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Abstract—In both military operations and the commercial 
world, cyber situation awareness (SA) is a key element of 
mission assurance. Due to the needs for mission damage and 
impact assessment and asset identification (and 
prioritization), cyber SA is beyond intrusion detection and 
attack graph analysis. In this paper, we propose a cross-layer 
situation knowledge reference model (SKRM) to address the 
unique cyber SA needs of real-world missions. SKRM 
provides new insight on how to break the “stovepipes” created 
by isolated situation knowledge collectors and gain 
comprehensive level big picture awareness. Through a 
concrete case study, we show that SKRM is the key enabler 
for two SA capabilities beyond intrusion detection and attack 
graph analysis. The potentials and the current limitations of 
SKRM and SKRM-enabled analysis are also discussed.   

Keywords—Cyber situation awareness, mission-driven 
analytics, damage and impact assessment, asset identification 
and prioritization 

I. INTRODUCTION 
A. Cyber Situation Awareness 
Organizations rely on business intelligence (BI) software to 
eliminate the “data rich but information poor” problem and gain 
organizational Situation Awareness (SA) [16]. Similarly, SA is a 
necessary pre-requisite for military or enterprise organizations to 
achieve “intelligence” for cyber security analysis [12]. To better 
secure a network, human decision makers should clearly know 
what is going on in the network. This is basically what we call 
cyber situation awareness (cyber SA). Like traditional SA, cyber 
SA also contains four levels: perception, comprehension, 
projection [8] and resolution [17]. McGuinness and Foy [17] use 
an analogy to explain these four levels: perception represents 
“What are the current facts?” Comprehension means, “What is 
actually going on?” Projection asks, “What is most likely to 
happen if …?” And Resolution means, “What exactly shall I do?” 

Achieving complete and accurate cyber SA is critical for security 
analysis. Technologies regarding cyber security have made 
remarkable progress in the past decades. A lot of algorithms and 
tools are developed for vulnerability analysis, intrusion detection, 
damage and impact assessment, and system recovery, etc. 
However, much of the work in security analysis is from isolated 
microscopic perspectives, but do not explicitly consider how to 
enhance human security analysts’ overall cyber situation 
awareness. Tons of data and information are presented to security 
analysts from all different levels such as business, network, or 
system, but how can the information be combined to extract the 
most critical knowledge of current security situation for human 
analysts’ easy digestion and understanding? There are experts 
from different areas for the same security topic, but how can they 
effectively communicate with each other? For example, 
experienced business managers can immediately notice unusual 

financial loss, but they definitely cannot tell whether the loss is 
caused by a buffer overflow attack towards one workstation. In 
the opposite direction, an operating system expert can quickly 
notice an abnormal system call from the log, but cannot tell how 
this could affect the business flow of the company. Therefore, a 
macroscopic framework should be established to integrate cyber 
knowledge from different perspectives by coupling data, 
information, algorithms and tools, and human knowledge, to 
enhance cyber analysts’ situation awareness. 

The four levels of cyber SA is expected to enable capabilities such 
as mission damage and impact assessment, and asset identification 
(and prioritization) for real-world mission assurance. Mission 
damage and impact assessment is essential to identify and track 
the relevant causality relationships during attacks and subsequent 
damage propagation. Besides, mission asset analysis is expected 
to identify and classify critical mission assets into categories like 
“polluted”, “clean but in danger”, and “clean and safe”. These 
capabilities will greatly ease the decision making process and 
facilitate network security management. However, such cyber SA 
capabilities should be based on big-picture awareness and are 
hindered by the following “stovepipe” problem. 

B. The “Stovepipe” Problem 
Both of the above two capabilities require perception, 
comprehension, projection and resolution of the involved (data 
and code) elements at different abstraction levels of the computer 
and information system semantics. Specifically, damage can be 
identified at the business process level, application/service level, 
operating system object (file or process) level or instruction level 
(memory unit, instruction, register and disk sector). However, for 
a more comprehensive assessment, the capability needs to be 
based on a multi-level understanding and cross-level awareness. 
For example, system experts exactly know which file is stolen or 
modified, but they hardly know how this can impact the business 
level. On the other hand, business managers can rapidly notice a 
suspicious financial loss, but they won’t relate it to an un-allowed 
system call parameter inside the operating system. That is, current 
security solutions are usually restricted and isolated by their 
corresponding abstraction levels, such as workflow healing [30], 
intrusion detection [3, 22], attack graph analysis [11, 21, 25, 28], 
OS-level dependency tracking [15] and recovery [29], and 
instruction-level taint analysis [13, 19, 31]. When they come to 
cyber SA, we need them to effectively “talk” to each other and 
help security analysts achieve overall situation awareness. 

In this paper, we refer to such “isolation” between different 
knowledge bases as “stovepipe” problem. The above-mentioned 
abstraction levels are one kind of “stovepipes”, because they 
cause security analytics bound to individual levels of semantics 
abstraction. Desired capabilities are also hindered by other 
stovepipes scattered in existing security analytics. For example, 
this problem is compounded by non-integrated security tools such 
as vulnerability scanners, anti-virus/malware sensors, monitors 



and loggers, IDS, and compartmentalization (processes, physical 
machines, network segments) on the same abstraction level. 
Actually, compared with the abstraction levels as horizontal 
stovepipes, this second kind of “stovepipes” are vertical 
stovepipes. For example, hosts in an enterprise network could 
function as isolated vertical stovepipes, causing some security 
solutions to be “stovepiped”. Specifically, although workflow 
management and attack graph analysis are inherently able to cover 
the whole network, technologies such as OS-level dependency 
tracking and instruction-level taint analysis were originally 
designed to only cover a single host.  

As a result, today’s security diagnosis and analytics, such as those 
based on intrusion detection and attack graph analysis, are 
inherently stovepiped, either horizontally or vertically. SAs 
extracted from these individual situation knowledge collectors are 
just isolated “pieces”. Desired large picture outcomes cannot be 
gained without a holistic understanding of the entire scenario. 
Therefore these individual elements must be stitched together in 
an interconnected cross-layer “big picture”, which we call “big 
picture awareness”. This broader view of cyber SA goes beyond 
intrusion detection and attack graph analysis and becomes a key 
enabler of capabilities essential for future cyber operations. 

C. Major Challenges 
To enable the capability of mission damage and impact 
assessment and asset identification (and prioritization), we have to 
gain big picture awareness. To gain big picture awareness, we 
have to first address the stovepipe problem. Several non-trivial 
challenges exist in accessing and modeling cross-layer data and 
applying it in mission-driven analytics: 

 First, we have to identify the stovepipes existing in an 
enterprise network, including horizontal (e.g., 
abstraction levels) and vertical (e.g., compartments). 

 Second, we have to recognize or develop inter-
compartment and cross-abstraction-level analytical 
technologies to break the corresponding stovepipes. 

 Third, we have to integrate the isolated network 
situation knowledge into a “big picture” based on the 
above two breakthroughs, and further enable the “big-
picture oriented” diagnosis. 

D. Approach and Contributions 
In a word, the availability of sea of sensed information opens up 
fascinating opportunities to understand both mission and 
adversary activity through modeling and analytics. This will 
require creative mission-aware analysis of heterogeneous data 
with cross-compartment and cross-abstraction-layer dependencies 
in the presence of significant uncertainty and untrustworthiness.   
This paper is an effort for cross-compartment and cross-
abstraction-level integration to gain big picture awareness. To 
address the above-mentioned challenges, we present an enterprise 
network situation knowledge reference model (SKRM, shown in 
Fig. 1) with multiple abstraction layers. Basically, SKRM is a 
framework that integrates cyber knowledge from different 
perspectives by coupling data, information, algorithms and tools, 
and human knowledge, to enhance cyber analysts’ situation 
awareness. SKRM is a natural yet critical “next-step” we achieve 
towards gaining big picture awareness. Our main contributions 
can be presented as follows: 

1) We categorize enterprise network situation knowledge and 
thus identify the abstraction layers of SKRM: the Workflow 
Layer, App/Service Layer, Operating System Layer and 
Instruction Layer. Each layer, from top to bottom, is 

characterized by additional fine-grained granularity. We 
regard these abstraction layers as horizontal stovepipes and 
the compartments (business tasks, applications or services, 
processes or files, memory units or disk sectors, etc.) on the 
corresponding abstraction layer as vertical stovepipes. 
 

2) To break these stovepipes, we introduce, extend or develop 
diagnosis technologies into the mission-driven analytics. 
For example, to leverage the information in the 
compartments, inter-compartment data or control 
dependency tracking technologies are brought and extended 
into SKRM. These include workflow data or control 
dependency mining [1, 18, 30], service dependency 
discovery [5, 6], OS-level dependency tracking [15, 29], 
and instruction-level taint tracking [13, 19, 31].  

 
To break the horizontal stovepipes (e.g., abstraction layers), 
cross-abstraction-layer semantics bridging technologies are 
introduced or developed into SKRM. Basically, these 
capture cross-layer (mapping, translation or causality) 
relationships in-between different levels of computer and 
information system semantics. For instance, as shown in Fig. 
6, a logical dependency Attack Graph [21, 24, 28] is 
vertically inserted between the App/Service Layer and 
Operating System Layer. This attack graph enables 
causality representation and tracking between network 
service level pre-conditions (configuration and vulnerability 
information) and identification of successful exploits at the 
OS level.  
 

3) Based on the above two breakthroughs, we further propose 
and formalize the multi-layer enterprise network SKRM 
model as the integrator of isolated network situation 
knowledge. As such, SKRM proves its value as an enabler 
of cross-layer diagnosis capability like mission damage and 
impact assessment and asset identification (and 
prioritization). As a new type of SA support system, SKRM 
breaks both vertical (e.g., compartments) and horizontal 
stovepipes (e.g., abstraction levels), through inter-
compartment and cross-abstraction-layer interconnection, 
respectively. SKRM enables both inter-compartment 
analysis and cross-layer diagnosis, and thus support big 
picture awareness. Each abstraction layer of SKRM covers 
the entire network to integrate inter-compartment awareness 
of all the mission assets at that layer. Each layer generates a 
graph that provides us a view of the same network from a 
different perspective and granularity. SKRM also captures 
the cross-layer relationships (e.g., mapping, translation, and 
semantics bridging) to offer cross-layer diagnosis, which 
will be the “soul” of this model. SKRM results in a graph 
stack composed of all the graphs and the cross-layer edges, 
in an integrated fashion, transforming isolated SA into a 
shared, scalable, stovepipe-breaking and “big-picture-
oriented” SA. 

In this paper, we propose and formalize the SKRM model and 
perform a concrete case study based on the business/mission 
scenario shown in Fig. 7 under a 3-step attack. We deploy various 
sensors or detectors to collect real data and explain how to 
generate the SKRM graph stack, as well as how to use it to 
perform systematic cross-layer analysis. The analytical results 
show that SKRM is indeed the key enabler of mission damage and 
impact assessment and asset identification (and prioritization) to 
support SA, beyond intrusion detection and attack graph analysis. 
In our conclusion, the potentials and current limitations of SKRM 
and SKRM-enabled diagnosis are further discussed. 
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Fig. 1 The proposed enterprise network Situation Knowledge Reference Model (SKRM) 

 

II. Related Work 
Different security technologies and tools inspect and handle 
different aspects of security problems, and each one has 
something in which it excels. For example, the workflow 
management technology investigates the data and control 
dependencies of tasks at the business process level and enables 
intrusion recovery; network or vulnerability scanners such as 
Nmap, OVAL and Nessus are powerful to explore useful 
information about operating systems, ports, connections and 
exploits; network packet interception and traffic monitoring 
technologies with Wireshark [27] and Ntop [20] are forceful to 
look into the network status; IDS systems like Bro [22] and Snort 
[26] provide alerts when network traffic matches known patterns; 
attack graph analysis like MulVAL reveals causality relationships 
between configurations, vulnerabilities and exploits and thus can 
be used to locate the attack paths; OS-level dependency tracking 
classifies OS-level objects into files and processes, and tracks 

backward or forward dependencies between them to identify 
intrusion roots; instruction-level taint analysis classifies 
instruction level entities into memory cells, registers, disk sectors, 
etc., and captures the fine-grained data or control dependencies 
between them caused by instruction flows [31]. However, these 
security technologies are isolated because they are not designed to 
automatically connect to each other by nature. The diagnosis 
based on these individual elements provides only perception 
(Level 1 SA [8]). Desired outcomes and capabilities such as 
mission damage and impact assessment and asset identification 
(and prioritization) are not adequately supported without a 
comprehension of the larger picture (Level 2 SA [8]). 

Therefore, the above-mentioned stovepipes exist between the 
current security technologies and hinder the capabilities for 
mission assurance. Some security products and research in the 
community have made progress from isolated technologies to 



holistic picture such as ArcSight [2], QualysGuard [23], PEDA[31] 
and the research for managing business health under malicious 
attacks[32], but the stovepipe problem has not been completely 
resolved. Specifically, as a leading enterprise security information 
and event management (SIEM) system, ArcSight provides a 
correlation engine to visualize the security management of user 
activities, event logs and intrusion alerts. As a web-based 
vulnerability scanner, QualysGuard delivers IT security and 
compliance as a service to combine the business-level view and 
the network-level view. The work in PEDA generates an 
Instruction Layer and performs cross-layer infection diagnosis to 
bridge the “semantic gap” between the Instruction Layer and 
Operating System Layer [31]. Also, a framework is proposed in 
[32] to enable the impact analysis of the business-level 
implications of attacks on the underlying IT systems in real 
enterprises. All these outcomes are only partial solutions to gain 
big picture awareness. 

Today’s existing security solutions are still inherently limited by 
data isolation, which has not been adequately addressed by current 
technologies. This paper addresses this issue via breaking such 
isolation and integrating different perspectives and granularities 
seamlessly into the SKRM model. 

III. SKRM Model 
A. SKRM Overview and Features 
As shown in Fig. 1, the SKRM model seamlessly integrates four 
abstraction layers of cyber situation knowledge in an enterprise 
network. From top to bottom, they are Workflow Layer, 
App/Service Layer, Operating System Layer and Instruction Layer. 
As the layer goes down, more detailed and technical information 
is presented, from business process to the computer semantics and 
instructions, all at different granularities. 

The abstraction layers are by essence the horizontal stovepipes of 
the enterprise network situation knowledge. Hence, they are 
abstracted by categorizing isolated situation knowledge, in terms 
of different levels of computer and information system semantics 
as well as corresponding expertise, of an enterprise network. In 
specific, workflow systems are popular to ensure the correctness 
of daily business/mission processes. Dependencies between a 
particular application and corresponding multi-services are 
invaluable to ensure the stability and efficiency of the application 
[5]. OS object (file or process) dependencies are useful to 
backward or forward track the intrusion propagation. Dynamic 
instruction taint tracking is powerful to enable fine-grained 
intrusion harm analysis. Based on an extensive literature 
exploration, the Workflow Layer, App/Service Layer, Operating 
System Layer and Instruction Layer are proposed as important 
layers in the SKRM. The roles of each of these four abstraction 
layers are explained below. 

SKRM is not a simply mapping from situation knowledge to a set 
of abstraction layers shown in Fig. 1. Rather, it is a combination 
of two transformative ideas, interconnecting the perception level 
elements into comprehension level awareness. 

1) Every abstraction layer must cover the entire data network. 
The layer must integrate and interconnect our awareness of 
all the network assets (hosts, file systems, memory, and 
networking) at that layer. This idea is to break vertical 
stovepipes (e.g., compartments).  

2) Cross-layer analysis is the “soul” of SKRM. That is, the 
cross-layer relationships (e.g., mapping, translation, and 
semantics bridging) are captured by SKRM. This idea is to 
break horizontal stovepipes (e.g., abstraction levels).  

The following are the main features of the SKRM model: 

 Each abstraction layer generates a graph, and each 
graph covers the entire enterprise network; 

 Cross-layer relationships are captured. The individual 
graphs are interconnected to become a graph stack; 

 The graph stack enables both inter-compartment 
diagnosis and cross-layer analysis; 

 Each abstraction layer is a view of the same network 
from a different perspective and thus at a different 
granularity; 

 Isolated perception that is gained at different 
layers/granularities is integrated into a more 
comprehensive, scalable system to support higher levels 
of SA, namely comprehension and projection. 
 

B. SKRM Layers 
 

1) Workflow Layer 
 

Workflow management is the primary technology for 
organizations to perform their daily business processes [30]. A 
workflow is composed of several essential tasks in order to 
complete a business process. These tasks are arranged in a 
specific order and dependent on each other. If the workflow 
management system is compromised, the attacker can forge or 
corrupt the tasks and data in the workflow by malicious injection 
or modification. The corrupted workflow may behave abnormally, 
such as changing the execution paths. Organizations should have a 
consistent and reliable execution path of workflow to function 
well. Therefore, we first propose a Workflow Layer in SKRM to 
capture the business/mission processes within an enterprise. 
 
 

 Definition 1 (Workflow Layer):  
The graph of Workflow Layer can be represented by a 
directed graph G(V, E), where V is the set of nodes 
(tasks) and E is the set of directed edges (immediate 
precedence relations). If (ti, tj)∈E, then (ti, tj) is a 
directed edge pointed from task ti to task tj, and tj should 
be executed subsequently to ti. The directed edges 
derive the data and control dependency relationships 
among tasks according to their definitions in [6]. A 
workflow G(V, E) has a start node with 0-indegree, and 
some end nodes with 0-outdegree. Any path from the 
start node to the end node is an execution path. 

The Workflow Layer shown in Fig. 1 could be referred to as an 
example. In the example, the workflow is composed of 7 tasks for 
a business process. As examples of dependency relations, t3, t4, t5 
are all control dependent on t2 and t4 is data dependent on t2. 
These tasks can be executed following different orders, and thus 
form different execution paths. 

2) App/Service Layer 

As defined in [14], workflows are broken into several individual 
“block tasks” to execute, and each block task is then resolved as a 
sub-workflow into a set of “tasks”. That is, the execution of 
workflows ultimately concludes in the execution of tasks, which 
further depend on the proper function of specific application 
software. Moreover, according to Chen et al. [5], the functionality, 
performance and reliability of a particular application may rely on 
multiple pre-requisite services, spanning many relevant hosts or 
other components in the network. Hence, we propose an 
App/Service Layer in SKRM to capture the applications and 
services on which the execution of workflows depends. 
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several automated discovery of dependencies have been proposed 
in the field. For examples, [4, 14] derive service dependencies 
from network traffic patterns, while Chen et al. [5] discover 
service dependencies based on an observation that “the traffic 
delay distribution between dependent services often exhibits 
typical spikes that reflect the underlying delay for using or 
providing these services”. Our graph generation of App/Service 
Layer (shown in Fig. 3) adopts the scheme presented in [5]. 
Service dependencies (for dependency) and network connections 
(for reachability) are differentiated with red and blue colors. 

3) Inter-host OS Level Dependency Tracking 
According to [8-9], (recent) system call audit logs can be used to 
determine the dependency relation type between two OS level 
objects. Hence, following such “dependency rules”, system calls 
can be resolved to process-file dependency relations, which will 
then be merged to become then OS object level dependency graph. 

One thing to emphasize is that we extend the single-host OS 
object dependency graph to incorporate the socket-based 
communications between programs, by which we can know 
whether a local program has been influenced by any remote 
programs through message passing. This way, the individual 
dependency graphs generated at each host are literally stitched 
together. Therefore, the Operating System Layer also covers the 
whole network, rather than only focuses on a single host. This is 
especially helpful for inter-host intrusion root identification. Fig. 4 
is our resulted graph of OS Layer, incorporating such inter-host 
extensions illustrated with blue dotted arrows. We also use the red 

color to highlight the infected OS-level objects. Inter-host 
extensions are demonstrated to help reveal the propagation of 
infection. 

4) Instruction Level Taint Tracking 

 Fig. 5 The graph of Instruction Layer 

Two parts of work could be performed at the Instruction Layer, as 
suggested by [31]. First, fine-grained taint analysis can be applied 
to generate instruction flow dependency, which contains valuable 
binary information. Second, cross-layer infection diagnosis can be 
performed to bridge the “semantic gap” between Instruction Layer 
and Operating system Layer, by dynamically mapping each 
instruction flow with corresponding system objects. Therefore, the 
outcome graph of Instruction Layer shown in Fig. 5 includes two 
kinds of nodes: instruction-level objects (memory cells or disk 
sectors represented with rectangles) and mapped OS-level objects 
(processes or files represented with ellipses). 
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B. Cross-layer Interconnection 
Cross-layer diagnosis is critical for SKRM model, as traversing 
from one layer to another layer along the edges would lead to 
expected new information and ultimately a holistic understanding 
of the whole scenario. However, it cannot be achieved without the 
fulfillment of cross-layer interconnection. Only with inter-
compartment interconnection we still lack the capture of cross-
layer relationships that can break horizontal stovepipes. 

1) Cross-layer Semantics Bridging 

Basically, cross-layer relationships are captured by semantics 
bridging (specifically, mapping, translation, etc.) in-between the 
adjacent two abstraction layers of computer and information 
system semantics. In specific, association between the workflow 
tasks at Workflow Layer and the particular applications at 
App/Service Layer can be mined from the network traces with 
workflow logs, and can be used to create bi-directional mappings 
between them. The mappings between OS level objects and 
instruction level objects can be achieved by developing a 
reconstruction engine such as the one presented in [31]. The 
purple bi-directional dotted lines between adjacent layers in Fig. 1 
illustrate such mappings. 

2) Attack Graph Representation and Generation 

Specially, we interconnect the App/Service Layer and OS Layer 
by vertically inserting a dependency Attack Graph between them. 
This enables the causality representation and tracking between 
App/Service Layer pre-conditions (network connection, machine 
configuration and vulnerability information) and OS Layer 
symptoms/patterns of successful exploits. 

 Definition 5 (dependency Attack Graph):  
The dependency Attack Graph (AG) can be represented 
with a directed graph G(V,E), where V is the set of 
nodes and E is the set of directed edges. There are two 

kinds of nodes in the attack graph (refer to the attack 
graph of Fig. 6): derivation nodes (represented with 
ellipses) and fact nodes. The fact nodes could be further 
classified into primitive fact nodes (represented with 
rectangles) and derived fact nodes (represented with 
diamonds). The directed edges represent the causality 
relationships between the nodes. 

In the dependency Attack Graph, one or more fact nodes could 
serve as the preconditions of a derivation node and cause it to take 
effect. One or more derivation nodes could further cause a derived 
fact node to become true. Each derivation node represents an 
application of an interaction rule given in [28] that yields the 
derived fact. Let’s take our generated attack graph (Fig. 6) for 
example: Node 26, 27 (primitive fact node) and Node 23 (derived 
fact node) could cause Node 22 (derivation node) to take effect, 
and Node 22 could further cause Node 14 (derived fact node) to be 
valid. Besides, a derived fact node may have different ways to 
become true. 

Fig. 1 illustrates a subset of Fig. 6. Fig. 1 also illustrates the 
interconnection of the dependency Attack Graph with its adjacent 
two layers. The conversion from App/Service Layer information 
(network connection, host configuration, scanned vulnerability) to 
the primitive nodes in Attack Graph is resulting from the Datalog 
representation before attack graph generation [28]. The mapping 
from the derived fact nodes in Attack Graph to the OS Layer 
intrusion symptoms (such as the system call sequence [10], 
intrusion pattern, signature, etc.) can be achieved by bi-directional 
inter-host OS level dependency tracking proposed above, using 
the OS level instances of host or service configuration as input. 
For example, the process “/usr/sbin/sshd” instantiates sshd, and 
“/etc/exports” instantiates unfsd. Tracking “/usr/sbin/sshd” 
would reveal the repeated pattern of accessing sshd-related 
processes and files, indicating the occurrence of Node 14 in the 
dependency AG. 
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Fig. 6 The dependency Attack Graph



V. Case Study 
The security analyst needs to leverage information across different 
abstraction layers to diagnose an attack and assess its impact in an 
enterprise network. Business-level symptoms (alerts raised by 
human managers at high layer) or system level events (alerts 
provided by security monitoring systems like Snort, tripwire, anti-
virus, etc.) are all invaluable to compensate the situation 
awareness of each other.  

Since SKRM is proposed to break stovepipes through cross-layer 
diagnosis, we present the following case study to demonstrate that 
the SKRM graph stack is useful to enable capabilities toward 
holistic perception and comprehension. It is also an illustration of 
the practical generation of the SKRM graph stack to perform 
cross-layer analysis. 

A. Implementation 
To illustrate the application of SKRM framework to cyber 
security analysis, we implement a web-shop in our test-bed which 
uses a business scenario similar as the one described in [30]. To 
observe the network under cyber-attack, we further implement a 
3-step attack scenario as in [21, 28] with different vulnerability 
choices (CVE-2008-0166-OpenSSL brute force key guessing 
attack, NFS mount misconfiguration, CVE-2009-2692-bypassing 
mmap_min_addr). The test-bed business and attack scenario is 
shown in Fig. 7.  

In addition, we also deploy intrusion detectors and auditing tools 
in our web-shop test-bed, such as the Nessus server to scan for the 
vulnerability and machine information of all the hosts, the 
MulVAL reasoning engin to generate the attack graph, Snort and 
Ntop to detect intrusions and monitor the network traffic, and 
strace to intercept and log system calls. We leverage these 
situation knowledge collectors to acquire real data for further 
cross-layer security diagnosis. 

 

Fig. 7 The test-bed network and attack scenario 

B. Capability: Mission Asset Identification and 
Classification 

Usually an obvious intrusion symptom of an enterprise is the 
business level financial loss. The responsibility of security 
analysts is to reason over such symptoms so as to identify the 
exact intrusion root and all the infected mission assets, for better 
protection and recovery. That is, the capability of mission asset 

identification and classification is required. As shown in Fig. 8, 
top-down cross-layer SKRM diagnosis will enable this capability. 

Workflow 
Layer

App/Service 
Layer

OS Layer

dependency AG

downward traversing cross-layer edges

forward inter-host dependency/taint tracking

t2 is responsible for changing the execution path from non-member service path P1 to 
member service path P2

Host-switch level mission assets (Web Server, NFS Server and Workstation) are classified 
to be “clean but in danger” because they are critical for transactions about t2.

financial loss

Application level mission assets (tikiwiki and sshd for the Web Server, samba and unfsd
for NFS Server and Linux kernel (2.6.27) for the Workstation) are classified to be “clean 
but in danger” because they are involved in the attack paths.

OS-object level mission assets (process - /usr/sbin/sshd and files - /root/.ssh/
authorized_keys, /etc/passwd, /etc/ssh/ssh_host_rsa_key for the Web Server) are classified 
to be “clean but in danger” because they are mapped to the above-tagged 
applications/services.

5

The above-mentioned OS objects are updated to be “polluted” because of the mapping 
between the “repeating” dependency pattern on OS Layer graph and a vulnerability 
exploitation in dependency AG .

Corresponding mission assets at different levels are updated from the status of “clean but 
in danger” to “polluted” by reverse tracking.

OS-object level mission assets (/mnt/wunderbar_emporium.tar.gz on Web Server, /export
on NFS Server, /mnt/wunderbar_emporium.tar.gz, /home/workstation/workstation_attack/
wunderbar_emporium and /home/workstation on Workstation) are classified to be 
“polluted” because of the propagation of pollution.

 Fig. 8 Mission asset identification and classification 

Generally, mission asset identification and prioritization achieves 
at the identification and classification of host-switch level, 
application level and OS-object level mission critical assets into 
such classes as “polluted”, “clean but in danger”, and “clean and 
safe”. For example, the business managers of the web-shop found 
the profit much lower than expected. Through analysis on the 
Workflow Layer (Fig. 2), the security analysts suspected that non-
member attackers cheated by getting service from the web-shop 
via the member service path P2. According to the control 
dependence relation in the workflow, they found that task t2 is 
responsible for changing the execution path from P1 to P2 (step 1). 
So they tracked down the cross-layer edges between Workflow 
Layer and App/Service Layer, with particular inspection on task t2 

(step 2). Such cross-layer edges revealed the critical host-switch 
level mission assets involved in transactions about t2: Web Server, 
NFS Server and Workstation. Hence, as the most possible attack 
goals, these assets were tagged into “clean but in danger”. The 
analysts further tracked down the cross-layer edges between 
App/Service Layer and OS Layer (step 3), and found that there 
were four possible attack paths in the dependency AG: {23, 14, 6, 
4, 1}, {16, 14, 11, 9, 6, 4, 1}, {16, 14, 6, 4, 1} and {23, 14, 11, 9, 
6, 4, 1}. The four paths all lead to the compromise of Web Server, 
NFS Server, and Workstation, but exploit vulnerabilities of 
different applications/services. Fig. 6 differentiates the paths with 
red, blue, purple and green colors respectively. All the application 
level mission assets involved in the four attack paths were 
regarded as “clean but in danger”: tikiwiki and sshd for the Web 
Server, samba and unfsd for NFS Server and Linux kernel (2.6.27) 
for the Workstation.  

The analysts continued to track down the cross-layer edges from 
dependency AG to OS Layer, and identified fine-grained OS-
object level mission assets: process - /usr/sbin/sshd and files - 
/root/.ssh/authorized_keys, /etc/passwd, /etc/ssh/ssh_host_rsa_key 
for the Web Server (step 4). These objects were considered as 
“clean but in danger”. The mapping between the “repeating” 
dependency pattern on OS Layer graph (Fig. 4) and Node 27 in 
dependency AG (Fig. 6) confirmed the exploitation of CVE-2008-
0166. Therefore, the above-mentioned OS objects related to this 
vulnerability on Web Server could be determined as “polluted”. 



Further forward dependency tracking on the dependency graph 
discovered a file named /mnt/wunderbar_emporium.tar.gz was 
created and thus “polluted” on the Web Server (step 5). Inter-host 
OS dependency tracking helped reveal the propagation of such 
pollution: the file sharing directory /export on NFS Server was 
“polluted”; the files or directories named 
/home/workstation/workstation_attack/wunderbar_emporium, 
/mnt/wunderbar_emporium.tar.gz, and /home/workstation on 
Workstation were all “polluted”. In a similar way, the memory 
cells or disk sectors at Instruction Layer corresponding to the 
system objects could also be classified into these categories. 

Through reverse tracking to the upper layers, the status of Web 
Server and its service sshd, NFS Server and its services unfsd, 
mountd, Workstation and its service sshd were all updated from 
“clean but in danger” to “polluted”. In a word, through such top-
down cross-layer SKRM-based analysis, mission assets at the 
host-switch level, application/service level and OS-object level 
could all be identified and further classified into such classes as 
“polluted”, “clean but in danger” and “clean and safe”. 

C. Capability: Mission Damage and Impact Assessment 
Security monitoring systems, such as Snort, tripwire, anti-virus, 
etc., are effective tools to provide us intrusion alerts, but do not 
offer us the exact damage and impact. As shown in Fig. 9, the U-
shape cross-layer SKRM-enabled analysis helps us to achieve 
comprehensive damage and impact assessment. 

 
Fig. 9 Mission damage and impact assessment 

The scenario begins with a normal status for the web-shop 
business, but Snort suddenly gives an alert indicating a brute force 
attack on the Web Server (sshd). The security analyst would like 
investigate the Web Server and start to inspect (scan) its 
information of applications and services (step 1). The downward 
traversing cross-layer edges between App/Service Layer and OS 
Layer reveals the repeated pattern of accessing sshd-related 
processes and files, confirming the occurrence of Node 14 
(indicating successful exploit) in the dependency AG (step 2). 
Further through the process, the inter-host dependency tracking at 
the OS Layer identifies the intrusion taint seeds: the file named 
/mnt/wunderbar_emporium.tar.gz on the Web Server, the 
directory named /export on the NFS Server and the files or 
directories named /mnt/wunderbar_emporium.tar.gz, 
/home/workstation/workstation_attack/wunderbar_emporium and 
/home/workstation on the Workstation (step 3). Using these as 
input, downward traversing the cross-layer edges between OS 
Layer and Instruction Layer helps to identify the tainted memory 
and disk units (step 4). The forward inter-host taint tracking at the 
Instruction Layer located the fine-grained impacts on victim hosts 
(step 5). At this point, the OS-level and Instruction-level damage 
has been identified: the above files and directories were all 
infected and performing malicious actions at the OS Layer and 
their memory or disk space were therefore tainted on Instruction 
Layer. This triggered the analyst to perform another round of 

bottom-up analysis to comprehend the damage at other layers. The 
analyst tracks upward along the cross-layer edges between OS 
Layer and dependency AG, and determined the attack path (step 6 
and 7). The attack path, combined with the abnormal behavior on 
OS Layer, led the analyst to the missing intrusion intent of the 
attacker: the financial membership information under the 
directory named /home/workstation on Workstation is the 
evidence of the root cause of the damage. The mappings between 
dependency AG and App/Service Layer show the specific pre-
conditions of the exploits (step 8). The vulnerabilities and 
inappropriate configurations at App/Service Layer allow the 
damage to be caused. Finally, the analyst tracks upward to the 
cross-layer relationships between App/Service Layer and 
Workflow Layer (step 9), and finds that: task t2 was compromised, 
so the web-shop’s service path was changed from non-member 
service path {t1, t2, t3, t4, t6, t7} to the member service path {t1, t2, t5, 
t6, t7} at Workflow Layer and enables significant financial damage 
to occur.  

In a word, SKRM enables a U-shape cross-layer analysis, as 
illustrated in Fig. 9, to assess systematic damage and its impact 
from multi-layer semantics. 

VI. Discussion 
From the case study above, we identify that SKRM-enabled 
analytics can exceed the reach of intrusion detection and attack 
graph analysis, through inter-compartment awareness and cross-
layer analysis (top-down, bottom-up, U-shape, etc.). SKRM 
actually has the potential to enable other capabilities. For example, 
attack path determination and attack intent identification were also 
involved in the above U-shape cross-layer diagnosis. The 
potential capabilities would be explored in future work, including 
but not limited to:  

 U-shape cross-layer diagnosis may help us understand 
the adversary activity, including the attack path 
determination and attack intent identification. 

 Bottom-up cross-layer analysis may help evaluate 
mission impact. 

 Cross-layer Bayesian networks could be constructed to 
reason about uncertainty. 

 Top-down cross-layer analysis may help us construct 
mission asset map based on asset classification. 

 Comprehensive analysis may help us simulate different 
strategic mitigation plans. 

 Comprehensive analysis may provide insights for 
intrusion recovery. 

 Knowledge representation could be enabled for 
cognitive engineering. 

In addition to the potentials, the current SKRM and SKRM-
enabled analytics have some limitations. Although some tools 
have been developed to generate parts of the SKRM graph stack, 
the current version of SKRM is still semi-automatic, gaining 
computer-aided human centric cyber SA. Additional work is still 
required to evaluate the utility of SKRM in the scale of a real 
enterprise and more complex scenarios. Our future work will 
focus on addressing such limitations. 

VII. Conclusion 
Current cyber SA based on the technologies in intrusion detection 
and attack graphs lack the capability to address the needs of 
mission damage and impact assessment and asset identification 
(and prioritization). This paper proposes a cross-layer Situation 
Knowledge Reference Model (SKRM) that combines the isolated 



situation knowledge collectors and provides comprehension from 
a larger perspective. It breaks both the vertical and horizontal 
stovepipes through inter-compartment and cross-abstraction-layer 
interconnection. Through a concrete case study based on a 
business scenario in the presence of a 3-step attack, we 
specifically explain how to generate the graph stack and use it to 
perform the cross-layer analysis. The results show that SKRM 
provides expected SA cues beyond intrusion detection and attack 
graph analysis. We also discuss the potentials and the current 
limitations of SKRM and SKRM-enabled analysis. 
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