies parsed from the system call
trace in Figure 1a, so file 3 instance 1 can be ignored in the
simplified instance graph. No directed edges are pointing to
such instances, hence they are not influenced by any other
object in the analysis period, and of course they are not
manipulated by attackers either. Ignoring these root instances
will not break any routes of intrusion sequence and hence will
not hurt the capture of infection propagation. This method is
especially helpful for the situations like a process reading a
large number of configuration or library header files.

Third, repeated mutual dependencies can be pruned. Two
objects may keep affecting each other through creating new
instances, and this will cause a lot of repeated mutual depen-
dencies. One situation is that a process frequently sends
and receives messages from a socket. For example, in one
of our experiments, 107 new instances are created respec-
tively for the process (pid:6706, pcmd:sshd) and the socket
(ip:192.168.101.5, port: 22) due to their interaction. Another
situation is that a process keeps taking feeds from a file and
then writing the output back to the file. In both situations,
no other objects are involved during the two-object interaction,
and hence the infection statuses of the two objects will
keep the same throughout all the new instances. Based on
this recognition, the instance graph can preserve only the
very first and last dependencies while neglect the interme-
diate ones.

VI. EXPERIMENTS

A. Experimental Setup

For evaluation, we built a web-shop test-bed to emulate
a small-scale real-world enterprise network. To compare the
experiment results with Patrol, we purposively used the same
experiment setup as Patrol. We launched three-step attacks
towards it under the surveillance of some existing popular
security sensors (such as firewalls, Snort [5], Tripwire [6],
Wireshark [9], and Ntop [10]) and our system. The sensors are
deployed to detect and alert known attacks, which can then be
leveraged as intrusion evidence for BN analysis. The test-bed
hosts are typically deployed with Dell PowerEdge T310 with
two 2.53GHz Intel(R) Xeon(R) X3440 quad-core processor
and 4GB of RAM running 32-bit Linux 2.6.24 through 2.6.32.

Figure 7 illustrates the attack scenario. Step 1, the attacker
exploits vulnerability CVE-2008-0166 [11] to gain root privi-
lege on SSH Server through a brute-force key guessing attack.
Step 2, since the export table on NFS Server is not set up
appropriately, the attacker can upload a malicious executable
file to a public directory on NFS. The malicious file contains
a Trojan-horse that can exploit a vulnerability on a specific
workstation. The public directory is shared among all the
hosts in the test-bed network so that a workstation may access
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Fig. 7. Attack scenario.

Fig. 8. The zero-day attack path in the form of an instance graph for experiment 1.

and download this malicious file. Step 3, once the malicious
file is mounted and installed on the workstation, the attacker
is able to execute arbitrary code on workstation. To verify
the effectiveness of our approach, we conducted two major
sets of experiments by providing different vulnerabilities in
step 3. In one experiment, the malicious file contains a Trojan-
horse that exploits CVE-2009-2692 [12] existing in the Linux
kernel of workstation 3. CVE-2009-2692 is a vulnerability that
allows local users to gain privileges by triggering a NULL
pointer dereference. In the other experiment, the Trojan-
horse exploits CVE-2011-4089 [13] that lies in bzexe
command on workstation 4. CVE-2011-4089 allows local
users to execute arbitrary code by pre-creating a temporary
directory.

Since it’s usually hard to acquire zero-day vulnerabil-
ities, we emulate them with known ones. For example,
CVE-2009-2692 is treated as a zero-day vulnerability by
assuming the current time is Dec 31, 2008. Moreover, other
security holes such as configuration errors on NFS can also
be viewed as a special type of unknown vulnerability as long
as they are ruled out by vulnerability scanners like Nessus.
An extra benefit of emulation is that the information for these
known zero-day vulnerabilities can be available to verify the
correctness of our experiment results.

B. Experiment Results

While constantly collecting system calls and security alerts,
we conducted the three-step attacks towards the testbed.
In experiment 1, we collected 143120 system calls generated

TABLE I

THE COLLECTED EVIDENCE

by three hosts in 40 minutes, and constructed an instance-
graph-based BN with 1853 nodes and 2249 edges. Since
experiment 2 just differs from experiment 1 in attack step 3,
in experiment 2 we only analyzed 54998 system calls gener-
ated by workstation 4. The constructed BN contains 911 nodes
and 1214 edges. The evidence as in Table I is collected and
fed into the two BNs respectively.

Figure 8 and Figure 9 show the identified zero-day attack
paths in the form of instance graphs for experiment 1 and 2.
The graph uses rectangles, ellipses, and diamonds to repre-
sent processes, files, and sockets respectively. The parameter
settings in this experiment is: the intrinsic infection rate ρ is
set as 0.0001; the contact infection rates τ is 0.9; and the
probability threshold of recognizing high-probability nodes is
80%. The evidence fed into BN are highlighted with red color,
and nodes verified to be malicious are marked with grey color.

1) Correctness: The experiment results demonstrate that
ZePro is able to reconstruct the attack story-line, such as how
the attack has happened, which files have been touched, and
whether the raised alerts have correlations, etc. For example,
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Fig. 9. The zero-day attack path in the form of an instance graph for
experiment 2.

by scrutinizing Figure 8, we noticed that nodes with high
infection probabilities are all related to attackers’ malicious
activities along the road. Figure 8 successfully captures the
infection propagation process and shows how the trojan horse
is uploaded from SSH server to NSF server, and then gets
executed on workstation 3. Similarly, Figure 9 captures the
process of renaming /tmp/evil into /tmp/ls, and leveraging
/tmp/ls for further malicious activities such as adding an
unauthorized root-privilege account into /etc/passwd and
/etc/shadow.

A merit of our approach is that the identified path pro-
vides a context to reveal the hidden exploits, even when no
evidence is provided for the particular exploits. For example,
in experiment 1, there is no intrusion evidence provided by
security sensors for NFS server. Nevertheless, the zero-day
attack path in Figure 8 can still capture how NFS server

contributes to the entire infection propagation process: the
malcious file workstation_attack.tar.gz is uploaded from SSH
Server to the shared directory /exports on NFS Server, and
then downloaded to /mnt on workstation 3.

Furthermore, the identified path enables the recognition
of zero-day exploits by exposing related critical objects.
For instance, the appearance of /exports object on the path
indicates possible configuration errors of NFS server because
SSH Server should not have the privilege of writing to the
/exports directory. As another example, the object PAGE0:
memory(0-4096) on workstation 3 also has high infection
probability on the path. A further check on this page-zero
object reveals an exploit: the object triggers the null pointer
dereference and enables attackers gain privilege on work-
station 3. Therefore, exposing critical attack-related system
objects on attack paths can help security admins catch potential
zero-day exploits.

In addition, the instance-graph-based BN can capture state
transitions of an object using instances. This greatly helps
with the understanding of the infection propagation process.
Since an instance is a “version” of an object at a specific time,
the change of infection probabilities for instances reflects the
change of states for the same object. By matching the instances
and dependencies to the system call traces, we can even find
out the system call that causes the state-changing of the object.
For instance, in Figure 8, the node x2086.4:(6763:6719:tar)
represents an instance of process (pid:6763, pcmd:tar) at
a specific time t . Before t , the process was regarded as
innocent because previous instances have low infection prob-
abilities. The process becomes highly suspicious after a
dependency is added between node x2082.2:(/home/user/test-
bed/workstation_attack.tar.gz:1384576) and node x2086.4.
Mapping the dependency back to the system call traces proves
that the state-changing of the process is caused by a sys-
tem call “syscall:read, start:827189, end:827230, pid:6763,
ppid:6719, pcmd:tar, ftype:REG, pathname:/home/user/test-
bed/workstation_attack.tar.gz, inode:1384576”, which indi-
cates that the process reads a suspicious file.

2) Size of Instance Graph and Zero-Day Attack Paths:
One concern of adopting instance graph is that it can become
too large due to introduction of instances. However, the tech-
niques of pruning instance graphs can significantly reduce the
number of instances. Table II shows the pruning results for
experiment 1. The pruning is very effective in reducing the size
of instance graphs. Take SSH Server for example, the number
of objects involved in the system call log is 349. Without
pruning, the generated instance graph contains 10447 instance.
After pruning, the number of instances is reduced to 745.
In total, the number of instances in the network-wide instance
graph for experiment 1 decreases from 39840 to 1853.
On average the object to instance ration is 1:2.03, which is very
reasonable. In addition, by merging instances belonging to the
same object into one node, ZePro can convert the form of zero-
day attack paths from instance graphs to SODGs. SODG based
zero-day attack paths is composed of only objects, and can be
used for analysis when instance information is not necessary.
Figure 10 and Figure 11 are respectively the SODG form of
zero-day attack paths for Figure 8 and Figure 9.

Compared with the results in [1], Figure 8 and Figure 9
show that ZePro substantially outperforms Patrol. Even when
Patrol is provided with extensive pre-knowledge for common
features of known exploitations at OS-level, ZePro generates
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TABLE II

THE IMPACT OF PRUNING THE INSTANCE GRAPHS

Fig. 10. The object-level zero-day attack path for experiment 1.

Fig. 11. The object-level zero-day attack path for experiment 2.

equal or much better results than Patrol. Specifically, for
experiment 2, the size of zero-day attack paths revealed by
Patrol and ZePro are very close. The path by Patrol has

60 nodes and the path by ZePro has 61 nodes (Figure 11).
This is because the system call log analyzed in this experiment
is relatively small, the objects identified in these paths are
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TABLE III

THE INFLUENCE OF EVIDENCE OF EXPERIMENT 1

TABLE IV

THE INFLUENCE OF EVIDENCE IN EXPERIMENT 2

already the smallest set of suspicious objects to constitute the
paths. When a larger set of system calls is analyzed, ZePro
generates candidate paths much smaller than Patrol without
hurting the correctness of paths. For example, in experiment 1,
the zero-day attack path identified by Patrol has 175 objects,
while the path by ZePro contains 77 objects (Figure 10). Given
that only 913 objects are involved in the original instance
graph before path identification, the 56% reduction of path
size is substantial. More importantly, when the extensive pre-
knowledge is not available (which is usual), ZePro remains
as effective and generates same results, but Patrol is not able
to discern true zero-day attack paths from suspicious ones.
For instance, in Patrol’s dataset where SSH server takes a
workload of 1 request per 5 seconds, a 15-minute system call
log generates 180 candidate paths that tangle with the real
zero-day attack paths.

C. Evaluation and Discussion
1) Influence of Evidence: A number of nodes in Figure 8

are selected as the representative instances of interest. Table III
and Table IV show how the infection probabilities of these
instances vary with each piece of evidence fed into BN.
We assume the evidence is observed in the order of attack
sequence.1 In Table III, the results show that when no evi-
dence is available, the infection probabilities for all nodes
are very low. When E1 is added, only a few instances on
SSH Server receive probabilities higher than 60%. After E2 is
observed, the infection probabilities for instances on Worksta-
tion 3 increase, but still not much. As E3 and E4 arrive, 5 of the
9 representative instances on all three hosts become highly sus-
picious. In Table IV, similar probability updates are observed
with the appearence of E5 adn E6. Hence, the evidences makes
the zero-day attack path’s instances emerge gradually from the
“sea” of nodes in the instance graph. It is also possible that the
arrival of new evidence may decrease probabilities of certain
instances, which will then get removed from the ultimate path.
In a nutshell, the more evidence fed into BN, the better results
that get closer to the ground truth.

2) Influence of False Alerts: We also want to know whether
the false alerts would mislead the probability inference and

1Given the same set of evidence, the evidence input order does not affect
the final probability inference results.

cause the final identification results incorrect. We use the
Tripwire alert E4 for example by assuming it as a false
alarm and observe its impact to the BN output. According
to Table V, when only one more piece of evidence is fed
into BN, E4 will greatly influence the probabilities of some
instances on Workstation 3; however, when more evidence
comes up, the influence of E4 drops. For instance, given
E1 as the only extra evidence, the infection probability of
x2006.2 is 97.78% when E4 is true, and 29.96% when E4 is
false. Nonetheless, if all other evidence is also fed into BN,
the infection probability of x2006.2 only goes from 81.13%
to 81.3% if E4 turns out false. Overall, the influence of false
alerts could be counteracted by more true alerts.

3) Influence of τ and ρ: Sensitivity analysis is also per-
formed to evaluate the influence of the contact infection rate τ
and the intrinsic infection rate ρ through tuning them. ρ is
usually set as a very small value. The experiment results
are not very sensitive to the value of ρ. However, τ turns
out to be influential for the probabilities produced by BN,
since it decides how likely sink j get infected given srci is
already infected via a srci→sink j dependency. If a node is
labeled as “infected”, the nodes that are directly or indirectly
connected to this node will tend to have higher infection
probabilities when τ gets bigger. To evaluate the impact
of τ , we tuned τ to values between 0 and 1 with 0.1 as a
step, and then analyzed the probabilities generated through
BN inference. Our experiments show that a small adjustment
of τ (e.g. changing it from 0.9 to 0.8) does not much
influence the output probabilities, but a major adjustment of τ
(e.g. changing it from 0.9 to 0.5) can largely affect the
probabilities. Despite of such influence of τ towards the
produced infection probabilities, it will not greatly affect
the identification of zero-day attack paths, as the probability
threshold of recognizing relatively higher-probability nodes for
zero-day attack paths can be adjusted according to the value
of τ . For example, when τ is small (like 50%), the thresh-
old could be also lowered to reveal those nodes with rela-
tively higher infection probabilities. Even probabilities around
40%-60% should be considered as highly suspicious because it
is hard for an instance to get infected with such a low contact
infection rate.

4) Complexity and Scalability: The performance evalua-
tion for ZePro are conducted towards both online system
call logging and off-line data analysis. By measuring with
UnixBench and kernel compilation, the run-time performance
overhead caused by the system call logging component is
around 15% to 20% for the system. The time cost for
off-line data analysis includes three major parts: instance-
graph-based BN generation, BN probability inference and
zero-day attack path identification. Since the DFS algorithm
is applied towards every node in the instance graph, the time
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TABLE V

THE INFLUENCE OF FALSE ALERTS

complexity for both BN generation and path identification
is O(|V |2). The time cost for probability inference is deter-
mined by the algorithm used in SamIam. In our experi-
ments, the off-line analysis is conducted on a machine with
2.4 GHz Intel Core 2 Duo processor and 4G RAM. Table II
summarizes the time cost of BN generation for each host.
Therefore, the total time spent on BN construction is around
27 seconds. For probability inference, the algorithm used in
our experiments is recursive conditioning. For a BN with
1854 nodes, the average time cost is 1.57 seconds for BN
compilation and probability inference, and 59 seconds for
zero-day attack path identification. By adding all the time costs
together, the average off-line data analysis speed is 280 KB/s.
In addition, the average memory used for BN compilation
is 4.32 Mb.

The scalability of our approach is ensured by several
aspects. 1) The time window of system call analysis is
adjustable. For instance, the system calls can be collected and
sent to an off-line machine for analysis every 30 or 40 minutes.
In our experiments, a 40-minute system call log generates a
BN with 1854 nodes. Although the BN size does not have
a deterministic relation with the number of system call ana-
lyzed, a smaller time window usually generates a smaller BN.
2) In a large network with many hosts, the instance graphs
for each individual hosts may not necessarily connect to each
other. A network-wide instance graph is thus composed of
one or more isolated individual graphs. In this case, the size
of individual BNs won’t become too large. 3) The instance
graph generation and zero-day attack path identification can
be conducted in parallel. To make an estimation based on
our experiment results, we can consider an enterprise network
with 10000 hosts. If the off-line analysis is conducted on
a cluster with 512 processors, the time used for instance
graph generation and zero-day attack path identification is
respectively around 2.93 minutes and 6.3 minutes. 4) The
scalability of BN compilation and probability inference has
been intensively studied. Interested readers may refer to [14]
and [15] for more information. For example, the recursive con-
ditioning [16] algorithm used in this paper provides scalable
BN inference by supporting a smooth tradeoff between time
and space.

VII. RELATED WORK

In this section, we compare ZePro with other research works
by examining target problems, methodologies, and employed
techniques, etc.

A. Zero-Day Attack Detection
This paper is related to zero-day attack detection due to

its nature. It is well known that signature-based intrusion
detection systems [5], [73] could not cope with zero-day
attacks very well. Instead, anomaly detection [74]–[88] and
specification-based detection [89]–[91] can help detect zero-
day exploits. Anomaly detection, including system call-based
ones [74], [76], [83], [84], profiles the normal behavior of

programs or systems and is alerted to any deviations. How-
ever, anomaly detection suffers from large false positives.
Specification-based detection improves accuracy based on
application-specific policies, but requires experts’ knowledge
and experience to specify them. This process is very time-
consuming and error-prone. Considering the extreme difficulty
of detecting individual zero-day attacks, our paper shows that
identifying an attack path containing the zero-day exploits is
a substantially more feasible strategy.

B. Provenance Tracking
Provenance tracking may result in the discovery of attack

paths. A number of provenance tracking systems have been
proposed to monitor and parse system activities, mostly for
the purpose of intrusion forensics or recovery. One of the
pioneering work is Backtracker [3], which performs back
tracking through system object dependencies to identify intru-
sion provenance. This philosophy was followed by [1], [4],
[18]–[31]. References [1], [4], [18]–[27] track information
flows at system call level, and [28]–[31] track at finer gran-
ularities at the cost of higher overheads. Among the work,
BEEP [30], ProTrace [26] and MPI [31] seek to gain more
precision than Backtracker [3] via execution partition, but
may have limited scalability due to not-always automated
instrumentation. SLEUTH [27] makes efforts for more effi-
cient event storage and analysis (and thus better scalability).
It leverages tags to achieve more precision in attack detection
and root-cause identification than Backtracker.

Different from all the above work, this paper pursues the
identification of paths across multiple interconnected machines
to reveal zero-day exploits, with no tagging or any other prior
information. The most related work is our predecessor work
Patrol [1]. This work targets the same problem with Patrol,
but is substantially different in several aspects: 1) Patrol relies
on extensive pre-knowledge regarding known vulnerability
exploitations to distinguish zero-day attack paths from the
huge number of candidate paths, while our approach does not
require any pre-knowledge, and solely rely on collected intru-
sion evidences; 2) Patrol only conducts qualitative analysis and
treats every object on the identified paths as having the same
malicious status, while our approach quantifies the infection
status of each system object with probabilities; 3) Patrol
performs dependency tracking to generate a huge candidate
pool for zero-day attack paths, while our system relies on the
computed probabilities to reveal higher probability objects as
suspicious ones.

C. Event Causality/Dependency Discovery
Event causality or dependency discovery can also lead

to the formation of causal graphs, which potentially reveal
abnormal paths. This can be done based on workflow-centric
distributed system monitoring and tracing, including both the
industry platforms [33]–[37] and the academic ones [38]–[58].
Some of the solutions are network-based methods [38]–[47],
and others are host-based [48]–[58]. Compared with network-
based solutions, host-based solutions gain better accuracy
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and faster analysis speed at the cost of performance
degradation. The degradation is caused by required extra
instrumentation on traced systems. Specifically, host-based
solutions instrument to propagate metadata across distributed
systems [33], [50]–[54], [57], or require programmers to
write temporal join-schemas to introduce causal relationships
among variables [48], [49]. In contrast, network-based solu-
tions correlate variables or timings for causal inference [32].

This paper is a host-based solution. It differs by conducting
instrumentations and probabilistic inference at the system call
level, which is more fine-grained than the above methods.

D. Bayesian Networks
Bayesian network has been used in a number of

research problems, such intrusion detection [96]–[99], security
analysis [95], security measurement and risk manage-
ment [100]–[102]. For example, Kruegel et al. used
Bayesian network to aggregate outputs provided by different
anomaly-based intrusion detection systems. Xie et al. [95]
built an example Bayesian network based on the depen-
dency attack graph to perform real-time security analysis.
Poolsappasit et al. [102] developed a risk management frame-
work based on Bayesian networks to quantify the chances of
network compromise. However, none of the above methods
studied the problem of zero-day attack path detection. More-
over, none of them construct large-scale Bayesian networks at
the operating system level.

E. Information Flow Capture
Information flow can be a natural reflection of workflow.

That is, controlling the information flow can help enforce poli-
cies and prevent anomalies, and capturing the information flow
can help extract abnormal paths. Several works have studied
on how to specify, control and mandate information flow in
systems [59]–[63]. Panorama [64] taints suspicious objects,
leverages the information flow capture to detect malware,
and gets a taint graph (inherently attack path) visualizing the
exploit. However, such information flow capture still heavily
relies on the specification of sources to taint, and doesn’t
go beyond individual machines yet. In contrast, our paper is
an effort to capture cross-machine information flow with no
tainting.

F. Alert Correlation
Attack paths can also be resulted from alert correlation,

which is a technique to aggregate similar alerts, prioritize
important alerts, and connect apart alerts through causal corre-
lation [27], [65]–[72]. Among the existing solutions, [27], [70],
[71] start to leverage system call-based provenance tracking
to help causally correlate scattered alerts and reconstruct
attack scenarios. Others rely on expert knowledge and experi-
ence about the relationships between the alert types. These
approaches end with the reconstruction of attack scenarios
based on alerts or policies. Our paper makes nontrivial efforts
to further pursue zero-day attack path detection, by bringing
in the Bayesian Networks that take alerts as evidence and
quantitatively compute the infection probabilities of system
objects. This leads to discovery of previously-unknown infec-
tion objects other than the alerts themselves.

G. Attack Graphs
Attack graphs can generate possible attack paths by

analyzing the vulnerabilities existing in a network. There

are mainly two types of attack graphs: state enumeration
attack graph [103]–[108] (also called network-state attack
graph [110]) and dependency attack graph [109]–[116]. The
major differences between our approach and the attack graph
are: 1) Attack graphs only deal with known vulnerabilities.
Since usually zero-day vulnerabilities cannot be scanned out
by vulnerability scanners, attack graph is not able to generate
attack paths containing zero-day vulnerabilities. 2) Our object
instance graph captures system activities that is happening
in real time, but an attack graph shows possible exploitation
sequences that might happen. 3) The two type of graphs are
at different abstract levels. The object instance graph is at the
low system object level and captures the fine-grained system
activities, while the attack graph is at the higher application
level.

Attack graphs have also been employed to measure the
security risks caused by zero-day attacks [93], [94]. The metric
simply counts the number of unknown vulnerabilities required
to compromise an asset, rather than detects the actual zero-day
exploits. This is different from our work.

VIII. LIMITATION AND CONCLUSION

The system still needs to address some limitations in furture
work. For example, when some attack activities evade system
calls (it’s difficult, but possible), or the attack time span
exceeds the analysis time period, the constructed instance
graphs may not capture the complete zero-day attack paths.
In such cases, our system can only reveal parts of the paths.

Overall, this paper proposes to use Bayesian networks to
identify the zero-day attack paths. For this purpose, an object-
graph-based BN is defined and constructed. By incorporating
the intrusion evidence and computing the probabilities of
objects being infected, the system can successfully reveal the
zero-day attack paths.
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