Gaining Big Picture Awareness through an Interconnected
Cross-layer Situation Knowledge Reference Model

Jun Dai, Xiaoyan Sun, Peng Liu, Nicklaus Giacobe

College of Information Sciences and Technology
Pennsylvania State University
University Park, PA 16802, USA
{iqd5187, xzs5052, pliu, nxg13}@ist.psu.edu

Abstract—In both military operations and the commercial
world, cyber situation awareness (SA) is a key element of
mission assurance. Due to the needs for mission damage and
impact assessment and asset identification (and
prioritization), cyber SA is beyond intrusion detection and
attack graph analysis. In this paper, we propose a cross-layer
situation knowledge reference model (SKRM) to address the
unique cyber SA needs of real-world missions. SKRM
provides new insight on how to break the “stovepipes” created
by isolated situation knowledge collectors and gain
comprehensive level big picture awareness. Through a
concrete case study, we show that SKRM is the key enabler
for two SA capabilities beyond intrusion detection and attack
graph analysis. The potentials and the current limitations of
SKRM and SKRM-enabled analysis are also discussed.

Keywords—Cyber situation awareness, mission-driven
analytics, damage and impact assessment, asset identification
and prioritization

I INTRODUCTION

A. Cyber Situation Awareness

Organizations rely on business intelligence (BI) software to
eliminate the “data rich but information poor” problem and gain
organizational Situation Awareness (SA) [16]. Similarly, SA is a
necessary pre-requisite for military or enterprise organizations to
achieve “intelligence” for cyber security analysis [12]. To better
secure a network, human decision makers should clearly know
what is going on in the network. This is basically what we call
cyber situation awareness (cyber SA). Like traditional SA, cyber
SA also contains four levels: perception, comprehension,
projection [8] and resolution [17]. McGuinness and Foy [17] use
an analogy to explain these four levels: perception represents
“What are the current facts?” Comprehension means, “What is
actually going on?” Projection asks, “What is most likely to
happen if ...?” And Resolution means, “What exactly shall | do?”

Achieving complete and accurate cyber SA is critical for security
analysis. Technologies regarding cyber security have made
remarkable progress in the past decades. A lot of algorithms and
tools are developed for vulnerability analysis, intrusion detection,
damage and impact assessment, and system recovery, etc.
However, much of the work in security analysis is from isolated
microscopic perspectives, but do not explicitly consider how to
enhance human security analysts’ overall cyber situation
awareness. Tons of data and information are presented to security
analysts from all different levels such as business, network, or
system, but how can the information be combined to extract the
most critical knowledge of current security situation for human
analysts’ easy digestion and understanding? There are experts
from different areas for the same security topic, but how can they
effectively communicate with each other? For example,
experienced business managers can immediately notice unusual

financial loss, but they definitely cannot tell whether the loss is
caused by a buffer overflow attack towards one workstation. In
the opposite direction, an operating system expert can quickly
notice an abnormal system call from the log, but cannot tell how
this could affect the business flow of the company. Therefore, a
macroscopic framework should be established to integrate cyber
knowledge from different perspectives by coupling data,
information, algorithms and tools, and human knowledge, to
enhance cyber analysts’ situation awareness.

The four levels of cyber SA is expected to enable capabilities such
as mission damage and impact assessment, and asset identification
(and prioritization) for real-world mission assurance. Mission
damage and impact assessment is essential to identify and track
the relevant causality relationships during attacks and subsequent
damage propagation. Besides, mission asset analysis is expected
to identify and classify critical mission assets into categories like
“polluted”, “clean but in danger”, and “clean and safe”. These
capabilities will greatly ease the decision making process and
facilitate network security management. However, such cyber SA
capabilities should be based on big-picture awareness and are
hindered by the following “stovepipe” problem.

B. The “Stovepipe” Problem

Both of the above two capabilities require perception,
comprehension, projection and resolution of the involved (data
and code) elements at different abstraction levels of the computer
and information system semantics. Specifically, damage can be
identified at the business process level, application/service level,
operating system object (file or process) level or instruction level
(memory unit, instruction, register and disk sector). However, for
a more comprehensive assessment, the capability needs to be
based on a multi-level understanding and cross-level awareness.
For example, system experts exactly know which file is stolen or
modified, but they hardly know how this can impact the business
level. On the other hand, business managers can rapidly notice a
suspicious financial loss, but they won’t relate it to an un-allowed
system call parameter inside the operating system. That is, current
security solutions are usually restricted and isolated by their
corresponding abstraction levels, such as workflow healing [30],
intrusion detection [3, 22], attack graph analysis [11, 21, 25, 28],
OS-level dependency tracking [15] and recovery [29], and
instruction-level taint analysis [13, 19, 31]. When they come to
cyber SA, we need them to effectively “talk” to each other and
help security analysts achieve overall situation awareness.

In this paper, we refer to such “isolation” between different
knowledge bases as “‘stovepipe” problem. The above-mentioned
abstraction levels are one kind of “stovepipes”, because they
cause security analytics bound to individual levels of semantics
abstraction. Desired capabilities are also hindered by other
stovepipes scattered in existing security analytics. For example,
this problem is compounded by non-integrated security tools such
as vulnerability scanners, anti-virus/malware sensors, monitors

and loggers, IDS, and compartmentalization (processes, physical
machines, network segments) on the same abstraction level.
Actually, compared with the abstraction levels as horizontal
stovepipes, this second kind of “stovepipes” are vertical
stovepipes. For example, hosts in an enterprise network could
function as isolated vertical stovepipes, causing some security
solutions to be “stovepiped”. Specifically, although workflow
management and attack graph analysis are inherently able to cover
the whole network, technologies such as OS-level dependency
tracking and instruction-level taint analysis were originally
designed to only cover a single host.

As a result, today’s security diagnosis and analytics, such as those
based on intrusion detection and attack graph analysis, are
inherently stovepiped, either horizontally or vertically. SAs
extracted from these individual situation knowledge collectors are
just isolated “pieces”. Desired large picture outcomes cannot be
gained without a holistic understanding of the entire scenario.
Therefore these individual elements must be stitched together in
an interconnected cross-layer “big picture”, which we call “big
picture awareness”. This broader view of cyber SA goes beyond
intrusion detection and attack graph analysis and becomes a key
enabler of capabilities essential for future cyber operations.

C. Major Challenges

To enable the capability of mission damage and impact
assessment and asset identification (and prioritization), we have to
gain big picture awareness. To gain big picture awareness, we
have to first address the stovepipe problem. Several non-trivial
challenges exist in accessing and modeling cross-layer data and
applying it in mission-driven analytics:

e First, we have to identify the stovepipes existing in an
enterprise network, including horizontal (e.g.,
abstraction levels) and vertical (e.g., compartments).

e Second, we have to recognize or develop inter-
compartment and cross-abstraction-level analytical
technologies to break the corresponding stovepipes.

e Third, we have to integrate the isolated network
situation knowledge into a “big picture” based on the
above two breakthroughs, and further enable the “big-
picture oriented” diagnosis.

D. Approach and Contributions

In a word, the availability of sea of sensed information opens up
fascinating opportunities to understand both mission and
adversary activity through modeling and analytics. This will
require creative mission-aware analysis of heterogeneous data
with cross-compartment and cross-abstraction-layer dependencies
in the presence of significant uncertainty and untrustworthiness.
This paper is an effort for cross-compartment and cross-
abstraction-level integration to gain big picture awareness. To
address the above-mentioned challenges, we present an enterprise
network situation knowledge reference model (SKRM, shown in
Fig. 1) with multiple abstraction layers. Basically, SKRM is a
framework that integrates cyber knowledge from different
perspectives by coupling data, information, algorithms and tools,
and human knowledge, to enhance cyber analysts’ situation
awareness. SKRM is a natural yet critical “next-step” we achieve
towards gaining big picture awareness. Our main contributions
can be presented as follows:

1) We categorize enterprise network situation knowledge and
thus identify the abstraction layers of SKRM: the Workflow
Layer, App/Service Layer, Operating System Layer and
Instruction Layer. Each layer, from top to bottom, is

characterized by additional fine-grained granularity. We
regard these abstraction layers as horizontal stovepipes and
the compartments (business tasks, applications or services,
processes or files, memory units or disk sectors, etc.) on the
corresponding abstraction layer as vertical stovepipes.

2) To break these stovepipes, we introduce, extend or develop
diagnosis technologies into the mission-driven analytics.
For example, to leverage the information in the
compartments, inter-compartment data or control
dependency tracking technologies are brought and extended
into SKRM. These include workflow data or control
dependency mining [1, 18, 30], service dependency
discovery [5, 6], OS-level dependency tracking [15, 29],
and instruction-level taint tracking [13, 19, 31].

To break the horizontal stovepipes (e.g., abstraction layers),
cross-abstraction-layer semantics bridging technologies are
introduced or developed into SKRM. Basically, these
capture cross-layer (mapping, translation or causality)
relationships in-between different levels of computer and
information system semantics. For instance, as shown in Fig.
6, a logical dependency Attack Graph [21, 24, 28] is
vertically inserted between the App/Service Layer and
Operating System Layer. This attack graph enables
causality representation and tracking between network
service level pre-conditions (configuration and vulnerability
information) and identification of successful exploits at the
OS level.

3) Based on the above two breakthroughs, we further propose
and formalize the multi-layer enterprise network SKRM
model as the integrator of isolated network situation
knowledge. As such, SKRM proves its value as an enabler
of cross-layer diagnosis capability like mission damage and
impact assessment and asset identification (and
prioritization). As a new type of SA support system, SKRM
breaks both vertical (e.g., compartments) and horizontal
stovepipes (e.g., abstraction levels), through inter-
compartment and cross-abstraction-layer interconnection,
respectively. SKRM enables both inter-compartment
analysis and cross-layer diagnosis, and thus support big
picture awareness. Each abstraction layer of SKRM covers
the entire network to integrate inter-compartment awareness
of all the mission assets at that layer. Each layer generates a
graph that provides us a view of the same network from a
different perspective and granularity. SKRM also captures
the cross-layer relationships (e.g., mapping, translation, and
semantics bridging) to offer cross-layer diagnosis, which
will be the “soul” of this model. SKRM results in a graph
stack composed of all the graphs and the cross-layer edges,
in an integrated fashion, transforming isolated SA into a
shared, scalable, stovepipe-breaking and “big-picture-
oriented” SA.

In this paper, we propose and formalize the SKRM model and
perform a concrete case study based on the business/mission
scenario shown in Fig. 7 under a 3-step attack. We deploy various
sensors or detectors to collect real data and explain how to
generate the SKRM graph stack, as well as how to use it to
perform systematic cross-layer analysis. The analytical results
show that SKRM is indeed the key enabler of mission damage and
impact assessment and asset identification (and prioritization) to
support SA, beyond intrusion detection and attack graph analysis.
In our conclusion, the potentials and current limitations of SKRM
and SKRM-enabled diagnosis are further discussed.

*anode is a task
*a blue line is an execution path
*ayellow line is an unexecuted path
*a green dotted line s a control dependency
*a red line is a data dependency

> ~N
N
‘\ AN > ~
‘ \ N\ AN Workflow Layer
‘\ \ N
\
\ \ ~
N <
\ N ~
DNS Server \ (172.18434.4, 3306, tcp) > (172.18.34.5, 2049, tcp/udp)
N
(192.168.101.*, 53, tcp) \ Database Server NFS Server
— v f *a node is an application or service

(*, 80, tep) (192,168.101.5, 80, tcp)
3rd Party Web Server A Web Server.
/" (192168.10%5, 798 tepludp)

~

wrsva NFS4 Server

| *a line is a service dependency
| —— service dependency

| ~— network connection
(10.0.3, 973, tcp)
Financial Workstation

\
/ / \

,

App/Servic%: Layer

\
\

/ /
/ \
25 hacl(internet,web T9:attackerLocated| \ |
Server,tcp,22) (internet)/ \ Dependency Attack Graph

<ZZRULET(direct network access)> \

i 2
| Serveropensslicp,22.r00) | ‘0155' openssl,

e : ;

|
, “CVE-2008- ‘

fileServer, “/export’ ,
write, webServer)

*an edge is a causality relation
*a rectangle node is a primitive fact node
*an ellipse node is a rule node
*a diamond node is a derived fact node

&

\Web Server
—
eIl _ost_rsa KEy—>

\\

Jusr/bin/ssh

NEssener

Workstation

*an edge is a dependency (7 types)
*a blue arrow is an extension from host to network

== S~

[Mem addr[4bf0000,4K], [4bff000, 4K]

Thinlgzip process: loads
telgroup, fetc/ld.so.cache, e

Mem addr[4b92000,12K], [4bcf000,4K]

tar process:
oads /lib/libe.s0.6, fetc/selinux/config,, ete

Sector(268821, 120), ...

*a node is a register, memory cell, or instruction
*an edge is a data/control dependency

Instruction Layer

Fig. 1 The proposed enterprise network Situation Knowledge Reference Model (SKRM)

Il. Related Work
Different security technologies and tools inspect and handle
different aspects of security problems, and each one has
something in which it excels. For example, the workflow
management technology investigates the data and control
dependencies of tasks at the business process level and enables
intrusion recovery; network or vulnerability scanners such as
Nmap, OVAL and Nessus are powerful to explore useful
information about operating systems, ports, connections and
exploits; network packet interception and traffic monitoring
technologies with Wireshark [27] and Ntop [20] are forceful to
look into the network status; IDS systems like Bro [22] and Snort
[26] provide alerts when network traffic matches known patterns;
attack graph analysis like MulVAL reveals causality relationships
between configurations, vulnerabilities and exploits and thus can
be used to locate the attack paths; OS-level dependency tracking
classifies OS-level objects into files and processes, and tracks

backward or forward dependencies between them to identify
intrusion roots; instruction-level taint analysis classifies
instruction level entities into memory cells, registers, disk sectors,
etc., and captures the fine-grained data or control dependencies
between them caused by instruction flows [31]. However, these
security technologies are isolated because they are not designed to
automatically connect to each other by nature. The diagnosis
based on these individual elements provides only perception
(Level 1 SA [8]). Desired outcomes and capabilities such as
mission damage and impact assessment and asset identification
(and prioritization) are not adequately supported without a
comprehension of the larger picture (Level 2 SA [8]).

Therefore, the above-mentioned stovepipes exist between the
current security technologies and hinder the capabilities for
mission assurance. Some security products and research in the
community have made progress from isolated technologies to

holistic picture such as ArcSight [2], QualysGuard [23], PEDA[31]
and the research for managing business health under malicious
attacks[32], but the stovepipe problem has not been completely
resolved. Specifically, as a leading enterprise security information
and event management (SIEM) system, ArcSight provides a
correlation engine to visualize the security management of user
activities, event logs and intrusion alerts. As a web-based
vulnerability scanner, QualysGuard delivers IT security and
compliance as a service to combine the business-level view and
the network-level view. The work in PEDA generates an
Instruction Layer and performs cross-layer infection diagnosis to
bridge the “semantic gap” between the Instruction Layer and
Operating System Layer [31]. Also, a framework is proposed in
[32] to enable the impact analysis of the business-level
implications of attacks on the underlying IT systems in real
enterprises. All these outcomes are only partial solutions to gain
big picture awareness.

Today’s existing security solutions are still inherently limited by
data isolation, which has not been adequately addressed by current
technologies. This paper addresses this issue via breaking such
isolation and integrating different perspectives and granularities
seamlessly into the SKRM model.

Il. SKRM Model

A. SKRM Overview and Features

As shown in Fig. 1, the SKRM model seamlessly integrates four
abstraction layers of cyber situation knowledge in an enterprise
network. From top to bottom, they are Workflow Layer,
App/Service Layer, Operating System Layer and Instruction Layer.
As the layer goes down, more detailed and technical information
is presented, from business process to the computer semantics and
instructions, all at different granularities.

The abstraction layers are by essence the horizontal stovepipes of
the enterprise network situation knowledge. Hence, they are
abstracted by categorizing isolated situation knowledge, in terms
of different levels of computer and information system semantics
as well as corresponding expertise, of an enterprise network. In
specific, workflow systems are popular to ensure the correctness
of daily business/mission processes. Dependencies between a
particular application and corresponding multi-services are
invaluable to ensure the stability and efficiency of the application
[5]. OS object (file or process) dependencies are useful to
backward or forward track the intrusion propagation. Dynamic
instruction taint tracking is powerful to enable fine-grained
intrusion harm analysis. Based on an extensive literature
exploration, the Workflow Layer, App/Service Layer, Operating
System Layer and Instruction Layer are proposed as important
layers in the SKRM. The roles of each of these four abstraction
layers are explained below.

SKRM is not a simply mapping from situation knowledge to a set
of abstraction layers shown in Fig. 1. Rather, it is a combination
of two transformative ideas, interconnecting the perception level
elements into comprehension level awareness.

1) Every abstraction layer must cover the entire data network.
The layer must integrate and interconnect our awareness of
all the network assets (hosts, file systems, memory, and
networking) at that layer. This idea is to break vertical
stovepipes (e.g., compartments).

2) Cross-layer analysis is the “soul” of SKRM. That is, the
cross-layer relationships (e.g., mapping, translation, and
semantics bridging) are captured by SKRM. This idea is to
break horizontal stovepipes (e.g., abstraction levels).

The following are the main features of the SKRM model:

e Each abstraction layer generates a graph, and each
graph covers the entire enterprise network;

e Cross-layer relationships are captured. The individual
graphs are interconnected to become a graph stack;

e The graph stack enables both inter-compartment
diagnosis and cross-layer analysis;

e Each abstraction layer is a view of the same network
from a different perspective and thus at a different
granularity;

e Isolated perception that is gained at different
layers/granularities is integrated into a more
comprehensive, scalable system to support higher levels
of SA, namely comprehension and projection.

B. SKRM Layers
1) Workflow Layer

Workflow management is the primary technology for
organizations to perform their daily business processes [30]. A
workflow is composed of several essential tasks in order to
complete a business process. These tasks are arranged in a
specific order and dependent on each other. If the workflow
management system is compromised, the attacker can forge or
corrupt the tasks and data in the workflow by malicious injection
or madification. The corrupted workflow may behave abnormally,
such as changing the execution paths. Organizations should have a
consistent and reliable execution path of workflow to function
well. Therefore, we first propose a Workflow Layer in SKRM to
capture the business/mission processes within an enterprise.

= Definition 1 (Workflow Layer):

The graph of Workflow Layer can be represented by a
directed graph G(V, E), where V is the set of nodes
(tasks) and E is the set of directed edges (immediate
precedence relations). If (i, t) €E, then (t;, t) is a
directed edge pointed from task t; to task tj, and t; should
be executed subsequently to t;. The directed edges
derive the data and control dependency relationships
among tasks according to their definitions in [6]. A
workflow G(V, E) has a start node with 0-indegree, and
some end nodes with 0-outdegree. Any path from the
start node to the end node is an execution path.

The Workflow Layer shown in Fig. 1 could be referred to as an
example. In the example, the workflow is composed of 7 tasks for
a business process. As examples of dependency relations, ts, ts, ts
are all control dependent on t, and t, is data dependent on t,.
These tasks can be executed following different orders, and thus
form different execution paths.

2) App/Service Layer

As defined in [14], workflows are broken into several individual
“block tasks” to execute, and each block task is then resolved as a
sub-workflow into a set of “tasks”. That is, the execution of
workflows ultimately concludes in the execution of tasks, which
further depend on the proper function of specific application
software. Moreover, according to Chen et al. [5], the functionality,
performance and reliability of a particular application may rely on
multiple pre-requisite services, spanning many relevant hosts or
other components in the network. Hence, we propose an
App/Service Layer in SKRM to capture the applications and
services on which the execution of workflows depends.

= Definition 2 (App/Service Layer):

The graph of App/Service Layer can be represented by a
directed graph G(V, E;, E,), where V is the set of nodes
(applications or services), E; is the set of uni-directional
edges (dependencies), and E, is the set of bi-directional
edges (network connections). Service nodes are denoted
as a three-tuple (ip, port, protocol). If (A;, S;) €E;, then
(Ai, Sj) is a dependency relation from application A; to
service S;. If (S,, Sp) €EE,, then (Sy, S,) is a network
connection between service Sy, and service S,,.

For example, as illustrated on the App/Service Layer of Fig.

1, the tasks from t; to tg of the above workflow will all
leverage the application called “Avactis Server”, in order to
run the web-shop. This application further depends on four
services in the network: web service (httpd), database
service (mysqld), DNS service, 3,4 party web service (for
hotel reservations, etc.). As a result of such dependencies to
achieve application functionality, the web service (httpd)
has network connections to reach the other three services.

3) Operating System Layer
After locating the applications and services to execute the
workflow, further exploration is required inside the host.
Therefore, we introduce an Operating System Layer into SKRM
to build an OS-level dependency graph.

As shown on the Operating System Layer in Fig. 1, OS-level
entities can be classified into two kinds of objects: processes
denoted by rectangle and files by ellipse. Both process objects
(running code) and file objects (files in storage and memory) exist
in this layer, as well as “sockets for managing network
connections, pipes for doing IPC and many device interfaces” [29].

= Definition 3 (Operating System Layer):

The dependency graph at the OS Layer can be specified
by a directed graph G(V, E), where V is the set of nodes,
and E is the set of directed edges which means
immediate dependency relations. Each node is a system
object (mainly a process or a file inside a system). If (Np,
Ng) € E, then node N, is influencing Ng in a certain way
which we can call as dependency [15], represented as
edges in the graph. Dependency rules between objects
are defined in [15] and summarized in [29].

4) Instruction Layer

Fine-grained intrusion impact diagnosis may identify missed
intrusions at the process-file level intrusion analysis and help
“sweep out” victim taints later [31]. An Instruction Layer is
proposed in SKRM to specify and correlate the memory cells,
disk sectors, registers, kernel address space, and other devices. A
graph at the Instruction Layer can be generated based on mapping
each instruction flow to the corresponding system objects so as to
bridge the semantic gaps between OS Layer and Instruction Layer
[13, 31]. At this layer, the dynamic taint analysis semantics [19]
could be applied. The Instruction Layer of Fig. 1 illustrates such a
graph.

= Definition 4 (Instruction Layer):
A graph of the Instruction Layer can also be specified
by a directed graph G(V, E), where V is the set of nodes,
and E is the set of directed edges which mean direct
data or control dependence. A node is an instruction,
register, or memory cell. If (N5, Ng) €E, then node N is
data or control dependent on node Na.

IV. SKRM Graph Stack Generation

The above-identified abstraction layers are actually horizontal
stovepipes and the compartments (tasks, services, hosts, OS-level
objects, instruction-level objects) on the same layer are vertical
stovepipes. Such compartmentalization isolates the SA based on
these individual situation knowledge collectors. We propose the
following solutions of inter-compartment and cross-layer
interconnection, to respectively break the vertical and horizontal
stovepipes.

A. Inter-compartment Interconnection

The inter-compartment interconnection is actually the process of
generating the network-wide graph at the corresponding
abstraction layer.

1) Workflow Design and Workflow Mining
\ /"“\\
/,/"_.{ 3 J"__:(\;j//\\
d T K ey
P (./"L\ T e
@—@-
u B | 1L)
4

Fig. 2 The graph of Workflow Layer

There are two ways to generate the Workflow Layer. Primarily,
workflow can be designed and pre-specified by business managers
since the function of a workflow is to achieve a defined business
outcome by performing a set of logically related tasks. A
professional business manager can describe the specific units of
work that the business needs to perform (e.g., a web or database
service) and record them as tasks on the Workflow Layer.
Alternatively, we can also generate the Workflow Layer with a
method called workflow mining[1, 7, 9, 18]. The actual
workflows can be extracted by applying data mining technology
to the workflow log, which contains information about the
workflow process as it is actually being executed. Fig. 2 illustrates
our graph of Workflow Layer, applying the first method to the
same web-shop business scenario as in [30]. The graph helps us
recognize two different execution paths existing in the scenario -
P1: titotatstst; for non-members and P,: titotstgt; for members. We
call them non-member service path and member service path
respectively.

2) Service Dependency Discovery
[ISISSE OpenSSL Client [IISSY OpenSSL Server
bAva\msSeNer

I h\/};eh Client \
W/

| /]

(192.168.202.2, A7795, tcp) (1921681015, 22¢

(192.168.202.2] 39333, top) / (192.168.1015, 86,
|

——» service dependency
~«+——network connection

N(172.18.34.4, 3306, tcp)

|
Attacker |
Computef]

|
|/

Web Database

Server 0 Server

(172.18.34.4, 22, tcp)

wF3ea NFS4 Client

(192,168.101.%,53, top) \
ﬁ// ,’/

IDiESSE OpenSSL Server
DRSS OpenSSL Server
/

wrwwaNFS4 Server
mrmwa NFS4 Client

N

10003, 9?, tcp)
(*, 80, tcp) (172.18.34.5, 2049, tepludp) (100,03, 2

4 " tcp)
Third Party [N E— @
Web Server Server : Workstation
@) Q) < ; S

Fig. 3 The graph of App/Service Layer

The graph generation at the App/Service Layer relies on the
discovery of service dependencies. Exploiting human expert
knowledge is straight forward, but does not scale with the number
of applications/services in the enterprise [5]. As alternatives,

several automated discovery of dependencies have been proposed
in the field. For examples, [4, 14] derive service dependencies
from network traffic patterns, while Chen et al. [5] discover
service dependencies based on an observation that “the traffic
delay distribution between dependent services often exhibits
typical spikes that reflect the underlying delay for using or
providing these services”. Our graph generation of App/Service
Layer (shown in Fig. 3) adopts the scheme presented in [5].
Service dependencies (for dependency) and network connections
(for reachability) are differentiated with red and blue colors.

3) Inter-host OS Level Dependency Tracking
According to [8-9], (recent) system call audit logs can be used to
determine the dependency relation type between two OS level
objects. Hence, following such “dependency rules”, system calls
can be resolved to process-file dependency relations, which will
then be merged to become then OS object level dependency graph.

One thing to emphasize is that we extend the single-host OS
object dependency graph to incorporate the socket-based
communications between programs, by which we can know
whether a local program has been influenced by any remote
programs through message passing. This way, the individual
dependency graphs generated at each host are literally stitched
together. Therefore, the Operating System Layer also covers the
whole network, rather than only focuses on a single host. This is
especially helpful for inter-host intrusion root identification. Fig. 4
is our resulted graph of OS Layer, incorporating such inter-host
extensions illustrated with blue dotted arrows. We also use the red

color to highlight the infected OS-level objects. Inter-host
extensions are demonstrated to help reveal the propagation of
infection.

4) Instruction Level Taint Tracking

[sl o000 3%, oo 4891} +—

(4692000, 12K), (4bcf000,4K)..| 89, 0832), 1]

)4K),

sector[(268821, 120), -]

‘mem addrf(6319000.4K),

sector([(6048773, 120), -]

‘mem addrf(584d000.4K), .1
S TTE—

mem addrf(665000.4K), .1
ecoss: >

‘mem addr|(SF44000,8K), .1
o >

ecor©180789, 16),]

‘mem addrf(5ed4000,4K), ...]
==

mem addr{(), .1

mem addr](6680000,4K), .1
e o>

mem addr|(46bS000, 4K), .1
< rooess i —>

mem addr[(6fcf00,4K), .1
Do b odpros

sectorf(222205, 16), 1]

sector[(222349, 16), -]

mem addr] (487000, 4K), .| mem addr] (7839000.4K),]
<o > o binneme =

Fig. 5 The graph of Instruction Layer

Two parts of work could be performed at the Instruction Layer, as
suggested by [31]. First, fine-grained taint analysis can be applied
to generate instruction flow dependency, which contains valuable
binary information. Second, cross-layer infection diagnosis can be
performed to bridge the “semantic gap” between Instruction Layer
and Operating system Layer, by dynamically mapping each
instruction flow with corresponding system objects. Therefore, the
outcome graph of Instruction Layer shown in Fig. 5 includes two
kinds of nodes: instruction-level objects (memory cells or disk
sectors represented with rectangles) and mapped OS-level objects
(processes or files represented with ellipses).

Jusr/sbin/sshd|

[in/mount]

OpenSSL brute force key guessing attack

*a node is a system object(file, process, socket ...)
*an edge is a dependency (7 types)

Jusrisbin/sshd|

*a purple arrow is an extension from host to network

NFS mount Misconfiguration

*a node is a system object(file, process, socket ...)
*an edge is a dependency (7 types)

*a purple arrow is an extension from host to network /

>
P E\NET, 172.18.34.10
\EUNET, 172.18.34.10:531

<TefcTsswitch cont>
<‘ INET, 0.0.0.0:758—

SAE_NETLINK, 1430, 00000005
= T

P a—
| AT ETexpots
> [T

elnsswitch.cont>
etclprotocols>
fIEtclservices>

TNET, 192.168.1015

~ SEEED,

2 P
T A——— o
mefcse STDETOTKSIation attack!/ \
— lerbar_emporium ——

E
ceRploi

Bypassing mmap_min_addr <Imnthvderbar_emporium.tar.gz>

/s
f
etcprotoeels> /
ensswitch.cont)

>
< I72.18:34.5/export>
S —

<finderbar_emporiumsh-

*a node is a system object(file, process, socket ...)
*an edge is a dependency (7 types)

Fig. 4 The graph of Operating System Layer

B. Cross-layer Interconnection

Cross-layer diagnosis is critical for SKRM model, as traversing
from one layer to another layer along the edges would lead to
expected new information and ultimately a holistic understanding
of the whole scenario. However, it cannot be achieved without the
fulfillment of cross-layer interconnection. Only with inter-
compartment interconnection we still lack the capture of cross-
layer relationships that can break horizontal stovepipes.

1) Cross-layer Semantics Bridging

Basically, cross-layer relationships are captured by semantics
bridging (specifically, mapping, translation, etc.) in-between the
adjacent two abstraction layers of computer and information
system semantics. In specific, association between the workflow
tasks at Workflow Layer and the particular applications at
App/Service Layer can be mined from the network traces with
workflow logs, and can be used to create bi-directional mappings
between them. The mappings between OS level objects and
instruction level objects can be achieved by developing a
reconstruction engine such as the one presented in [31]. The
purple bi-directional dotted lines between adjacent layers in Fig. 1
illustrate such mappings.

2) Attack Graph Representation and Generation

Specially, we interconnect the App/Service Layer and OS Layer
by vertically inserting a dependency Attack Graph between them.
This enables the causality representation and tracking between
App/Service Layer pre-conditions (network connection, machine
configuration and vulnerability information) and OS Layer
symptoms/patterns of successful exploits.

= Definition 5 (dependency Attack Graph):
The dependency Attack Graph (AG) can be represented
with a directed graph G(V,E), where V is the set of
nodes and E is the set of directed edges. There are two

kinds of nodes in the attack graph (refer to the attack
graph of Fig. 6): derivation nodes (represented with
ellipses) and fact nodes. The fact nodes could be further
classified into primitive fact nodes (represented with
rectangles) and derived fact nodes (represented with
diamonds). The directed edges represent the causality
relationships between the nodes.

In the dependency Attack Graph, one or more fact nodes could
serve as the preconditions of a derivation node and cause it to take
effect. One or more derivation nodes could further cause a derived
fact node to become true. Each derivation node represents an
application of an interaction rule given in [28] that yields the
derived fact. Let’s take our generated attack graph (Fig. 6) for
example: Node 26, 27 (primitive fact node) and Node 23 (derived
fact node) could cause Node 22 (derivation node) to take effect,
and Node 22 could further cause Node 14 (derived fact node) to be
valid. Besides, a derived fact node may have different ways to
become true.

Fig. 1 illustrates a subset of Fig. 6. Fig. 1 also illustrates the
interconnection of the dependency Attack Graph with its adjacent
two layers. The conversion from App/Service Layer information
(network connection, host configuration, scanned vulnerability) to
the primitive nodes in Attack Graph is resulting from the Datalog
representation before attack graph generation [28]. The mapping
from the derived fact nodes in Attack Graph to the OS Layer
intrusion symptoms (such as the system call sequence [10],
intrusion pattern, signature, etc.) can be achieved by bi-directional
inter-host OS level dependency tracking proposed above, using
the OS level instances of host or service configuration as input.
For example, the process ““/usr/shin/sshd” instantiates sshd, and
“/etc/exports™ instantiates unfsd. Tracking “‘/usr/sbin/sshd”
would reveal the repeated pattern of accessing sshd-related
processes and files, indicating the occurrence of Node 14 in the
dependency AG.

‘ 18:hacl(internet,webServerhttp,80):1 ‘ ‘ 19:attackerLocated(internet):1

‘ ‘ 25:hacl(internet,webServer,tcp,22):1 ‘

ervertikiwiki,http,80,):1

20:networkServicelnfo(webS 21:vulExists(webServer,CVE-2007-
5423 tikiwiki,remoteExploit,privEscalation):1

26:networkServicelnfo(webS 2T7:vulExists(webServer,'CVE-2008-
erver,openssl,tcp,22,):1 0166',0penssl,remotﬁeﬁEproi(,privEscaIation):l

32:nfsExportinfo(fileServer,"

31:hacl(webServer fileServer
lexport',write,webServer):1

.nfsProtocol,nfsPort):1

<——30RULE 18 (NFS shellJ0—

ver,samba,tcp,139,):1

——10°"RULE 3 (remote exploit of a server prog
oIt
—

- VUIEXiSts(workStation,

loit,privEscalation):1

29:vulExists(fileServer, CVE-2007-
2446' samba remoteExploit,privEscalation):1

H workStation, 7mnt/
share' fileServer. /export'.read):1

2692"kernel.localE:

—2RULE5

—1

orresponding Trojan horse installa

zexecCode(worksStation,roof):0—

fiony6—

Fig. 6 The dependency Attack Graph

V. Case Study

The security analyst needs to leverage information across different
abstraction layers to diagnose an attack and assess its impact in an
enterprise network. Business-level symptoms (alerts raised by
human managers at high layer) or system level events (alerts
provided by security monitoring systems like Snort, tripwire, anti-
virus, etc.) are all invaluable to compensate the situation
awareness of each other.

Since SKRM is proposed to break stovepipes through cross-layer
diagnosis, we present the following case study to demonstrate that
the SKRM graph stack is useful to enable capabilities toward
holistic perception and comprehension. It is also an illustration of
the practical generation of the SKRM graph stack to perform
cross-layer analysis.

A. Implementation

To illustrate the application of SKRM framework to cyber
security analysis, we implement a web-shop in our test-bed which
uses a business scenario similar as the one described in [30]. To
observe the network under cyber-attack, we further implement a
3-step attack scenario as in [21, 28] with different vulnerability
choices (CVE-2008-0166-OpenSSL brute force key guessing
attack, NFS mount misconfiguration, CVE-2009-2692-bypassing
mmap_min_addr). The test-bed business and attack scenario is
shown in Fig. 7.

In addition, we also deploy intrusion detectors and auditing tools
in our web-shop test-bed, such as the Nessus server to scan for the
vulnerability and machine information of all the hosts, the
MulVAL reasoning engin to generate the attack graph, Snort and
Ntop to detect intrusions and monitor the network traffic, and
strace to intercept and log system calls. We leverage these
situation knowledge collectors to acquire real data for further
cross-layer security diagnosis.

Bruteforce

Web Server(httpd, sshd):
-ecommerce travel agency

NFS mount
NFS Server(nfsd , sshd)

D |
atabase Server(mysqld Inside Firewall

Trojan-horse Fingpcial Workstation(sshd)

:___

financial
confidentials

Fig. 7 The test-bed network and attack scenario

B. Capability: Mission Asset Identification and
Classification

Usually an obvious intrusion symptom of an enterprise is the

business level financial loss. The responsibility of security

analysts is to reason over such symptoms so as to identify the

exact intrusion root and all the infected mission assets, for better

protection and recovery. That is, the capability of mission asset

identification and classification is required. As shown in Fig. 8,
top-down cross-layer SKRM diagnosis will enable this capability.

financial loss
‘ 1, is responsible for changing the execution path from non-member service path P, to
T member service path P,
Workflow
Layer

Host-switch level mission assets (Web Server, NFS Server and Workstation) are classified

to be “clean but in danger” because they are critical for transactions about t,.

App/Service
Layer

Application level mission assets (tikiwiki and sshd for the Web Server, samba and unfsd
for NFS Server and Linux kernel (2.6.27) for the Workstation) are classified to be “clean
but in danger” because they are involved in the attack paths.

dependency AG

OS-object level mission assets (process - /usr/shin/sshd and files - /root/.ssh/

|_keys, letc/ssh/ssh_host_rsa_key for the Web Server) are classified
to be “clean but in danger” because they are mapped to the above-tagged
applications/services.

OS Layer -

The above-mentioned OS objects are updated to be “polluted” because of the mapping
between the “repeating” dependency pattern on OS Layer graph and a vulnerability
exploitation in dependency AG

0OS-object level mission assets (/mnt/wunderbar_emporium.tar.gz on Web Server, /export
on NFS Server, /mnt/wunderbar_ ium.tar.gz, /homeA i lion_attack/
wunderbar_¢ and kstation on

“polluted” because of the propagation of pollution.

) are classified to be

Corresponding mission assets at different levels are updated from the status of “clean but
in danger” to “polluted” by reverse tracking.

traversing layer edges
—forward inter-host dependency/taint tracking

Fig. 8 Mission asset identification and classification

Generally, mission asset identification and prioritization achieves
at the identification and classification of host-switch level,
application level and OS-object level mission critical assets into
such classes as “polluted”, “clean but in danger”, and “clean and
safe”. For example, the business managers of the web-shop found
the profit much lower than expected. Through analysis on the
Workflow Layer (Fig. 2), the security analysts suspected that non-
member attackers cheated by getting service from the web-shop
via the member service path P,. According to the control
dependence relation in the workflow, they found that task t, is
responsible for changing the execution path from P, to P, (step 1).
So they tracked down the cross-layer edges between Workflow
Layer and App/Service Layer, with particular inspection on task t,
(step 2). Such cross-layer edges revealed the critical host-switch
level mission assets involved in transactions about t,: Web Server,
NFS Server and Workstation. Hence, as the most possible attack
goals, these assets were tagged into “clean but in danger”. The
analysts further tracked down the cross-layer edges between
App/Service Layer and OS Layer (step 3), and found that there
were four possible attack paths in the dependency AG: {23, 14, 6,
4,1}, {16, 14, 11, 9, 6, 4, 1}, {16, 14, 6, 4, 1} and {23, 14, 11, 9,
6, 4, 1}. The four paths all lead to the compromise of Web Server,
NFS Server, and Workstation, but exploit vulnerabilities of
different applications/services. Fig. 6 differentiates the paths with
red, blue, purple and green colors respectively. All the application
level mission assets involved in the four attack paths were
regarded as “clean but in danger”: tikiwiki and sshd for the Web
Server, samba and unfsd for NFS Server and Linux kernel (2.6.27)
for the Workstation.

The analysts continued to track down the cross-layer edges from
dependency AG to OS Layer, and identified fine-grained OS-
object level mission assets: process - /usr/shin/sshd and files -
[root/.ssh/authorized_keys, /etc/passwd, /etc/ssh/ssh_host_rsa_key
for the Web Server (step 4). These objects were considered as
“clean but in danger”. The mapping between the “repeating”
dependency pattern on OS Layer graph (Fig. 4) and Node 27 in
dependency AG (Fig. 6) confirmed the exploitation of CVE-2008-
0166. Therefore, the above-mentioned OS objects related to this
vulnerability on Web Server could be determined as “polluted”.

Further forward dependency tracking on the dependency graph
discovered a file named /mnt/wunderbar_emporium.tar.gz was
created and thus “polluted” on the Web Server (step 5). Inter-host
OS dependency tracking helped reveal the propagation of such
pollution: the file sharing directory /export on NFS Server was
“polluted”; the files or directories named
/home/workstation/workstation_attack/wunderbar_emporium,
/mnt/wunderbar_emporium.tar.gz, and /home/workstation on
Workstation were all “polluted”. In a similar way, the memory
cells or disk sectors at Instruction Layer corresponding to the
system objects could also be classified into these categories.

Through reverse tracking to the upper layers, the status of Web
Server and its service sshd, NFS Server and its services unfsd,
mountd, Workstation and its service sshd were all updated from
“clean but in danger” to “polluted”. In a word, through such top-
down cross-layer SKRM-based analysis, mission assets at the
host-switch level, application/service level and OS-object level
could all be identified and further classified into such classes as
“polluted”, “clean but in danger” and “clean and safe”.

C. Capability: Mission Damage and Impact Assessment
Security monitoring systems, such as Snort, tripwire, anti-virus,
etc., are effective tools to provide us intrusion alerts, but do not
offer us the exact damage and impact. As shown in Fig. 9, the U-
shape cross-layer SKRM-enabled analysis helps us to achieve
comprehensive damage and impact assessment.

Task t, was compromised, causing web-shop service path changed

Workflow from non-merber path to member path, leading to financial damage.
Layer jntrusion alert
T % The vulnerability and i of 1s and
App/Service services cause damage occurrence and propagation.
Layer A
The financial i on
dependency AG motivates damage.
s
OS Layer " The corresponding files or directories were infected.
4 ®
Instruction * The cor memory or disk units were tainted.

Layer
——wdownward traversing cross-layer edges
forward inter-host tracking
upward traversing cross-layer edges

Fig. 9 Mission damage and impact assessment

The scenario begins with a normal status for the web-shop
business, but Snort suddenly gives an alert indicating a brute force
attack on the Web Server (sshd). The security analyst would like
investigate the Web Server and start to inspect (scan) its
information of applications and services (step 1). The downward
traversing cross-layer edges between App/Service Layer and OS
Layer reveals the repeated pattern of accessing sshd-related
processes and files, confirming the occurrence of Node 14
(indicating successful exploit) in the dependency AG (step 2).
Further through the process, the inter-host dependency tracking at
the OS Layer identifies the intrusion taint seeds: the file hamed
/mnt/wunderbar_emporium.tar.gz on the Web Server, the
directory named /export on the NFS Server and the files or
directories named /mnt/wunderbar_emporium.tar.gz,
/home/workstation/workstation_attack/wunderbar_emporium and
/home/workstation on the Workstation (step 3). Using these as
input, downward traversing the cross-layer edges between OS
Layer and Instruction Layer helps to identify the tainted memory
and disk units (step 4). The forward inter-host taint tracking at the
Instruction Layer located the fine-grained impacts on victim hosts
(step 5). At this point, the OS-level and Instruction-level damage
has been identified: the above files and directories were all
infected and performing malicious actions at the OS Layer and
their memory or disk space were therefore tainted on Instruction
Layer. This triggered the analyst to perform another round of

bottom-up analysis to comprehend the damage at other layers. The
analyst tracks upward along the cross-layer edges between OS
Layer and dependency AG, and determined the attack path (step 6
and 7). The attack path, combined with the abnormal behavior on
OS Layer, led the analyst to the missing intrusion intent of the
attacker: the financial membership information under the
directory named /home/workstation on Workstation is the
evidence of the root cause of the damage. The mappings between
dependency AG and App/Service Layer show the specific pre-
conditions of the exploits (step 8). The vulnerabilities and
inappropriate configurations at App/Service Layer allow the
damage to be caused. Finally, the analyst tracks upward to the
cross-layer relationships between App/Service Layer and
Workflow Layer (step 9), and finds that: task t, was compromised,
so the web-shop’s service path was changed from non-member
service path {ty, t,, t3, ts, ts, t7} to the member service path {ty, t,, ts,
te, t7} at Workflow Layer and enables significant financial damage
to occur.

In a word, SKRM enables a U-shape cross-layer analysis, as
illustrated in Fig. 9, to assess systematic damage and its impact
from multi-layer semantics.

VI. Discussion

From the case study above, we identify that SKRM-enabled
analytics can exceed the reach of intrusion detection and attack
graph analysis, through inter-compartment awareness and cross-
layer analysis (top-down, bottom-up, U-shape, etc.). SKRM
actually has the potential to enable other capabilities. For example,
attack path determination and attack intent identification were also
involved in the above U-shape cross-layer diagnosis. The
potential capabilities would be explored in future work, including
but not limited to:

e U-shape cross-layer diagnosis may help us understand
the adversary activity, including the attack path
determination and attack intent identification.

e Bottom-up cross-layer analysis may help evaluate
mission impact.

e Cross-layer Bayesian networks could be constructed to
reason about uncertainty.

e Top-down cross-layer analysis may help us construct
mission asset map based on asset classification.

e Comprehensive analysis may help us simulate different
strategic mitigation plans.

e Comprehensive analysis may provide insights for
intrusion recovery.

e Knowledge representation could be enabled for
cognitive engineering.

In addition to the potentials, the current SKRM and SKRM-
enabled analytics have some limitations. Although some tools
have been developed to generate parts of the SKRM graph stack,
the current version of SKRM s still semi-automatic, gaining
computer-aided human centric cyber SA. Additional work is still
required to evaluate the utility of SKRM in the scale of a real
enterprise and more complex scenarios. Our future work will
focus on addressing such limitations.

VII. Conclusion
Current cyber SA based on the technologies in intrusion detection
and attack graphs lack the capability to address the needs of
mission damage and impact assessment and asset identification
(and prioritization). This paper proposes a cross-layer Situation
Knowledge Reference Model (SKRM) that combines the isolated

situation knowledge collectors and provides comprehension from
a larger perspective. It breaks both the vertical and horizontal
stovepipes through inter-compartment and cross-abstraction-layer
interconnection. Through a concrete case study based on a
business scenario in the presence of a 3-step attack, we
specifically explain how to generate the graph stack and use it to
perform the cross-layer analysis. The results show that SKRM
provides expected SA cues beyond intrusion detection and attack
graph analysis. We also discuss the potentials and the current
limitations of SKRM and SKRM-enabled analysis.

ACKNOWLEDGMENT
We want to thank the anonymous reviewers for their valuable
comments, both on the model and language, that helped shape the
final version. This research was partially supported by ARO
W911NF-09-1-0525 (MURI), NSF CNS-0905131, NSF CNS-
0916469, and NSF CNS-1223710.

REFERENCES

[1] Agrawal, R. et al. 1998. Mining process models from
workflow logs. Advances in Database Technology-
EDBT’98. (1998), 467-483.

[2] ArcSight. HP Enterprise
http://www.hpenterprisesecurity.com/.

[3] Axelsson, S. 2000. Intrusion detection systems: A survey and
taxonomy. Technical report.

[4] Bahl, P. et al. 2007. Towards highly reliable enterprise
network services via inference of multi-level dependencies.
ACM SIGCOMM Computer Communication Review
(2007), 13-24.

[5] Chen, X. et al. 2008. Automating network application
dependency discovery: Experiences, limitations, and new
solutions. Proceedings of the 8th USENIX conference on
Operating systems design and implementation (2008),
117-130.

[6] Czerwinski, S.E. et al. 1999. An architecture for a secure
service discovery service. Proceedings of the 5th annual
ACMI/IEEE international conference on Mobile computing
and networking (1999), 24-35.

[7] Van Der Aalst, W.M.P. et al. 2003. Workflow mining: a
survey of issues and approaches. Data & Knowledge
Engineering. 47, 2 (2003), 237-267.

[8] Endsley, M.R. 1995. Toward a theory of situation awareness
in dynamic systems. Human Factors: The Journal of the
Human Factors and Ergonomics Society. 37, 1 (1995), 32—
64.

[9] Gaaloul, W. et al. 2005. Mining workflow patterns through
event-data analysis. Applications and the Internet
Workshops, 2005. Saint Workshops 2005. The 2005
Symposium on (2005), 226-229.

[10] Hofmeyr, S.A. et al. 1998. Intrusion detection using
sequences of system calls. Journal of Computer Security.
6, 3 (Sep. 1998), 151.

[11] Jajodia, S. et al. 2005. Topological analysis of network
attack vulnerability. Managing Cyber Threats. (2005),
247-266.

[12] Jason H. Li, Peng Liu. 2010. Cyber Security Analysis and
Situational Awareness: Theory and Practice. Tutorial of
MILCOM.

Security.: 2012.

[13] Jiang, X. et al. 2010. Stealthy malware detection and
monitoring through VMM-based “out-of-the-box”
semantic view reconstruction. ACM Transactions on
Information and System Security (TISSEC). 13, 2 (2010),
12.

[14] Kandula, S. et al. 2008. What’s going on?: learning
communication rules in edge networks. ACM SIGCOMM
Computer Communication Review. 38, 4 (2008), 87-98.

[15] King, S.T. and Chen, P.M. 2003. Backtracking intrusions.
ACM SIGOPS Operating Systems Review (2003), 223-236.

[16] McAfee, A. and Wagonfeld, A. 2004. Business intelligence
software at SYSCO. Harvard Business School. 19, (2004).

[17] McGuinness, B. and Foy, L. 2000. A subjective measure of
SA: the Crew Awareness Rating Scale (CARS).
Proceedings of the first human performance, situation
awareness, and automation conference, Savannah,
Georgia (2000).

[18] De Medeiros, A. et al. 2003. Workflow mining: Current
status and future directions. On The Move to Meaningful
Internet Systems 2003: CooplS, DOA, and ODBASE.
(2003), 389-406.

[19] Newsome, J. and Song, D. 2005. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. (2005).

[20] Ntop: 2012. http://www.ntop.org/.

[21] Ou, X. et al. 2005. MulVVAL: A logic-based network security
analyzer. Proceedings of the 14th conference on USENIX
Security Symposium-Volume 14 (2005), 8-8.

[22] Paxson, V. 1999. Bro: A system for detecting network
intruders in real-time. Computer networks. 31, 23 (1999),
2435-2463.

[23] Qualys Guard.
http://www.qualys.com/.

[24] Sawilla, R. and Ou, X. 2008. Identifying critical attack assets
in dependency attack graphs. Computer Security-ESORICS
2008. (2008), 18-34.

[25] Sheyner, O. et al. 2002. Automated generation and analysis
of attack graphs. Proceedings of IEEE Symposium on
Security and Privacy (2002), 273-284.

[26] Snort: 2012. http://www.snort.org/.

[27] Wireshark: 2012. http://www.wireshark.org/.

[28] Xinming, O. et al. 2006. A scalable approach to attack graph
generation. (2006), 336—-345.

[29] Xiong, X. et al. 2009. SHELF: Preserving Business
Continuity and Availability in an Intrusion Recovery
System. Computer Security Applications Conference,
2009. ACSAC’09. Annual (2009), 484-493.

[30] Yu, M. et al. 2004. Self-healing workflow systems under
attacks. Proceedings of 24th International Conference on
Distributed Computing Systems (2004), 418-425.

[31] Zhang, S. et al. 2010. Cross-layer comprehensive intrusion
harm analysis for production workload server systems.
Proceedings of the 26th Annual Computer Security
Applications Conference (New York, NY, USA, 2010),
297-306.

[32] Zonouz, S.A. et al. 2011. Managing business health in the
presence of malicious attacks. Proceedings of the 2011
IEEE/IFIP 41st International Conference on Dependable
Systems and Networks Workshops (2011), 9-14.

Qualys Secure.: 2012.

