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Abstract—Modern face detection (FD) systems have demon-
strated remarkable performance in identifying human faces, pri-
marily via Deep Neural Networks (DNNs). However, these DNN-
driven models exhibit inherent susceptibility to adversarial attacks,
posing significant risks for intentional face obfuscation from de-
tectors. Such obfuscation can serve both malicious purposes (e.g.,
evading surveillance systems) and benign objectives (e.g., protect-
ing personal privacy). Previous studies have developed techniques
to compromise the effectiveness of various FD models, yet these
adversarial attacks are largely confined to the digital domain—e.g.,
by applying adversarial perturbations to digital input images—or
demand prior knowledge of the target FD systems. In this paper,
we introduce a novel framework for evading black-box face detec-
tion (FD) systems in real-world scenarios. The proposed method
relies on the Expectation over Attention (EoA) algorithm, which
generates the Public Attention Heat Map (PAHM) by fusing at-
tention mechanisms across an ensemble of publicly available FD
models. Our evaluation results demonstrate that EoA outperforms
state-of-the-art (SOTA) methods in white-box settings and demon-
strates strong cross-model transferability in black-box scenarios,
effectively evading FD systems across smartphones, laptops, and
surveillance cameras.

Index Terms—Face detection, adversarial attack, black-box.

I. INTRODUCTION

FACE detection (FD) is a fundamental computer vision
technique that identifies the presence of human faces in

images or videos. It plays a critical role in various applications
such as face alignment [1], [2], [3], face recognition [4], [5],
[6], facial expression analysis [7], and face tracking [8]. Recent
advances in deep learning, particularly in Deep Neural Net-
works (DNNs) [9], have significantly enhanced the accuracy
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and efficiency of FD. Hence, this technique has been widely
adopted in many scenarios of our daily life, such as video
surveillance [10], entry access management [11], unmanned
store [12] and payment authorization [13]. As an illustrative
example, the global response to the COVID-19 pandemic has led
to the deployment of face recognition systems at transportation
hubs to help register visitors and monitor body temperatures.
The seamless operation of these functions relies heavily on the
proper functioning of the FD module.

While DNNs have significantly enhanced the performance of
FD systems, they are well known to be vulnerable to adversarial
attacks [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24]. Adversaries can introduce subtle alterations to input data
to deliberately mislead DNN models into producing incorrect
outputs. Previous research has studied adversarial attacks across
various domains, such as computer vision [25], natural language
processing [26] and reinforcement learning [27]. FD adversarial
attack is an evasion technique that manipulates input data (e.g.,
images or videos) by injecting imperceptible perturbations to
induce failures in FD systems, such as missing genuine faces
(false negatives) or misclassifying non-facial regions as faces
(false positives). Researchers have developed a range of attacks
designed to allow adversaries to conceal their faces from de-
tectors by strategically applying carefully-crafted patches [28],
[29], [30], [31], [32]. This category of attacks known as FD
evasion attacks poses inherent security risks in critical appli-
cations such as video surveillance and criminal investigation.
On the other hand, it’s important to note that these attacks
also have the potential to serve as a means of safeguarding
human privacy by thwarting unauthorized or malicious attempts
to collect individuals’ facial information.

However, the existing FD evasion attacks have limitations
in the following aspects. First, some attacks were implemented
only within the digital realm [28], [30] by manipulating the input
images directly. These attacks assume that the adversary has ac-
cess to input face images or is capable of executing unrestricted
pixel-level alterations to these images. However, applying these
attack techniques directly to real-world FD systems is ineffec-
tual: 1) in most cases the input images are not readily accessible
to attackers for alteration; 2) impacting images at pixel-level
through physical channels is challenging due to the unpre-
dictable physical conditions [33] or the inherent flaws present
in devices (e.g. printers and cameras) when manipulating the
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pixels [34]. Second, some attacks require what is often referred
to as “white-box” access to the target system. In simpler terms,
it assumes the adversary knows the target models (algorithms,
network architecture, parameters) in advance, based on which
they can craft the patches [29]. Nevertheless, this requirement
frequently proves impractical, since companies specializing in
face detection are typically reluctant to disclose their algorith-
mic structure and parameter details. This reluctance primarily
arises from concerns related to intellectual property rights and
security considerations. It’s important to note that in reality,
most face detectors operate as “black-box” systems, meaning
that the internal functional modules (such as pre-processing,
DNN, and post-processing) are not disclosed to the public. The
absence of comprehensive knowledge about the target system
can significantly diminish the feasibility of such attacks.

Due to above limitations, very few solutions can effectively
and efficiently conduct evasion attacks to the “black-box” FD
systems in the physical world [29], [31], [35], [36]. To bridge
the gap, our paper proposes a novel solution to evade face
detection in black-box FD applications. Our approach can tackle
two challenges: 1) the input face images may not be accessible
to attackers and thus cannot be manipulated; and 2) specific
knowledge (e.g. models, algorithms) about the target FD system
may not be available.

To address the first challenge, we introduce an approach that
employs physical-world adversarial patches applied to facial
regions, thereby eliminating the need for direct manipulation
of input images in the digital domain. However, creating such
adversarial patches usually needs prior knowledge of the specific
FD systems. To further tackle this second challenge, we use
an algorithm called Expectation over Attention (EoA), for the
attack. Specifically, we devise a method to generate adversar-
ial perturbations based on the attention heat maps of the FD
model, rather than its gradients. Using an attention-based loss
function, it shifts the FD detection model’s focus away from
the face, causing it to lose focus and enabling face detection
evasion. To ensure our attack works with no specific knowledge
about the target system, we propose to leverage an ensemble of
publicly available FD models. From this ensemble, we generate
the Public Attention Heat Map (PAHM), a term we crafted to
provide a comprehensive representation of where general FD
models focus their attentions. Adversarial patches generated
from PAHM exhibit feasibility and generality in attacking a
variety of FD systems powered by different algorithms and
models. Our proposed adversarial patches exhibit cross-model
effectiveness across multiple FD systems (see Section IV-D).
This breakthrough eliminates the constraints of previous evasion
attacks which were confined to a specific FD system, and re-
moves the attack requirement of knowing the intricate functional
modules within target FD systems.

To comprehensively assess the effectiveness, generality, and
robustness of our attack, we conducted experiments towards FD
systems across a range of devices. These devices included four
different smartphones (iPhone, Samsung, Xiaomi, and VIVO),
one laptop (Mechrevo X3-S PC), and a surveillance camera
equipped with an infrared temperature measurement module and
a face detection module. Our experimental procedures adhered
to ethical guidelines for human subject research (equivalent to

the Institutional Review Board (IRB) approval system in the
United States).1 The devices in our experiments run different
black-box FD applications, such as built-in camera apps, Beau-
tyCam, Alipay, among others, and we had no access to specific
details about these FD apps. Our physical experiments yielded
compelling results, demonstrating that our adversarial patches
could effectively and successfully disable the face detection
functions in these systems. The diverse range of face appear-
ances, represented by our carefully selected 17 participants,
highlights the robustness of our algorithm. Moreover, through
contrast experiments, we found that the evasion effect remained
consistent even when participants wore hats or glasses. We
also validated our approach by comparing it with other attack
methods [29], [31] described in the existing literature, and our
results showed a significant improvement in the attack success
rate. Beyond evaluating attack performance on commercial
black-box models, we conducted rigorous cross-model vali-
dation to assess adversarial transferability. Confidence scores
from multiple unseen recent FD models were measured under
clean versus adversarial conditions. The observed confidence
degradation empirically confirms that EoA-generated patches
effectively transfer across diverse FD models.

To the best of our knowledge, our approach is the first
to effectively evade black-box FD systems in the physical
domain, across multiple models and without requirement
for specific knowledge of the target models. The major con-
tributions of this paper are as follows: 1) We presented a new
approach to conduct evasion attacks on black-box FD systems
in the physical realm, without relying on the specific knowledge
of the target systems. 2) We introduced the Public Attention
Heat Map to evade a variety of FD systems with different
detection models and algorithms. 3) We conducted experiments
on different black-box FD systems across a range of devices and
validated the effectiveness of our approach.

The findings and outcomes presented in our paper shed im-
portant insights to the field of face detection (FD) research
and development: 1) our method serves as a means to assess
the security and robustness of FD models deployed in benign
real-world applications. When our generated adversarial patches
successfully breach a target FD system in use, it indicates the
need to enhance its security measures; 2) in an era where many
businesses collect users’ facial information without their explicit
consent, our method assumes a pivotal role in protecting human
privacy by preventing unauthorized or malicious collection of
individuals’ facial information.

The rest of this paper is structured as follows. In Section II,
we give the background of face detection, state the problem with
threat model, and summarize the related works with limitations.
In Section III, we provide the details of our attack methodology.
In Section IV, we present our evaluation results. We discuss
the limitations and future works in Section V, and conclude in
Section VI.

The source code and video demonstration are publicly shared
via GitHub to support community research2.

1We obtained explicit permission and consent from seventeen participants
before proceeding with experiments. All face images used in this paper were
not only authorized but also blurred for anonymization.

2https://github.com/JJuny123/EOA/tree/main
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Fig. 1. When Alice wears our adversarial patches (printed by a laser printer)
on her cheeks, she can escape the face detection system in the real world.

II. BACKGROUND AND PRELIMINARIES

A. Face Detection (FD)

FD is a object detection technique specifically emphasizing
the recognition of human faces. Traditional approaches lever-
age hand-craft features to identify faces [37], [38], [39], [40],
including local features [41], boosting algorithms [42], [43],
cascade structures [2], [44], [45], [46] and deformable part
models [47].

Benefiting from the development of deep learning, Convolu-
tional Neural Networks (CNNs) have been utilized to achieve
more effective face detection. These approaches are mainly
built upon three types of network architectures: (1) Some two-
shot detectors [48], [49], [50], [51], [52] are based on RCNN
(Region-based CNN) [53], in which they first identify the region
proposals from the image, and then classify whether each region
is a face or not; (2) Some other two-shot methods [54], [55], [56],
[57] are based on Faster-RCNN [58], in which they adopt the
Region Proposal Networks (RPN) to generate the initial region
proposals by a set of anchor boxes and predict the confidence
score and bounding box offset for each anchor box, and then
refine the proposals to obtain the final output; (3) Some single-
shot approaches [59], [60], [61], [62], [63], [64] are based on
SSD (a Single-Shot Detector) [65], in which they locate a set
of anchor boxes, and predict the confidence score and bounding
box offset.

As is commonly known by the community, deep learning
models are vulnerable to adversarial attacks [15]. By introducing
subtle perturbations to the input samples, the model can be
misled to wrong decisions. Instead of directly changing the
digital input images, this paper aims to develop adversarial
attacks against DNN-based face detectors by creating physical
face patches. Our attack does not rely on the knowledge of
target FD systems, and is featured by its general effectiveness in
evading a variety of detection models, regardless of their network
architectures or algorithms.

B. Problem Statement and Attack Requirements

The primary objective of this paper is to create an effective
attack capable of evading a variety of black-box FD systems. We
consider vision-based FD systems that are designed to recognize
human faces. Our approach is to generate adversarial patches and
put them on a person’s face, so that the target FD system can
no longer detect that face (Fig. 1). It’s important to note that

an adversarial patch’s dimensions must be significantly smaller
than those of human faces so that wearing it can fool human
observers. Such FD evasion attacks have been investigated in
previous works [28], [29], [30], [31], [32], enabling adversaries
to potentially circumvent surveillance or criminal investigations.
Going beyond prior works, we consider the following practical
requirements for our attack.

1) Physical Attack: Our objective is to develop and deploy
adversarial attacks in the physical domain for FD systems.
Unlike digital attacks that directly manipulate input pixel values,
adversaries in this scenario must design printable adversarial
patterns, physically fabricate them as wearable accessories, and
strategically position them on facial regions. When captured
by surveillance cameras, these patterns can disrupt the facial
detection process during imaging. The multi-stage conversion
process, from digital design to physical materialization (print-
ing) and back to digital representation (camera capture), in-
troduces substantial non-linear distortions in pixel space. This
physical-to-digital transformation pipeline fundamentally alters
attack constraints: The inevitable information loss during ma-
terialization (printer resolution limitations) and re-digitization
(camera sensor noise, lighting variations, perspective distor-
tions) eliminates the feasibility of end-to-end gradient propa-
gation. Consequently, traditional iterative optimization methods
for attack refinement become prohibitively inefficient compared
to purely digital attack scenarios, necessitating new approaches
for robust physical attack generation.

2) Attacking Black-Box Systems: We target widely used FD
systems in the real world, to demonstrate our crafted attack
and its severity and practicality. These systems typically exhibit
greater complexity comprising various modules, including pre-
processing, deep learning models, and post-processing stages.
The models employed in these systems tend to be resilient
against adversarial attacks or noise. More importantly, these real-
world systems are typically “black-box” in nature, meaning they
remain partially or completely opaque to potential adversaries.
Consequently, adversaries do not have any insights into the
inner workings of the detection mechanisms, including crucial
details such as model algorithms, structures, data processing
methods, and training datasets. This lack of information presents
significant challenges when it comes to devising effective attack
strategies.

3) General and Robust: Our framework prioritizes two key
objectives: target-agnostic generality and environmental robust-
ness. It achieves cross-model evasion using a universal adver-
sarial perturbation ensemble, eliminating the need for model-
specific patch generation. Additionally, it maintains effective
detection evasion across diverse real-world conditions, includ-
ing varying illumination, poses, occlusions (e.g., hats), and
distances.

C. Existing Attacks and Their Limitations

Efforts have been made in the research community to study
methods for compromising FD. However, these approaches are
limited by certain constraints.

Initially, attacks were proposed to undermine DNN-based
facial detectors within digital environments [28], [30].
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These tactics leveraged traditional gradient-based [14] or
optimization-based approaches [25] to generate adversarial per-
turbations, either in white-box or black-box settings. However,
transitioning these solutions to physical world scenarios poses
challenges. First, the unavailability of design rationales and
implementation details in black-box FD system makes it im-
practical to acquire precise or approximate gradients for gener-
ating perturbations. Second, the effectiveness of attacks in the
physical realm can significantly drop due to real-world distor-
tions caused by various environmental factors such as distances
and angles, lighting conditions, printing quality and camera
resolutions [66].

In a subsequent effort, evading FD system in the physical
dimension was explored in [29], which targeted the Multi-
Task Cascaded Convolutional Neural Networks (MTCNN)
model [67]. In this approach, the adversary computes gradi-
ents and generates perturbations against the white-box MTCNN
model, using the Expectation over Transformation (EoT) [68]
technique. These perturbations can then be printed as patches
and affixed to a person’s face, enabling them to evade face de-
tection. The effectiveness of this method in extending the attack
from digital to physical is largely contingent on the adversary’s
white-box access to the target model and the comprehensive
understanding towards the model. However, when the adversary
lacks knowledge of the victim system, as is the case in this
study, the attack will fail. Additionally, it’s worth noting that the
adversarial patch generated in this context [29] is not general and
hence inapplicable to other systems. Zhou et al. [31] designed
a more generalized method to break the black-box FD systems
in the physical realm. However, their success rate remained low
due to the limited transferability between the publicly available
model and the target system.

In addition to evading face detection, a variety of studies have
been conducted for devising adversarial attacks against general
object detection models, particularly in real-world scenarios.
For instance, Chen et al. [69] targeted the Faster-RNN model
with the goal to fool it into mis-detecting stop traffic signs based
on the EoT technique. Eykholt et al. [34] accomplished similar
attacks against the YOLOv2 model by incorporating patterns
into stop signs. Thys et al. [70] considered intra-class variation
to generate patches capable of concealing individuals from the
YOLOv2 model. Zhao et al. [71] introduced a set of innovative
techniques to enhance the robustness of physical attacks. These
attacks are also confined ones that work only for a specific target
system, and lacks generality and robustness for working towards
varied target systems in the real world.

III. METHODOLOGY

A. Overview

As analyzed above, most existing attacks on facial detection
operate in the digital domain, which usually achieve evasion by
adjusting input images at the pixel level. However, applying
these attack techniques directly to real-world FD systems is
impractical, as adversaries usually lack access to the digital
images captured by such systems, and impacting images at
pixel-level through physical channels is also challenging due

to the unpredictable physical conditions or the inherent flaws
present in devices (e.g. printers and cameras).

Few studies have explored physical-domain attacks in face
detection evasion, with [29] and [31] being among the few that
fall into this category. These works study adversarial attacks
relying on gradient signals to generate perturbations.

Although gradients indicate which direction reduces the loss
the most, they have two key issues: first, they optimize for
local decision boundaries of specific models, resulting in poor
transferability to black box systems with architecture or train-
ing differences. Second, they lack semantic interpretability and
often disrupt non-salient regions that humans consider irrele-
vant. Consequently, these attacks suffer from low success rates
or limited transferability when applied to unknown black-box
models.

To overcome these limitations, we strategically choose to
generate adversarial perturbations from the attention heat map
rather than gradients, as it provides a more comprehensive
representation of where the FD model focuses its attention. We
introduce a novel methodology, Expectation over Attention
(EoA), to attack black-box FD systems in the physical domain.
This solution is founded on two key concepts.

First, inspired by [72], we generate adversarial perturbations
from the attention heat map instead of the gradients. Gradients
indicate which direction loss decreases the most, while the
attention heat map (AHM) provides a much more comprehensive
representation of where a deep learning model concentrates
its attention when making decisions [73]. AHM also contains
rich information exploitable by the adversary to compromise
the input and fool the model. Based on this understanding, we
propose a loss function predicated on the attention heat map,
which can be leveraged to make the target model lose its focus
on crucial facial regions within the input image.

Second, we propose to create an ensemble of open-source FD
models and compute attention heat maps for each of them. An
average Public Attention Heat Map (PAHM) can be subsequently
derived from these individual heat maps, which collectively
encapsulates the characteristics of various FD models. It is on
the basis of PAHM that we then generate adversarial patches.

By targeting the attention distribution instead of the original
gradient, our method systematically disrupts the salient regions
essential for face alignment across different models. This shift
from local gradient optimization to global attention distortion
significantly enhances transferability.

Another limitation of existing face detection evasion attacks
is their reliance on white-box assumptions. In contrast, our
method demonstrates strong cross-architecture transferability
in decision-based black-box settings. Through benchmark eval-
uations on six face detection models excluded from the EoA
training pipeline, we empirically validate that EoA achieves
a high success rate against black-box models. Please refer to
Section IV-D for a demonstration of our model’s robustness
and transferability, where we analyze changes in face detection
confidence before and after the attack on six latest face detec-
tion models: RetinaFace [74], CenterFace [75], YOLO8Face,
SCRFD [76], DBFace, and UltraFace.

Fig. 2 illustrates the workflow of our devised attack, which can
be divided into preparation and an iterative process that consists
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Fig. 2. The workflow of generating adversarial patches against varied FD systems.

Fig. 3. Attention heat maps for three public FD models and the averaged public attention heat map (PAHM).

of two stages. Preparation takes squares of a pre-determined size
as initial patches, attaches printed patches onto the cheeks of the
person to evade FD, and takes photos, generating a number of
carrier images (explained in Section III-B). The following Stage
I, named “Calculating PAHM” constructs the corresponding
PAHM. To achieve this, we affix adversarial patches from the
previous iteration onto the person’s cheeks, capture photos, input
these images into an ensemble of publicly available FD models,
and subsequently calculate the PAHM. The subsequent Stage II,
named “Updating Patches” revolves around fine-tuning adver-
sarial patches based on PAHM, with the objective to pinpoint
patches that can divert the FD system’s attention away from
facial areas of the person. This objective is probed through
optimizing an attention loss function. Stage I and Stage II are
iterated for a certain number of times until satisfactory patches
are obtained.

Below we describe the details of each step, and Algorithm 1
depicts the entire workflow.

B. Preparation

In this paper we craft our adversarial patches as two squares,
each measuring 5 cm × 6 cm, attached to both sides of the
individual’s cheek. The size and placement of the patches adhere
to the same parameters as outlined in the previous research [29].
Notably, a trade-off exists between the size of the patch and

Algorithm 1: Our EoA Attack Against FD Systems.

the effectiveness of evading detection. Adversaries may seek to
reduce the dimensions of printed adversarial patches to improve
their concealment from human observation. However, the reduc-
tion in patch size inevitably comes at the cost of a lower success
rate in evading detection. Currently the primary focus of the
research community is to deceive DNN models with the escape
success rate taking precedence. The patch size reported in this
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paper represents the optimal compromise weighing both facets
of the trade-off. To make adversarial patches imperceptible to
human observation, an alternative solution is to camouflage them
within facial or head coverings. In Section IV-H, we demonstrate
a successful strategy to generate and camouflage adversarial
patches as part of a medical mask, reaching its imperceptibility
while preserving effectiveness in evading FD.

Fig. 3 and many other figures throughout this paper illustrate
an individual (namely tester) wearing the patches. Prior to initiat-
ing the attack procedure, we print two squares with a laser printer
and affix them to the tester’s cheek. It’s important to note that,
at this stage, we are solely concerned with capturing the patch
regions and do not yet consider the patch content, which will be
addressed in subsequent steps. We follow to use a camera to take
photographs of the tester wearing the two patch squares. Various
environmental or technical factors can affect the effectiveness
of these patches, including lighting conditions, patch rotation,
patch size, as well as distortion noise or blurriness introduced
by the camera. Based on this understanding, we capture photos
at different distances (30 cm, 60 cm, and 90 cm), angles (−30◦,
0◦, and 30◦), and lighting conditions (bright light, dim light),
to make our adversarial patches robust. Hence, we take a set of
photographs of the tester, and useN to denote the quantity of the
photographs captured. The value of N is a factor contributing
to the attack success rate, as well as the complexity of the patch
generation. The selection of N will be discussed in Section IV.

For each of the N photographs, we then delineate sides of
the two patch squares through manual marking. Each square
can be identified by nine distinct points. This gives us a set of
N carrier images denoted as {xi|i ∈ N}. These carrier images
will be used throughout the attack workflow, as the patch content
undergoes iterative updates.

C. Stage I: Calculating PAHM

This stage is to calculate the PAHM for the N carrier images
of a given person (i.e., the tester in our illustration). We perform
the following steps to compute PAHM at each iteration.

1) Adding Patch Content to Carrier Images: The first step is
to introduce digital patch content, denoted as δx, into the set of
N carrier images. More precisely, during the first iteration, all
pixels of δx are initialized as black. In each subsequent iteration,
we utilize δx obtained from the previous iteration. We then
proceed to map δx onto the marked patch regions within each
of the carrier images, yielding a set of N perturbed images,
denoted as {x̂i = xi + δx|i ∈ N}.

2) Computing Attention Heat maps and PAHM: We then
compute the PAHM of the set of N perturbed images, a task
that requires computation of attention heat maps correspond-
ing to individual FD models in the ensemble, as explained in
Section III-A. The ensemble is the enabler of the generality (and
applicability to black-box targets) of our approach, for which we
choose to include M widely-used FD models in the ensemble,
all of which are either publicly accessible or open-source. These
models vary in terms of their structures and algorithms, and they
may differ from the target FD system.

We feed all the perturbed images into each of the M publicly
available FD models. For each image x̂i and model mj , we

denote yi,j as the highest probability that indicates the presence
of a face in that image. Then the corresponding attention heat
map, denoted as AHMi,j , can be computed as follows using the
Grad-CAM method [77]:

αr
i,j =

1

Z

∑
p

∑
q

∂yi,j
∂Ap,q,r

i

AHMi,j = ReLU

(∑
r

αr
i,jA

r
i

)
(1)

where Ap,q,r
i is the pixel value at position p, q of the r-th

channel’s feature map, Z is the number of pixels for each
channel, andαr

i,j is the weight of the r-th channel’s feature map.
Ar

i is the r-th channel’s feature map, and the attention heat map
AHMi,j is computed as the weighted sum of the feature maps
from all the channels with the Rectified Linear Unit (ReLU)
function. This step is essential as negative values in the heat
map lack meaningful interpretations.

For each perturbed image x̂i, we can now compute the public
attention heat map PAHMi by averaging the attention heat maps
of all the selected models:

PAHMi =

M∑
j=1

AHMi,j (2)

D. Step II: Updating Adversarial Patches

Based on the PAHM obtained in Stage I, we proceed to craft
adversarial patches. The PAHM essentially quantifies the signif-
icance of different regions within an image concerning the face
detection task. The activation area in the heat map is expected to
closely align with the actual facial features, enabling the detector
to recognize the existence and location of the face [72]. Hence, to
evade FD, our strategy is to reduce the concentration of the model
on the facial area, causing the detector to fail in face recognition.
Fig. 3 illustrates the attention heat maps from three publicly
available FD models (MTCNN [67]3, PyramidBox [60]4 and
Facebox [78]5) and the averaged PAHM, respectively for a clean
(i.e., unmodified) face (Fig. 3(a)) and for an adversarial-patched
face (Fig. 3(b)). Our observation reveals that FD models pri-
marily concentrate their attention on the person’s face, while
our introduced patches effectively divert this attention away.

We then continue to compute the variance (the average of
the squared differences from the mean) of all the pixels within
the PAHM and limit or clip this value to the range of (0, 1). Our
objective is to minimize this variance to ensure that the attention
of the face detector is evenly distributed across the entire image,
preventing it from concentrating on and detecting the facial
region. This problem can be formulated as the following loss
function, where LPAHM denotes the thermal loss function, N
denotes the number of input images,Clip is the Python function
to limit all pixel values in PAHM to the range (0, 1), ‖ · ‖ is
the norm calculation function, Avg(·) is the mean calculation

3https://github.com/edosedgar/mtcnnattack/tree/master/mtcnn
4https://github.com/EricZgw/PyramidBox
5https://github.com/610265158/faceboxes-tensorflow/tree/tf1
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function, and
∑

is the summation function.

LPAHM =
1

N

N∑
i=1

‖Clip(PAHMi − Avg(PAHMi))‖ (3)

Furthermore, to avoid abrupt color transitions (for visual
coherence) on the generated patches, we incorporate the total
variation loss [79] to regulate the pixel values within the patches.
This constraint aids in creating patches that appear more natural
and visually smooth, as depicted below, where δ represents the
digital patch content, and pi,j denotes the pixel value at position
(i, j).

LTV =
∑

pi,j∈δx

√
(pi,j − pi+1,j)2 + (pi,j − pi,j+1)2 (4)

Therefore, our goal is to find the δx that can minimize the
following loss function, where γ is a hyper-parameter to balance
the thermal loss and the total variation loss.

L = LPAHM + γLTV (5)

This can be effectively addressed by using widely-used op-
timization techniques. As a representative example, we opt to
employ the MI-FGSM algorithm [80] to iteratively generate
the optimal δx. Specifically, we update the patches based on
the gradient sign and then feed them to Stages I and II for the
recomputation of PAHM and L until we get the ultimate set of
patches. The final patches can then be printed and employed to
launch an attack against the target FD system.

E. Implementation

The system design has been implemented as a prototype
named EOA, consisting of approximately 2000 lines of Python
code. The key custom classes in the codebase include: the Train-
Mask class, which is used to implement the training algorithm;
the LossManager class, which is used to manage loss functions;
the PatchPartTF class is used to control adversarial patch blocks;
the ImageTF class, which is used to acquire calibration data
from the input face image for adversarial sample generation; the
PatchTF class, which is used for patch initialization and other
operations within the patch areas; and the PatchManager class,
which is used to save input face images and adversarial sample
patches.

The processor used for training is an Intel(R) Xeon(R) Plat-
inum 8369HC CPU. The TensorFlow version employed is
1.10.0. The training time is approximately 15 minutes, based
on training parameters specified in the next section.

IV. EVALUATION

To substantiate the efficacy and feasibility of our proposed at-
tack method, we conducted a series of experiments and ablation
studies, aiming to provide a comprehensive assessment.

A. Experimental Configurations

Preparing the carrier images: As pointed out in Section III-B,
to make our adversarial patches robust, we need to take environ-
mental factors into consideration. And thus we capture photos

TABLE I
ATTACK SUCCESS RATE OF OUR ATTACK AND EXISTING WORKS

TABLE II
ATTACK SUCCESS RATE OF OUR ATTACK WITH DIFFERENT NUMBERS OF

PUBLIC MODELS

under various conditions, including three different distances
(30 cm, 60 cm, and 90 cm), three angles (−30◦, 0◦, and 30◦),
and two lighting scenarios (bright light, dim light). Specifically,
for each tester, we acquire a set of N = 8 photographic samples
featuring black-and-white checkerboard-patterned patches af-
fixed to cheeks as carrier images. Parameter N was empirically
determined through systematic experimentation, which showed
that exceeding this threshold (N > 8) results in diminishing
returns in attack success rate while significantly increasing both
training temporal and computational costs.

Generating adversarial patches: We need to select M pub-
licly accessible FD models to generate the PAHM. It is worth
noting that incorporating more public models can enhance attack
transferability but also entail additional computational costs.
Our empirical evaluation shows that M = 3 (i.e., using just 3 of
these models) already yields satisfactory results. This choice is
grounded on empirical assessment, which confirms that M = 3
yields better results than M = 1 or 2. Notably, as M increases,
the efficacy improvement decreases. Therefore, setting M = 3
(i.e., using three FD models) strikes a balance, providing sat-
isfactory performance and efficacy while avoiding additional
computational overhead. Further experiments involving random
model selection affirm that once the value of M is established,
varying combinations of FD models does not substantially af-
fect performance (their outcomes consistently align). Details
about model selection and ablation analysis can be found in
Section IV-E and Table II.

The three open-sourced FD models are: MTCNN [67], Pyra-
midBox [60] and Facebox [78]. The MTCNN model has been
widely embraced within the research community due to its
smaller size and faster training speed. Our decision to incor-
porate it aligns with established practices in the literature. In
contrast, Facebox, despite also being compact and efficient,
offers a distinctive perspective. Additionally, we include Pyra-
midBox (a larger model that imposes a slightly higher training
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burden), which emerged as the 2018 winner of the WIDER
FACE Competition. Such choices of these models are driven
by a balance between potential computation overhead and the
diversity they offer among FD models. It’s important to note
that our approach is adaptable to include other FD models as
alternatives. However, for the purposes of this paper, we focus
on these three commonly used FD models as a representative
combination to illustrate the attack.

To generate the adversarial patches using Algorithm 1, we
configure the number of optimization iterations as K ≥ 2000.
This specific value entails an exponential increase in computa-
tional resources, and the choice of 2000 has been determined
through empirical experimentation to reach a balance between
the desired efficacy and the associated computational cost. In
alignment with experimental settings in related work, we ini-
tialize the learning rate ε at 60/255 and allow it to gradually
decay to 1/255. The attention rate μ transitions from 0.9 to 0.99
during the optimization process.

Baselines: As introduced in Section II-C, a number of previ-
ous studies [28], [29], [30], [31] have developed attacks to evade
FD models.

However, [28], [30] primarily focus on launching attacks in
the digital realm, and hence their methods are not applicable to
our specific attack context in the physical domain. Therefore, we
select the approaches presented in [29], [31] as our benchmark
references for comparisons, given that they are more closely
aligned with our research objectives.

Target FD Systems: To comprehensively assess the generality
and robustness of our attack method, we conduct tests across a
diverse set of facial detection (FD) models and commercial sys-
tems. Specifically, our testbed devices include four smartphones
(Samsung S10 5 G, iPhone XR, Xiaomi Redmi K20 Pro, Vivo
X21), a Mechrevo X3-S laptop, and a surveillance camera with
the infrared temperature sensors. Our evaluation encompasses
the following FD models and software: 1) face detection with
the functionality embedded into the camera applications of the
smartphones and laptops; 2) commercial applications such as
Beauty Camera B612 and Mobile Face Payment; 3) prominent
FD models within the research community, including Light-
DSFD and Yoloface. We use the HP LaserJet MFP M227 FDN
printer to print the generated adversarial patches.

B. Attacking Black-Box FD Systems

Our experiments provide compelling evidence of the effec-
tiveness of our proposed method in evading black-box FD
systems. We emphasize that the black-box nature of the target
systems is ensured through our strict adherence to the principle
and practice of refraining from accessing any camera parame-
ters, including model and algorithm specifics, of the target device
to be attacked. This is particularly pertinent when dealing with
commercial equipment, where such specifics are intentionally
withheld from us. We also make sure the laptop camera utilized
for data acquisition (i.e., photo capture) is distinct from any
target device’s camera.

For each experiment, we implement and compare three cases:
1) the tester presents a clear face; 2) the tester wears patches

Fig. 4. Attacking the camera app of Windows 10. Faces were blurred to protect
experiment participants’ privacy. Original figures used for FD experiments were
not blurred.

randomly-generated based on various distributions; 3) the tester
wears our adversarial patches. It’s worth noting that we have
generated ten different types of random patches, each con-
taining a classical random texture. The experimental results
consistently show that random patches do not exhibit a natural
evasion capability. These ten random patch variations and their
ineffectiveness in FD evasion have been illustrated in Fig. 12.
Green boxes indicate that faces were detected even with the
random patches. Please note that we blurred the faces appeared
in this paper to protect the experiment participants’ privacy. The
original figures used in the experiments for FD were not blurred.

Attacking the camera app of Windows 10: The Windows
10 operating system (OS) has a built-in camera application
designed to capture images of users when they are positioned
in front of the computer. It is equipped with an FD algorithm
to detect human faces and correspondingly enhance picture
quality, e.g., adjusting the brightness levels. An example of the
application’s functionality is illustrated in Fig. 4(a), where the
FD algorithm successfully detects the user’s face and highlights
it with a green bounding box.

To launch attacks we ask the testers to wear patches and
take photos using the laptop’s built-in camera app. The results
are presented in Fig. 4(b) and (c), corresponding to scenarios
involving random and adversarial patches, respectively. It is
noticed that the random patches do not prevent the FD from
detecting faces, as they fail to conceal critical facial features
such as the eyes, nose, and mouth. In contrast, our intentionally
crafted adversarial patches demonstrate a distinct capability.
These patches enable the testers to evade detection successfully,
as they effectively divert the model’s attention away from the
facial region. These findings hold true across various testers and
diverse conditions, yielding consistent results.

Attacking the camera apps of smartphones: Similarly, we test
the efficacy of our attack against the built-in camera apps in
four distinct smartphones. For each smartphone, we select the
“portrait mode” in the camera app settings. The app will run
an FD algorithm to identify potential facial features and mark
faces (if found) with bounding boxes. For each smartphone, our
attack is evaluated across the same three scenarios: when the
tester wears no patches, when the tester wears random patches,
and when the tester wears adversarial patches. Fig. 5 shows the
representative detection results, in which each sub-figure corre-
sponds to a particular smartphone and each contains comparative
results under the three cases.
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Fig. 5. Attacking the camera apps of smartphones. Green boxes indicate faces detected.

Fig. 6. Attacking the B612 app (a photo/video editor).

Our findings align well with the observations made in the
laptop case: the FD algorithms exhibit the capability to detect
faces, both in the absence of patches and when random patches
are worn by the testers. However, our adversarial patches con-
sistently prove effective in concealing the testers’ faces from the
smartphone cameras.

It’s also noteworthy that our evaluation factors in various
environmental variables, including lighting conditions, viewing
angles, distance between the camera and the subject, as well as
the presence of hats or glasses. The successful attacks using our
approach, as shown in many results throughout this paper such
as Figs. 8 and 9, span a wide spectrum of lighting conditions,
viewing angles, and distances. Fig. 13 further shows that our
attack is consistently effective in evading FD regardless of the
size, shape, or color of the hats worn by different attackers.

Fig. 7. Attacking Alipay app: (a) Tester asked to blink, (b) tester asked to tune
the face angle, and (c) no face detected.

Fig. 8. Attacking the commercial surveillance camera.

Attacking commercial apps: We further consider two com-
mercially available smartphone applications equipped with FD
capabilities: 1) B612, which is a versatile photo and video editor,
offering various beauty enhancements and filtering options; 2)
Alipay Face Payment, which ranks among the most widely used
payment apps globally. We evaluate our attack against the FD
algorithms in these applications employing the same settings as
the above experiments.

Fig. 6 presents the results obtained from attacking B612.
The way that B612’s beauty function works is that it will
firstly perform the face detection, and then apply the beauty
enhancements once faces are detected. The beauty function can

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 07,2025 at 00:11:20 UTC from IEEE Xplore.  Restrictions apply. 



MA et al.: GOT MY “INVISIBILITY” PATCH: TOWARDS PHYSICAL EVASION ATTACKS ON BLACK-BOX FACE DETECTION SYSTEMS 6257

Fig. 9. Attacking the research-based FD models.

be enabled or disabled in the application. In this experiment we
explored two distinct scenarios: one with the beauty function
disabled (Fig. 6(a)) and the other with the beauty function
enabled (Fig. 6(b)). In both scenarios, when the tester did not
wear any patch or wore random patches, the FD module in
this application successfully identified the face. In this case,
since beauty function was enabled in Fig. 6(b), the application
further applied the beauty enhancements to the detected face
by adjusting features like skin complexion and facial contour,
as observed in the first two pictures in Fig. 6(b). However, in
the last picture of 6(b), when the tester wore the adversarial
patches, B612 could no longer detect faces and thus did not
apply the beauty enhancements, even with the beauty function
enabled. That’s why the actual facial features in the last picture
of Fig. 6(b) remained the same as the faces in Fig. 6(a) where
beauty function was disabled.

Fig. 7 shows the results obtained when attacking the Alipay
app. In Fig. 7(a), the tester does not wear any patch, and the
app can recognize it is a face and prompts the message “please
blink” to verify the presence of a live person. In Fig. 7(b), the
tester wears random patches on his cheek, and the app can still
detect the face and respond with the message “please tune the
face angle”, as a portion of the face is blocked by the patches.
In Fig. 7(c), the tester wears the adversarial patches, and the app
says “no face detected”, indicating the FD failure. This confirms
the effectiveness of our attack approach.

Attacking a commercial surveillance camera: In response to
the global COVID-19 pandemic, many public spaces and build-
ings have deployed surveillance systems featuring infrared tem-
perature sensors and FD cameras. These systems are intended to
measure the face and body temperature of all visitors, however
privacy intrusions have been reported in various locations around
the world. In light of these concerns, we further evaluate our
attack against the FD module in such a surveillance system using
the same experimental settings as previously executed.

Fig. 8 shows the detection results in the context of surveillance
cameras. Our observations in this scenario align with those
outlined earlier: the FD algorithm effectively detects faces, both
when the tester wears no patches and wears random patches.
In contrast, our adversarial patches continue to demonstrate
consistent effectiveness in concealing the tester’s face from the

surveillance camera’s view. In the system that we test the infrared
temperature sensor becomes non-operational when FD fails to
identify the face.

We acknowledge that surveillance scenarios, such as border
inspection, could benefit from human observation in conjunction
with FD detection. The adversarial patches that we craft may
be noticeable to human observers. Reducing the patch’s size
and camouflaging it (e.g., as a QR code that may represent a
link to merchandise websites, which is a common marketing
practice today) within facial or head coverings can provide a
solution to further evade human detection. In Section IV-H, we
demonstrate a successful strategy to generate and camouflage
adversarial patches as part of a medical mask, to make the attack
more imperceptible while preserving effectiveness in evading
FD models. In this paper, our primary emphasis is on unmanned
scenarios, with a central focus on studying methods to physically
deceive various DNN models, giving priority to the escape
success rate.

Attacking the research-based FD models: We also employ
our adversarial patches to target two well-known models widely
utilized in FD research: Light-DSFD [81] and Yoloface [82]. We
avoid accessing any of the design or implementation specifics
of the two models (i.e., treating them as black-box systems)
and conduct our tests using the Mechrevo X3-S laptop equipped
with a built-in camera as our testing platform. In Fig. 9, you
can find examples of the detection results from attacking these
two models. When testers wear our crafted patches, they are
able to effectively bypass the face detectors, whereas wear-
ing no patches or random patches does not yield the evasion
effect.

C. Comparisons With Baselines

As explained in Section IV-A, two previously proposed FD
evasion attacks [29], [31] can be used as baseline to compare with
our methods. We select the Light-DSFD [81] and Yoloface [82],
as representative target FD models to attack, and employ our
generated patches to assess the effectiveness of these attacks.

To provide greater detail, our comparative study is conducted
at three distinct distances (30 cm, 60 cm, and 90 cm) between
the tester and the camera. We choose these specific distances to
investigate and analyze how each distance impacts the success
rate of attacks. We have also integrated the evaluation of other
environmental factors, such as lighting conditions and viewing
angles, along with the distance consideration. For each distance,
we capture a total of 200 patched face images at various times of
the day and different viewpoints (as detailed in Section IV-A).
The attack success rate is calculated as the percentage of patched
images that successfully evade detection by the target model.

Table I presents our EoA attack results in contrast to the two
selected baseline methods [29], [31], across various target mod-
els and distances. It is evident that our EoA attack consistently
outperforms the baseline methods. Notably, at the distance of
60 cm, our attack stands out with a significantly higher and
more impressive attack success rate (i.e., 97.5%) compared to
the baseline methods. This effectiveness is remarkable, espe-
cially considering that our approach can simultaneously subvert
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Fig. 10. Confidence reduction across different FD models due to EoA adversarial attack.

Fig. 11. Generating adversarial patches on medical masks.

multiple black-box FD models, a capability unmatched by any
other existing methods.

D. Transferability and Robustness

The face detection (FD) models share a common attention
mechanism, with its core logic relying on the feature set of
the facial region. Our approach, EOA, generates misleading
texture or edge information through adversarial perturbations,
triggering shared underlying feature extraction biases across
different models and causing a cross-model attention shift. Due
to the nature of EOA, even when trained on earlier open-source
FD models, it remains effective in evading relatively newer FD
systems. Furthermore, since the perturbation design of EOA
does not rely on specific model gradients but instead on the
interpretability of attention distribution, it demonstrates strong
robustness in real-world scenarios.

To demonstrate the robustness and transferability of the EOA
algorithm, we selected an additional set of six newer FD models,
RetinaFace6, CenterFace7, YOLO8Face8, SCRFD9, DBFace10

6https://github.com/bubbliiiing/retinaface-pytorch
7https://github.com/Star-Clouds/CenterFace/tree/master/prj-python
8https://github.com/hpc203/yolov8-face-landmarks-opencv-dnn
9https://github.com/deepinsight/insightface/tree/master/detection/scrfd
10https://github.com/dlunion/DBFace/tree/master

and UltraFace11, for testing. To clearly illustrate the evasion
effect of EOA, we compared the confidence levels of these
FD models on faces without perturbation versus those with
adversarial interference. The change in confidence intuitively
shows that the EOA algorithm effectively evades even the latest
FD models, despite being trained on earlier open-source FD
models. It is important to note that this study specifically evalu-
ates the confidence calibration of the model’s native outputs.
In commercially deployed black-box FD systems, additional
facial quality assessment modules are often used to filter cap-
tured images, reducing false positives and negatives in the FD
pipeline. In such settings, the effectiveness of EOA is further
enhanced.

We captured testers’ photos at distances of 30 cm, 60 cm, and
90 cm from the camera under both dark and light conditions,
with 50 photos per group. During each session, the tester adopted
multiple postures, including turning, tilting and looking straight,
ensuring their eyes were always visible. For consistency, pos-
tures were standardized across all groups.

Fig. 10 shows our results. In the figure, the notations L30,
L60, L90 and D30, D60, D90 respectively denote experimen-
tal measurements under two illumination conditions and three
sensor-object distances, defined as:
� L (Light condition): illumination intensity ≥ 100 lx
� D (Dark condition): illumination intensity ≤ 10 lx
� 30/60/90: distance between the imaging sensor and the

target object (unit: cm)
We evaluated each group’s confidence levels under adversarial

attacks (orange) versus non-adversarial conditions (green), with
a number in each bar representing the confidence reduction
caused by EoA adversarial attacks. A high confidence level

11https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-
1MB
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Fig. 12. Random patches (row 1) and the corresponding detection results when wearing them (row 2).

Fig. 13. Representative hat-wearing experiments (blank: No patch, noise: Random patch, and hide: No face detected).

indicates a higher likelihood that a face has been detected.
Among all models, RetinaFace exhibited the highest face de-
tection accuracy without patches across different distances and
lighting conditions, while also achieving significantly effective
evasion results when using EoA-generated patches.

The FD evasion experiment on UltraFace in light environ-
ments yielded strong results; however, due to its inability to
detect faces in dark conditions, its evasion effectiveness in
low-light settings could not be assessed. Overall, analysis of
other models indicates that EoA effectively enables face detec-
tion evasion across most environments and models. Notably,
while YOLO8Face and DBFace showed some resistance to
patches in light environments, they failed to defend against the
evasion attack in dark conditions.

We observed that when other conditions are the same, the FD
confidence levels are generally higher in light condition than
in dark condition, no matter with or without patches. The low
confidence level with a patch in the dark environment indicates
easier evasion from FD systems.

As for the distance, we observed that distance has a varying
impact on confidence levels. For example, under light condition,
for the RetinaFace, DBFace, and UltraFace model, the patch
makes confidence level decline when distance increase from 30
to 60, but rise again when distance increase from 60 to 90. For
the other three models, the patch makes the confidence level
increase as the distance increases, meaning it’s easier to detect
faces when distance increases. Analyzing the model parameters
and input images, we found that greater distances could possibly
result in reduced clarity of the adversarial patch captured by
the camera. Additionally, some models significantly resize input
images, further degrading patch clarity. As the patch becomes
less distinct, its ability to divert the model’s attention weakens,
reducing the likelihood of evasion.

E. Ablation Study

In EoA, we construct an ensemble of M publicly available
models to compute PAHM. In this section, we conduct ablation
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TABLE III
CONFIDENCE LEVEL OF DIFFERENT SIZES OF PATCHES (LOWER CONFIDENCE

INDICATES BETTER EVASION)

experiments to illustrate the influence of the parameterM on the
effectiveness of the proposed attack. We use the same experi-
mental settings and systems as detailed in Section IV-C, and vary
the number of public models utilized for generating adversarial
patches: (1) M = 1 (MTCNN); (2) M = 2 (MTCNN + Pyra-
midbox); (3) M = 3 (MTCNN + Pyramidbox + Facebox). The
corresponding results of the attacks are presented in Table II.

The results show that increasing the value of M (representing
the number of models in the ensemble) results in a higher attack
success rate. This demonstrates that using three public models
(i.e., M = 3) is better than using just one or two (i.e., M = 1
or 2) models. Specifically, using the 60 cm distance as the
example, the efficacy improvement from raising M from 1 to
2 is 40%, and the gain from raising M from 2 to 3 amounts to
12%. This pattern reveals that as the number of models included
increases, the incremental gain begins to diminish. Consider-
ing that each increment of M incurs additional computational
overhead, the setting of M = 3 in our implementation strikes a
balance of delivering satisfactory performance and effectiveness
while avoiding excessive computational burdens. Further ex-
periments, which involve random model selection, confirm that
once the value of M is determined, altering the combinations of
FD models does not substantially impact efficacy. This finding
provides a solid foundation for model selection as detailed in
Section IV-A.

F. Impact of Patch Configurations

In previous sections, we used a patch with a size of 5 cm ×
6 cm to carry out the experiment. Larger patches, which cover
more of the face, result in a more pronounced adversarial effect
as the patch area increases. To more comprehensively explore the
potential of this approach in practical applications, this section
investigates the evasion effect of smaller patches in the physical
world. Specifically, we conducted additional tests using patches
with widths of 3 cm and 4 cm, and carefully evaluated their
performance under three face detection models: RetinaFace,
YOLO8Face, and CenterFace. These results were then compared
with those from 5cm-wide patches. To ensure fairness during
training, all initial patches were placed symmetrically on both
sides of the nasal wings, without covering any key facial features.
The results are shown in the Table III, where lower confidence
level indicates better evasion results.

The experimental results align with our expectations: as the
size of the adversarial patch decreases, its effectiveness drops
rapidly across all three models. This indicates that the 5 cm-
wide patch represents the smallest area that still retains strong
adversarial properties. In future work, we aim to further explore

TABLE IV
CONFIDENCE LEVEL OF DIFFERENT POSITIONS OF PATCHES (LOWER

CONFIDENCE INDICATES BETTER EVASION)

TABLE V
COMPARISON OF CONFIDENCE LEVELS BETWEEN COLORED AND

BLACK-AND-WHITE PATCHES (LOWER CONFIDENCE INDICATES BETTER

EVASION)

the potential for reducing patch size without compromising
effectiveness.

Next, we examined the impact of patch position on the face.
Using the position from previous experiments as a baseline,
we compared it with alternative placements, shifted outward
and downward, while ensuring no key facial features were
obstructed. We conducted tests on the RetinaFace, CenterFace,
and YOLO8Face models, capturing 20 images under L30, L60,
and L90 lighting conditions, and calculated the average confi-
dence score as the evaluation metric. The results, summarized
in Table IV, indicate that patches applied to the cheeks (closer
to the eyes than the mouth) yield the most effective results. In
general, placements near the eyes proved more effective than
those near the mouth.

Finally, we conducted an experimental analysis on the color
of the patch. Using black-and-white patches as a baseline, we
tested the effect of colored patterns on the adversarial patches.
The training process kept the same parameters and input images,
changing the initial mask from pure black to a random color,
thus generating colored adversarial patches. We evaluated these
patches on existing FD models, with the attack effects of color
patch versus black-and-white patch on RetinaFace presented in
Table V. The results show that colored patches perform less
effectively than black-and-white patches under both bright and
dark conditions. Our analysis suggests that, during the process
of generating color patches, some adversarial characteristics are
encoded in the color itself, which can be affected by factors like
lighting intensity and camera hardware in real-world settings.
This leads to discrepancies between the patch colors captured by
the FD system and the original colors, diminishing the adversar-
ial effect, particularly in dark conditions. Additionally, we found
that training color patches requires three channels, whereas
black-and-white patches only need one channel, making the
training of color patches more time and resource-intensive. The
conditions L30, L60, L90, D30, D60, and D90 are defined in
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Section IV-D. The confidence levels for D30, D60, and D90 are
lower than those for L30, L60, and L90, as the face detection
(FD) model performs less effectively in dark environments.

G. Video-Based Adversarial Effectiveness Analysis

We’ve created four demonstration videos (available through
the same GitHub repository) showcasing our method. One video
features no adversarial patch, while the other three include
adversarial patches.

When a face is detected, the FD model displays a blue rect-
angle around it; otherwise, no output is shown. All videos were
recorded using the same FD model under consistent lighting
conditions and identical patch configurations, as detailed in
Sections IV-F and IV-D. To evaluate the robustness of the ad-
versarial patches generated by the EoA algorithm, we recorded
videos while introducing variations in head orientation, cam-
era distance, and facial expressions like in a dynamic, real-
world environment. The confidence threshold of the FD model
was set to match that of a typical commercial face detection
system.

We’ve summarized the statistical results from the videos,
showing the proportion of frames in which faces were detected
versus not detected. 1) In the video featuring adversarial attack at
a distance of 30 cm from the camera, there are 575 frames in total:
faces were detected in only 3 frames, while the remaining 572
showed no detection; 2) In the video featuring adversarial attack
at a distance of 60 cm from the camera, there are 645 frames in
total: faces were detected in only 11 frames, while the remaining
634 showed no detection; 3)In the video featuring adversarial
attack at a distance of 90 cm from the camera, there are 352
frames in total: faces were detected in only 19 frames, while
the remaining 333 showed no detection; 4) In the video without
adversarial attacks, recorded at distances of 30, 60, and 90 cm
under consistent lighting conditions, all 647 frames resulted in
successful face detection.

We analyze video frames by grouping them according to facial
features and angles. Our findings show that it’s easier to evade
the face detection with patches when the face turns to wider
angles than when the face is oriented directly toward the camera.
This can be attributed to the FD model’s stronger performance in
detecting frontal faces under normal conditions without patches.
Overall, our adversarial patch demonstrates great robustness to
facial deflection, leading to good evasion results when applied
to non-frontal faces.

In addition, we compared the evasion performance across
different facial expressions and found that most expressions do
not alter the patch’s position, and thus have minimal impact on
its effectiveness. Interestingly, certain uncommon facial expres-
sions may even lower the detection accuracy of the FD model.

H. Generating More Imperceptible Patches

In the aforementioned experiments, we manage to fool various
FD applications, models, and camera devices, causing them in-
capable of detecting faces correctly. The adversarial patches we
create, despite of their capability to divert the detector’s attention
away from the actual facial area, may draw human attention

Fig. 14. Case study: The attack success rates against yoloface model.

when they are worn on individual’s cheeks. In order to craft
adversarial patches that maintain a visually natural appearance
(for human imperceptibility), we introduce a novel loss term that
takes into account human attention. This approach is inspired by
a method described in [83].

In details, we create a target pattern, denoted as T0, which
contains a strong semantic connection with the context of the
scenario. The human attention loss, represented as Lh, is de-
signed within the following equation to make adversarial patches
closely align with this target pattern:

Lh = ‖(θ · (1−T0) + 1)� (Tadv −T0)‖22 (6)

where θ is the hyper-parameter, θ · (1−T0) + 1 is the weight
tensor with the same dimension as T0, and � denotes the
element-wise multiplication. Accordingly, (5) can be updated as
follows by adding the human attention loss Lh into the original
total loss L, where β is a hyper-parameter like γ for balancing.

L = LPAHM + γLTV + βLh (7)

Case Study: We present a case study to illustrate the practical
application and effectiveness of our imperceptible adversarial
patches. In response to the global COVID-19 pandemic, trans-
portation hubs have upgraded their FD systems to accommodate
the identification of passengers wearing medical masks. In light
of this development, we craft adversarial patches to be applied
to medical masks, effectively deceiving these advanced FD
systems. This aligns closely with the trend of many medical
masks featuring visually appealing patterns to attract consumers.
Specifically, we select a target pattern (Fig. 11(a)), and then
follow (7) to craft adversarial patches based on this pattern
(Fig. 11(b)). This is more imperceptible than the patches gener-
ated previously. Subsequently we attach this patch to a medical
mask (Fig. 11(c)), which can be employed to successfully evade
the face detection.

To quantitatively assess the effectiveness of the human atten-
tion loss Lh, we select the Yoloface model as a representative
victim model, and compare the attack success rates in different
scenarios: 1) adversarial mask with Lh; 2) adversarial patch on
the cheeks without Lh; 3) adversarial patch on the cheeks with
Lh. Fig. 14 presents the comparison results. We notice that the
inclusion of the human attention loss term Lh results in only a
minor decrease in the success rate. This is a promising outcome
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as it suggests that the patch becomes more imperceptible while
preserving a high level of effectiveness. This also enables the
possibility of integrating the patches seamlessly into facial or
head coverings to make the patches less noticeable.

V. LIMITATIONS, DISCUSSION, FUTURE WORKS

Limitation in attacking 3-Dimension FD systems: Evaluations
in Section IV demonstrate that our attack is capable of compro-
mising common black-box FD apps and models. Nevertheless,
it is essential to acknowledge the potential resilience of more
advanced systems to our approach. A prime example is Apple’s
implementation of structured light technology for the Face ID
module on the iPhone, which projects small infrared dots onto
a user’s face and estimates its 3D shape [84]. This advanced
technique effectively mitigates FD evasion attempts (including
ours) based on 2D images. Our attempts to utilize adversarial
patches to subvert the iPhone unlocking function yielded no
success; however, we were able to successfully subvert the
unlocking functions of the other three smartphones, as they rely
on a purely camera-based solution for facial detection. Another
example is Lidar-based FD [85], [86], which builds point cloud
models to recognize faces. Our attack primarily focuses on
targeting the facial surfaces, and hence could not circumvent 3D
detection mechanisms. Such advanced detection methods have
not been widely commercialized due to the significant expenses
associated with sensing. In the future, we plan to enhance our
methods to cover these advanced FD methodologies.

Limitation in attacking face recognition systems: In this paper,
we focus on attacking the FD systems, which is tasked with
identifying the presence of human faces. There exists another
category of applications, namely face recognition, which further
serves the purpose of recognizing the identity of the face [4],
[5]. Numerous works have studied strategies for launching at-
tacks towards the latter category, in both digital [87], [88] and
physical domains [89], [90]. Methods have been explored in
both white-box [90], [91] and black-box settings [13]. However,
these solutions are still distance away from being generally ef-
fective when it comes to targeting more diverse face recognition
applications in the real world. This sheds light for our future
endeavors.

We would like to clarify the difference between face detection
evasion attack and the above face recognition adversarial attacks.
Face detection (FD) is a fundamental computer vision technique
that identifies the presence of human faces in images or videos.
It plays a critical role in various applications such as face
alignment, face recognition, facial expression analysis, and face
tracking. In face recognition adversarial attacks, the attacker
aims to cause misclassification of adversarial face images by
recognition systems. That is, their objective is prevent the system
from correctly matching the target individual with their true
identity in the database, or cause the system to mistakenly
recognize the target individual as another specific person. In
contrast, in face detection evasion, the attacker’s goal is to
prevent face detection systems from detecting faces in images
or to reduce the system’s confidence in detected faces, rendering
the target individual undetectable.

Extended attacks: We mainly target at face hiding through
attacks in this paper. Another type of attacks is appearing attack,
which goal is to deceive the detector into recognizing non-face
objects, overlaid with patches, as actual faces. Similar concepts
have been explored in prior studies for general object detection
tasks [34], [71]. In our future work, we intend to extend our
EoA approach to incorporate this type of attack. Rather than
diverting the detector’s attention, the objective can be to direct
its focus on adversarial patches, leading to potential wrongful
face recognition.

Patch configuration and optimization: Our approach aligns
with prior research such as [29] in terms of the dimensions,
positioning, and configurations of adversarial patches. This
paper, grounded in their empirical parameter settings, priori-
tizes the investigation of strategies to achieve generality of the
solution and maximize attack success rates. Future work can
include the systematic exploration of optimal attributes (such
as placement, size, and shape) of adversarial patches for attack
effectiveness. Considerations may also involve techniques for
rendering patches imperceptible to human detection, such as
reducing patch size and integrating them seamlessly into facial
or head coverings, such as QR code on a hat.

More extreme environmental conditions: When designing ad-
versarial patches, we take into account various environmental
factors, such as distance, viewing angles, and lighting condi-
tions. Consequently, our attack remains robust against the spec-
ified range of variations. However, more extreme environmental
conditions, such as poor lighting, long distances, image blur or
distortion, could potentially render our patches ineffective. To
further increase the robustness of adversarial patches, in future
research we will seek to augment carrier images with effects
derived from these extreme conditions.

Possible defense strategies: Currently, there is no well-known
FD system specifically designed to blur or eliminate facial
patches. Our work targets this vulnerability and demonstrates
effective results, highlighting the need for FD systems to be
enhanced against interference from such adversarial patches,
an insight we aim to contribute to the field. Furthermore, our
method serves as a tool to evaluate the security and robust-
ness of face detection models deployed in real-world. When
our adversarial patches successfully bypass a target system, it
underscores the need to strengthen its defense mechanisms.
Based on our experimental experience, we propose the follow-
ing defense strategies to mitigate the risk of physical-domain
adversarial patch attacks in face detection systems:

1) Defense through Image Pre-processing: The generation
of adversarial patches depends on input images, where
the quality is intricately tied to the camera resolution
and shooting distance. For the attack to be effective, the
adversarial patch must be fully present in the input image.
Missing or damaged parts, as well as variations in camera
resolution, can significantly reduce its effectiveness. By
introducing frequency domain interference or spatial do-
main degradation processing in the image pre-processing
process between the image acquisition module and the
detection module, the effectiveness of adversarial patch
attacks can be effectively weakened.
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2) Generative Defense Framework: The first step is to local-
ize the abnormal patch region on the face. Once identified,
a pre-trained diffusion model is used to progressively
reconstruct the affected area. This reconstruction is guided
by the constraint of preserving the individual’s original
identity features. Through multi-step iterative sampling,
the model gradually restores natural facial textures, ef-
fectively transforming the adversarial perturbations into
visually plausible and non-aggressive pixels.

3) Enhanced Detection System: Defenders can address the
limitations of traditional five-point detection models by:
a) enhancing spatial representation with more keypoint de-
tections (e.g., >20 points); b) adopting 3D face detection
models to improve face recognition using depth informa-
tion; c) integrating data from visible light, near-infrared, or
thermal imaging to construct a multi-modal face detection
system based on diverse physical characteristics; and (d)
utilizing images with adversarial patches to fine-tune the
original face detection network, thereby increasing robust-
ness against such attacks.

Alternative FD evasion methods: Our review noted several
studies that attempt to evade or bypass face detection (FD) using
optical interference techniques. These include: [92] generating
adjustable, invisible laser perturbations directed at the camera’s
CMOS sensor; [93] projecting digital adversarial patterns onto
the attacker’s face using a projector; [32] emitting invisible
infrared light spots from a hat-mounted LED; and [33] using
near-infrared signals emitted through devices resembling glasses
to interfere with the camera. Notably, these methods rely on
specialized optical equipments, which may inadvertently affect
human vision due to strong light exposure. Although they pursue
a similar objective, these methods are not directly comparable
to ours.

VI. CONCLUSION

In this paper, we introduce a physical-world adversarial attack
targeting black-box face detection (FD) systems. Leveraging the
attention heat map’s capacity to reflect the FD model’s focus,
we devise an attention-based loss function to divert the detec-
tor’s focus, rendering it incapable of identifying faces wearing
adversarial patches. The creation the Public Attention Heat map
(PAHM) is key to enabling the generality and robustness of our
adversarial patches, allowing us to successfully compromise
black-box FD systems across multiple platforms (smartphones,
laptop, suveillance camera, etc.), all without prior knowledge
of the detection algorithms. Moreover, we employ a human
attention loss function to demonstrate a successful strategy of
generating and camouflaging adversarial patches as part of face
covering (such as medical masks in a case study), to make
our attack more imperceptible while preserving effectiveness
in evading FD models.
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