Combining Design by Contract and Inference Rules of
Programming Logic towards Software Reliability

Nuha Aldausari*, Cui Zhang and Jun Dai
Department of Computer Science, California State University, Sacramento, CA 95819, U.S.A.
nuha.aldausari@gmail.com, {zhangc, jun.dai}@csus.edu

Keywords: Software Security, Software Reliability, Program Specifications, Error Detection, Design by Contract,
Programming Logic.

Abstract: Detecting errors in software products is very important to software reliability because many security
vulnerabilities are caused by the defects in software. Design by contract (DBC) is an effective methodology
that dynamically checks whether a program meets its specifications, which are also called design contracts,
and whether there are errors in the program. The contracts for object-oriented programs are defined in
terms of preconditions and postconditions for methods as well as invariants for classes. However, if there is
an error in a large piece of code that has a design contract, it is still difficult to identify the exact location of
that error. To address this issue, a tool named Subcontractor has been developed. Subcontractor is
implemented in Eclipse environment using libraries such as Java Development Tools (JDT), Plugin
Development Environment (PDE), and JFace. The tool Subcontractor is built upon an open source DBC
tool, OpenJML Runtime Assertion Checking (RAC), which is a tool that verifies specifications at runtime.
Subcontractor combines this DBC tool with inference rules of program logic for if-statements and loop-
statements to automatically generate subcontracts for programs. When the programs, with subcontracts
automatically generated and inserted by Subcontractor, are verified using OpenJML Runtime Assertion
Checking (RAC), identification of errors in the code can be facilitated.

1 INTRODUCTION (University of Oldenburg, 2001), and Contracts for

Java (C4J) (Bergstrom, 2012). In these tools, DBC
A plethora of applications are created every day; assists in improving the quality of the code.
however, 64% of developers are not confident in However, one main limitation in these DBC tools is

their applications’ security according to Bill Gates at that when the code is lengthy, it is still difficult to
RSA conference in 2005 (Gates, 2005). Design identify errors. For example, if the precondition of a

flaws and coding defects cause applications to be large p.iece of code is valid, but the postcondition is
vulnerable to attacks or incorrect entry of data. Since not valid, the programmer needs to search the whole
Design By Contract (DBC) (Meyer, 1992) is an code to find the errors. If inference rules of
effective methodology that dynamically checks programming logic (Finkel, 1996) can be u;ed to
whether a program meets its specifications and automatically generate subgontragts, and. if the
whether there are errors in the program, introducing subcontracts can be automatically inserted into the
DBC in software development processes and large source code for if-statements and/or loop-
providing DBC support in the programming statements, the large verification task can be
environment can improve robustness and reliability automatically part1.t10ned mto smaller ones.
of produced software, which is important to software Therefore, automatmg .the ggnerahon of sub
security. There are multiple tools that support DBC assertion statements aid in spotting the errors and
for Java programming language such as Java tracing the program.

Modeling Language (JML) (Leavens, 2013), Jass For this purpose, we have developed a tool called
Subcontractor which was built upon an open source

DBC tool called OpenJML (Cok, 2015).

* Nuha received scholarship from Princess Nourah bint

Abdulrahman University to complete MS in Computer Science Subgontractor is a developed) EClipse plugin that
at California State University, Sacramento. provides the benefit of automatically generating and
364

Aldausari, N., Zhang, C. and Dai, J.

Combining Design by Contract and Inference Rules of Programming Logic towards Software Reliability.

In Proceedings of the 15th International Joint Conference on e-Business and Telecommunications (ICETE 2018) - Volume 2: SECRYPT, pages 364-371
ISBN: 978-989-758-319-3

Copyright © 2018 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

Combining Design by Contract and Inference Rules of Programming Logic towards Software Reliability

adding into code subcontracts based on inference
rules for if-statements and/or loop-statements.
Subcontractor combines DBC, dynamic program
analysis technique, with inference rules of
programming logic, which are originally for static
program verification. When these rules are
integrated with DBC tools, they can help locate
defects in the code to improve software reliability.

Code with
Source code N X)
0 Java user adds design contracts- preconditions and
L v in terms of pre/postconditions postconditions

using OpenJML
user verifies contracts

user
Code with subcontracts Code with Code with
user make: s ISing invalid B contract
modifications | SUPCONUAAS |+ sybcontractor contracts valid contracts

user verifies contracts
& subcontracts using OpenIML

source code source Cmew
with invalid with vahkd

subcontracts subcontracts

Figure 1: State diagram of the programming code in
Subcontractor.

Figure 1 illustrates the life cycle of the
programing code in response to different events with
the support of Subcontractor. First, the programmer
provides the source code and design contracts in
terms of preconditions and postconditions. Then,
OpenJML Runtime Assertion Checking (RAC) can
be used to verify the preconditions, postconditions.
If the contracts are valid, there is no need to add
subcontracts. However, if the contracts are not valid,
Subcontractor can be used to automatically generate
and insert subcontracts for the programmer-selected
if-statements and/or loop-statements. Again,
OpenJML Runtime Assertion Checking (RAC) can
be used to verify the preconditions, postconditions,
and JML assert statements. The output after running
OpenJML can facilitate finding the locations of the
errors. Afterwards, the programmer can modify the
code, and then uses OpenJML and Subcontractor to
check the contracts again until the errors are fixed.

The rest of the paper is structured as follows:
Section 2 discusses important concepts that are used
to construct the tool Subcontractor. Section 3
describes the design and implementation of
Subcontractor including how this tool is built upon
Java libraries and Eclipse plugins. Section 4 presents
an example using Subcontractor. Section 5
summarizes the purpose of Subcontractor and
suggests multiple future enhancements.

2 BACKGROUND AND RELATED
WORK

2.1 Programming Logic

Axiomatic semantics for a programming language is
specified as programing logic, which has both
axioms and inference rules. The axioms and
inference rules are used for program verification, a
static approach to reasoning about program
correctness (Finkel, 1996). The axioms and
inference rules are defined in the format of Hoare
logic triple {P} C {Q} (Meyer, 1992), where P is the
precondition, Q is the postcondition, and C is the
implementation code. A Hoare triple for a program
specification is valid if the precondition P is satisfied
and the code C is executed. In this case, the
postcondition Q is guaranteed to be true. When the
precondition is false, the postcondition might be true
or false (Hoare and Antony, 1969). This means the
program does not have to guarantee anything when
preconditions is not satisfied. While the axioms are
for primitive statements, the inference rules are for
compound statements. The inference rule for any
sequence of statements is as in)) while the inference
rules for if-statements and loop-statements are as in
(2) and (3) respectively (Finkel, 1996).

iP} ST {R}.{R} S2 {Q}

(P} S152 (Q) I\
{P & B} S1 {Q}.{P & (not B)} S2 {Q} ?)
{P} if B then S1 else S2 {Q}
P=>Inv.{Inv & B} S {Inv}.Inv & (not B)=>0Q 3
{P} while B do S {Q} Q)

Taking into consideration that /nv is the loop
invariant. The loop invariant should be true before
and after each execution of the loop body, but the
loop invariant does not have to be always satisfied in
the middle of each execution of the loop body
(Hoare and Antony, 1969).

2.2 Design by Contract

DBC was first introduced by Bertrand Meyer, and
was first implemented in Eiffel programming
language (Meyer, 1992). DBC is a dynamic
approach. A design contract for a class consists of
preconditions and postconditions for methods, and
class invariants. Preconditions, postconditions, and
invariants are written as Boolean assertions that are
evaluated at runtime. Preconditions are checked
before entering the functions, while the
postconditions are checked after the function

365

SECRYPT 2018 - International Conference on Security and Cryptography

execution. In the case of class invariants, the
conditions must be satisfied when the class instances
are created, as well as before and after functions are
executed (Meyer, 1992).

DBC adds a great value to the software
development process, especially it improves the test
phase by automatically checking the DBC
assertions. As stated by Dijkstra (1970), “Program
testing can be used to show the presence of bugs, but
never to show their absence!” According to Meyer,
using proper contracts help in validating against the
program specifications defined in terms of its
preconditions and postconditions, which leads to
program correctness (Meyer, 1992). DBC also
promotes the program robustness which means that
programs can handle abnormal behaviour.
Correctness and robustness together lead to software
reliability, which is important to software security.

A commonly cited example to understand DBC
is the client-supplier example (Meyer, 1992). Both
parties have some obligations and they are expecting
benefits in return. In DBC, function call serves as
the client while the implemented function serves as
the supplier. A precondition and a postcondition
form a contract for a method between the caller and
the callee. The function call, the client, needs to
fulfil a precondition to expect the postcondition that
needs to be guaranteed by the function, the supplier.
For example, these obligations and benefits of a
method that calculates the factorial of a number can
be expressed in Table 1. Once the precondition is
violated, the method should not be executed and an
exception should be raised. However, if the
precondition is satisfied, but the postcondition is not
fulfilled, there are most likely errors in the
implemented function.

Table 1: Client-supplier example of design by contract.

Party Obligations Benefits
. Provide numbers Get the factorial
Function Call
(Client) that are greater of the number
than or equal zero. that is provided.
' Compute the Do not need to
Function . calculate the
. factorial of the .
Implementation . factorial of the
. number that is
(Supplier) . numbers that are
provided.
less than zero.

DBC is not exclusively for constructing
assertions for methods and classes. In general, DBC
is a vital programming methodology that facilitates
verification, testing, and debugging. Moreover, it is
also a way to document the responsibilities of each
method or routine. A design contract is an
abstraction of the semantic of the code being

366

developed. This documentation can help users
understand the functionality of the code without
seeing the implementation details.

2.3 Java Modelling Language

As other programming languages, Java does not
support DBC as a built-in feature. Java has the basic
assertion facility using the assert keyword. Since the
simple assert facility is not sufficient to support
DBC, there are different third party tools that
support DBC for Java programing language, such as
Java Modeling Language (JML) (Leavens, 2013),
Jass (University of Oldenburg, 2001), and Contracts
for Java (C4J) (Bergstrom, 2012). JML is chosen for
the design and implementation of our tool
Subcontractor for the following reasons: (1) JML is
an open source DBC tool (Leavens, 2013). (2) Its
implementation uses the preprocessor approach
which supports the process of automatically
generating and inserting subcontracts using
inference rules. (3) JML is available as an Eclipse
plugin. Eclipse is one of the most popular IDEs for
Java programming language, and it offers a library
that facilitates accessing and editing the source code
(Eclipse, 2017).

JML is a specification language that addresses
both the behavioral and the syntactic aspect of Java
programming language. JML tools assist different
fields such as static checking, DBC, JML compiler,
and documentations (Leavens, 2013). As for DBC,
JML expresses contracts using special annotation
comments, /*@ ... @*/, for multiple lines. For a
single line specification, the annotation starts with
//@. Contracts are written in the form of comments
to be ignored by Java compiler in case the
specifications affect the performance negatively.
When contracts are taken into consideration, JML
compiler evaluates the contracts as Boolean
expressions. The keyword requires specifies the
precondition, while ensures clause determines the
postconditions. To verify a contract at a specific
point in the code, JML assert keyword can be used.
If the preconditions of a method are not satisfied, the
method will not be executed. On the other hand, if
the preconditions are satisfied, the program will be
in a proper pre-state. In this case, if the
postconditions are satisfied, the program will be in a
normal post-state, however if there is an exception in
the code and the program does not terminate
normally, the program will be in an exception post-
state (Leavens, 2013).

OpenJML is the current version of the basic JIML
for the current Java. There are efforts to include

Combining Design by Contract and Inference Rules of Programming Logic towards Software Reliability

different features in this version. According to the
official page of OpenJML (Cok, 2015), such features
include Eclipse support, static and dynamic
checking, and auto testing cases. OpenJML extends
JML by introducing new expressions and more
flexibility in the contracts for methods.

One advantage of JML is usability, since it
extends Java programming language with more
quantifiers. As mentioned earlier, there are a lot of
efforts that are devoted to build tools that support
different aspects of this specification language.
These tools are for verifications, parsing, runtime
checking, and testing (Leavens, 2013). Since JML
has continuous progress and attention, this counts as
another advantage.

JML deals with specifications using two
different ways. Extended Static Checking (ESC) is a
way to check specifications at compile time. ESC
can be used to prove the correctness of the
specifications (Burdy et al., 2005). First ESC checks
the programming errors such as uninitialized
variables and out-of-bounds index. Afterwards, ESC
executes the specification of the code by the
automated theorem prover (Zimmerman and Kiniry,
2009). Another method for checking the program
contracts is Runtime Assertion Checking (RAC).
RAC tests the correctness of the program at runtime.
RAC converts the program specifications into assert
statements. These assert statements are inserted into
the program to form an instrumented program that
can be used to check whether the contracts are
violated during runtime (Nelson, 2004).

OpenJML (RAC) plugin is chosen for
Subcontractor due to the following two
considerations: (1) the dynamic checking approach
is more practical for many programmers. (2) The
dynamic checking approach is a direct support to
DBC. Subcontractor uses OpenJML (RAC) to check
the contracts originally provided by programmers
and the subcontracts automatically generated by
Subcontractor.

3 DESIGN AND
IMPLEMENTATION

3.1 Flow Chart of Subcontractor

Figure 2 shows the flow chart of Subcontractor.
There are two main functionalities in Subcontractor,
which are respectively generation and deletion of
subcontracts. When the user wants to generate
subcontracts for selected parts in the programming

code, the system traverses the code and stores the
preconditions and postconditions along with the line
numbers into HashMaps. Afterwards, every method
in the code is visited to know the allowed line
numbers that the contracts might appear in. The
contracts in the corresponding allowed line numbers
in the HashMaps are combined to form the
subcontracts based on the inference rules of the
selected parts in the code. Then, every selected loop-
statement and if-statement is visited to insert the
generated subcontracts.

When the user wants to delete the inserted
subcontracts, there is a need to specify the methods
that the user wants to delete the subcontracts from.
The system traverses the code and deleted the
subcontracts in the selected methods.

User enters
preconditions and
postconditions

User chooses
generate tab

tab

! 1

User chooses if
and/or loop
statements

User chooses delete /Z\

User chooses a
method

User clicks on
“Generate”

" /{\
° User clicks on c

“Cancel” U

: Visit if and loop :
i | statements and place | : [Traverse source
1+ | the contracts based | ; code
on inference rules
- : i i i
Traverse source H H
code to see the
contracts fot the
selected item(s) H :
¥ { T i i
i | Calculate the upper | :
Delete the : vep

limit an v
Subcontracts for the i | Hmitandthe lower | :
i | lmit for the allowed
selected items :

contracts

Figure 2: The flow chart of Subcontractor.

User clicks on
“Delete”

Store preconditions
and postconditions in
HashMaps

i |Append contracts into| :
$ two strings :

Visit every method in
the class and do the
following

Eclipse Platform Java Developemnt Tools (JDT)

Debug
Annotation

Workspace
| rksp | :.__ Processing Tool | Core
""""""""""" kbench % User Interface Text

Jface ' v
Viewer Content | [Label
TreeViwer | | Provider | |Provider| : . Plugin Developemnt Environment

(PDE)

OpenJML
¥ ' ¥

‘ Subcontractor |

Figure 3: Subcontractor in Eclipse architecture.

367

SECRYPT 2018 - International Conference on Security and Cryptography

3.2 Eclipse Components Used in
Subcontractor

Eclipse is a popular Integrated Development
Environment (IDE) with graphical user interfaces
that facilitates the development process. The main
language that is supported in Eclipse is Java, but
there are other languages such as C++, C#, Perl,
PHP, and JavaScript that can be supplemented using
plugins (Eclipse, 2017).

One reason for choosing Eclipse is that it is an
open source application that is built upon plugins.
Thus, it is more straightforward to extend an IDE
with a plugin than establishing a new IDE
implementing the functionality of Subcontractor. In
addition, according to RebelLabs’ report in 2012
(ZeroTurnaround, 2012), Eclipse is the most used
IDE for Java programming. Eclipse provides libraries
that have the benefit of accessing and modifying the
source code.

Figure 3 demonstrates the Eclipse architecture
and the relationships between the plugin
Subcontractor and Eclipse elements, which are
presented in the following subsections. Figure 3 is
based on the diagram that is presented in (Eclipse,
2017) with modification and extension to cover the
scope of Subcontractor.

3.2.1 Plugin Development Environment

One of the neat functionalities in Eclipse is
expandability. The user can add/extend a feature in
Eclipse by adding a plugin. The Plugin Development
Environment (PDE) is a plugin that can facilitate
building other plugins, features, and Rich Client
Platform (RCP) applications. When PDE is installed
in the Eclipse platform, new functionalities can be
added to support the plugin life cycle, such as
establishing, debugging, running, maintaining, and
publishing a plugin. As shown in Figure 3, PDE
extends the functionalities of JDT, and the
developed Subcontractor tool extends the
capabilities of PDE, JDT, and OpenJML. Plugins
can provide a variety of functional and non-
functional requirements such as testing,
diagramming, compiling, and more (Eclipse, 2017).
The Eclipse marketplace website (Eclipse
marketplace, 2017) has a myriad of plugins. The
main advantage of having plugins is that it makes
the component of this environment loosely coupled.
Moreover, it maintains lightweight core application,
since the user has the choice to install only the
needed plugins.

368

3.2.2 Java Development Tools

Subcontractor uses the core of Java Development
Tools (JDT) library to access and modify source
code. In JDT core, the source code is represented by
two different forms, a Java model or abstract syntax
tree (AST). AST is an alternative to the Document
Object Model (DOM) tree of an XML file. AST is
more informative than a Java model. As a result, it
takes longer to be created than the Java model
(Eclipse JDT, 2017). Subcontractor handles the
source code using AST because the other approach,
the Java model, does not contain enough details
about the source code. For example, in the Java
model, the name, signature, and return type of a
method can be retrieved. However, the content of
that method cannot be provided, which is an
important component for Subcontractor to analyze
and to find the if-statements and loop-statements.

In Subcontractor, the AST of the source code can
be traversed by extending ASTVisitor. Afterwards,
an ASTNode can be accessed using a visit() method.
Visitor pattern is one of the popular design patterns
in software engineering. The visitor pattern can be
used to represent an operation for different elements
instead of representing the same operation for every
element. One advantage of this pattern is that the
operation can be extended without changing the
elements. Another benefit of using the visitor pattern
is that the operation is separated from the structure
(Barclay and Savage, 2003).

Subcontractor uses OpenJML preconditions,
postconditions, and assert statements that reside in
comments. Comment, Expression, Statement and
VariableDeclaration are different types of an
ASTNode. According to Eclipse documentation
(Eclipse AST, 2004), the nodes in AST could be any
part of the code except the whitespaces and the
comments. In Subcontractor, it is problematic to deal
with comments since the AST is not preserving
information about the comments. This issue can be
addressed through calling accept() method for each
comment in the list that is returned from
getCommentList().

In Subcontractor, after forming the subcontracts,
the code needs to be edited to insert these
subcontracts. One approach to editing the abstract
syntax tree is prettyprinting, which is simple and
easy to implement, as it does not maintain the
locations of the comment and the source code in the
modification process. The second approach uses
textual edits. In this approach, each node has a
corresponding offset and length. When changes are
made, the modifications are applied to the AST

Combining Design by Contract and Inference Rules of Programming Logic towards Software Reliability

directly, or into ASTRewrite and then to the AST.
This approach is more complicated to implement,
but it preserves the code formatting (Overbey and
Johnson, 2008). Subcontractor uses textual edits
since it is important to preserve the locations of the
comments in the source code.

3.2.3 JFace

Subcontractor uses the JFace library to create user
interface components such as a TreeViewer and a
button. JFace supports having dynamic content for
the TreeViewer. A TreeViewer needs to be assigned
to a data model (JFace, 2010). When the
subcontracts need to be generated in Subcontractor,
the TreeViewer dynamically presents the locations
of if-statements and/or loop-statements within a
method. In other words, for each method in the
source code, TreeViewer displays the name of the
method, and a list of if-statements and loop-
statements in the order that they appear in the source
code. The dialog box in Figure 5 is the
corresponding TreeViewer for the source code in
Figure 4. On the other hand, if the user chooses to
delete the subcontracts, the TreeViewer illustrates
the different methods.

For each TreeViewer, there is a need to assign a
content provider to it. The content provider is
responsible for traversing the data model and
specifying the elements in parent/child structure for
displaying purposes (Gast, 2015). After retrieving
the content of the tree from the content provider, the
label provider is called for each element to provide a
string and icon, if there are any, then display the
value in the tree. In other words, the label provider
simply converts the content/data to image/text.

4 EXAMPLE USING
SUBCONTRACTOR

Figure 4 shows an example of source code with
preconditions and postconditions. This program does
a simple withdraw or deposit operation for a bank
account. The precondition is (amount > () while the

postconditions are ((operation == "deposit") ==>
balance == \old(balance) + amount) or ((operation
== "withdraw") ==> balance == \old(balance)-

amount). There is an intentional error for testing in
code line 15 which is: this.balance = this.balance —
amount. The statement should be this.balance =
this.balance + amount.

The output of OpenJML (RAC), as shown in
Figure 7, indicates that the postcondition is not
satisfied.

J] *Account.java 2 =]

public class Account {
privete /% */ int balomce;

[unt() {
th nce = 0; precondition postcondition
} i . ‘given by the programmer| given by the programmer

4

this.balence);

Figure 4: Source code of Account example with a
precondition and postconditions.

Delete

Choose Loop (s) or If 1t(s) to Generate Subcontacts:

¥ The if and loop statement(s) in Account:

There is no if or loop statement
¥ The if and loop statement(s) in OneOperation:

~' if (operation.equals("deposit")) {

~' if (operation.equals("withdraw")) {

if (this.balance < amount) throw new RuntimeE...

¥ The if and loop statement(s) in main:

There is no if or loop statement

Generate close

Figure 5: Dialog box that shows the chosen if-statements.

J) *Account.java 2 = 8

bl

*O {

.0 precondition postcondion
‘given by the programme given by the programmer

ot o 8 AU

Subcontracts
generated by the tool Subcontractor

Figure 6: Source code of Account example after
generating subcontracts.

369

SECRYPT 2018 - International Conference on Security and Cryptography

& Console 2

X% HpEHEE B = 8

<terminated> Account [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_73.jdk/Contents/Home/bin/java (Nov 2, 2017, 10:55:40 AM)

The balance is after depositing 50is: 950

/Users/Nuha/Desktop/runtime-New_configuration(7)/myprojectl/src/Account. java:13: JML postcondition is false

public void OneOperation(int amount, String operation) {
A

/Users/Nuha/Desktop/runtime-New_configuration(7)/myprojectl/src/Account. java:10: Associated declaration: /Users/Nuha/Desktop/runtime-New_configuration(7)/myprojectl/src/Account.java:

//@ ensures ((operation== "deposit") ==> balance == \old(balance)+amount);
A

Figure 7: The output of OpenJML shows invalid postcondition.

& Console %

X% i G wB =

<terminated> Account [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_73.jdk/Contents/Home/bin/java (Nov 2, 2017, 10:56:50 AM)

[The balance is after depositing 50is: 950

/Users/Nuha/Desktop/runtime-New_configuration(7)/myprojectl/src/Account. java:20: JML assertion is false

//@ assert ((operation== "deposit") ==> balance == \old(balance)+amount);

A

/Users/Nuha/Desktop/runtime-New_configuration(7)/myprojectl/src/Account. java:13: IML postcondition is false

public void OneOperation(int amount, String operation) {
A

/Users/Nuha/Desktop/runtime-New_configuration(7)/myprojectl/src/Account. java: 10: Associated declaration: /Users/Nuha/Desktop/runtime-New_configuration(7)/myprojectl/src/Account. java:

//@ ensures ((operation== "deposit") ==> balance == \old(balance)+amount);
A

Figure 8: The output of OpenJML shows invalid postcondition and assert statement.

As shown in Figure 5, a dialog box will pop up
after choosing to generate subcontracts. This action
is triggered by right-clicking on the Java file. The
TreeViewer represents three methods. Inside the
second method, there is an if-else-if-statement that
has a nested if-statement in the else-if part. It is
important to note that ASTVisitor interface deals
with the else-if part as a separate if-statement.
Therefore, the viewer shows three if-statements. In
this example, the user chose the first two if-
statements.

Figure 6 shows the code after inserting the
subcontracts automatically using the inference rules
for if-statement. When comparing to Figure 4, there
are four inserted subcontracts, or smaller verification
tasks. The first one is amount > 0 &&
operation.equals("deposit”) which is an instance of
{P and B} in the inference rule for if-statement, see
the inference rule as in (2) in Subsection 2.1. The
third wverification task is amount > 0 &&
operation.equals("withdraw") which is an instance
of {P and (not B)} in the inference rule for if-
statement, see also the inference rule as in (2) in
Subsection 2.1. The second and last verification
tasks are ((operation == "deposit") ==> balance
== \old(balance) + amount) or ((operation ==
"withdraw") ==> balance == \old(balance)-
amount) which are instances of {Q} in the inference
rule for if-statement, see also the inference rule as in
(1) in Subsection 2.1.

The output of OpenJML (RAC) is shown in
Figure 8. When comparing to Figure 7, before
subcontracts were automatically generated and
inserted, there is an extra assert statement that is
false. As a result, this assert statement facilitates

370

finding the location of the error. In Figure 7, since
there is a false contract that is at the beginning of the
source code, there is a need to search in the whole
program to find where the error is. On the other
hand, in Figure 8, since there is an additional assert
statement that is false, then the error should be
between these localized false contracts.

S CONCLUSION AND FUTURE
WORK

Although DBC is a technique for improving the
reliability of software by ensuring the program
correctness and robustness, the effectiveness of DBC
diminishes with large blocks of code that has invalid
contracts. Subcontractor addresses this issue by
generating and inserting subcontracts using
inference rules for if-statements and loop-statements
in the large pieces of code. After that, the contracts
can be verified using the DBC open source tool
named OpenJML (RAC). In conclusion, by combing
design by contract and inference rules of
programming logic, Subcontractor can facilitate
error detection in code to improve program
reliability, important to software security. More
implementation details can be found in (Aldausari,
N., 2017).

A number of future enhancements can provide
additional features to Subcontractor. (1) Handling
nested structures is an important functionality that
can help the enhancement of the usability of
Subcontractor. For instance, if there is a loop-
statement that has if-statement inside it, there is a

Combining Design by Contract and Inference Rules of Programming Logic towards Software Reliability

need to generate the subcontracts based on the
inference rule of the loop-statements first. Then,
there is a need to use the inference rules for if-
statement to further generate subcontracts. (2) The
inclusion of inference rules for sequence statements
would give additional subcontracts that facilitates
detecting the errors in code. (3) Additional future
enhancements can also include uploading the plugin
Subcontractor in the Microsoft website rise4fun
(Microsoft, 2017) to make Subcontractor accessible.
The website rise4fun has a collection of software
engineering tools. In this website, the user can
experiment the uploaded tools without diving into
the hassle of installing and configuring the tools.
The website is categorized based on the institute that
created the tools. The common factor of these tools
is that they can be used in verification, testing, or
security purposes. Examples of tools that are
existing in this website are z3 and OpenJML (ESC).

REFERENCES

Aldausari, N., 2017. Enhancing A Design By Contract
Tool Using Inference Rules of Programming Logic. In
Master Project, California State University,
Sacramento, 2017.

Barclay, K., Savage, J., 2003. Object-Oriented Design
with UML and Java. In Oxford: Elsevier Science,
2003.

Bergstrom, J., 2012. Design By Contract for Java.
http://c4j.sourceforge.net/.

Burdy, L., et al.,, 2005. An overview of JML tools and
applications. In International Journal on Sofiware
Tools for Technology Transfer, vol. 7, no. 3, pp. 212-
232, 2005.

Cok, D., 2015. OpenJML. http://www.openjml.org/.

Dijkstra, E. W., 1970. Notes on structured programming,
Department ~ of Mathematics, Technological
University, 1970.

Finkel, R. A., 1996. Advanced programming language
design. In Addison-Wesley Reading, 1996.

Gast, H., 2015. How to use objects: code and concepts. In
Addison-Wesley Professional, 2015.

Gates, B., 2005. Gates Highlights Progress on Security,
Outlines Next Steps for Continued Innovation.
https://news.microsoft.com/2005/02/15/gates-highligh
ts-progress-on-security-outlines-next-steps-for-
continued-innovation/.

Hoare, C., Antony, R., 1969. An axiomatic basis for
computer programming. In Communications of the
ACM, vol. 12, no. 10, pp. 576-580, 1969.

Leavens, G., 2013. The Java Modeling Language (JML).
http://www.eecs.ucf.edu/~leavens/JML//index.shtml.

Meyer, B., 1992. Applying design by contract. In
Computer, vol. 25, no. 10, pp. 40-51, 1992.

Microsoft, 2017. rise4fun. http://rise4fun.com/

Nelson, G., 2004. Extended static checking for java. In
Springer International Conference on Mathematics of
Program Construction, pp. 1-1, 2004.

Overbey L., J,, E. Johnson, R., 2008. Generating
rewritable abstract syntax trees. In Springer
International Conference on Software Language
Engineering, pp. 114-133, 2008.

The Eclipse AST, 2014. Class AST.
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.ec
lipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Fecli
pse%2Fjdt%2Fcore%2Fdom%2FAST.html

The Eclipse Foundation, 2017. https://eclipse.org/.

The Eclipse Foundation, 2017. What is Eclipse?
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.e
clipse.platform.doc.isv%2Fguide%2Fint_eclipse.htm.

The Eclipse JDT, 2017. JDT Core Component.
https://eclipse.org/jdt/core/.

The Eclipse JFace, 2010. https://wiki.eclipse.org/JFace

The Eclipse marketplace, 2017. Eclipse marketplace.
https://marketplace.eclipse.org/.

University of Oldenburg, 2001. The Jass Page.
http://csd.informatik.uni-oldenburg.de/~jass/.

ZeroTurnaround, 2012. Developer Productivity Report
2012: Java Tools, Tech, Devs & Data.
https://zeroturnaround.com/rebellabs/developer-produ
ctivity-report-2012-java-tools-tech-devs-and-data/.

Zimmerman, D. M., R. Kiniry, J., 2009. A verification-
centric software development process for Java. In 9¢h
IEEE International Conference on Quality Software,
pp. 76-85.

371

	ICETE 2018 Volume 2: SECRYPT
	Front Cover
	Introduction
	Copyright
	Brief Contents
	Invited Speakers
	Organizing Committees
	Program Committee
	Auxiliary Reviewers
	Selected Papers Book
	Foreword

	Contents
	Invited Speakers
	Keynote Speakers
	Forensic Challenges on Multimedia Analytics, Big Data and the Internet of Things
	The Past, Present and Future of Business Process Management
	Scientific Research vs Bug Hunting
	The CLOUD: Trigger for a Socio-Economic Revolution
	Storing Critical Data in the Cloud: Challenges and Solutions

	Papers
	Full Papers
	Secure Benchmarking using Electronic Voting
	Fully Homomorphic Distributed Identity-based Encryption Resilient to Continual Auxiliary Input Leakage
	Side Channel Attacks over Encrypted TCP/IP Modbus Reveal Functionality Leaks
	DRANKULA: A McEliece-like Rank Metric based Cryptosystem Implementation
	On the Security of Linear Sketch Schemes against Recovering Attacks
	A Steganogaphic Scheme for MAC-Independent Opportunistic Routing and Encoding (MORE) Protocol
	BDABE - Blockchain-based Distributed Attribute based Encryption
	An Optimistic Fair Exchange E-commerce Protocol for Complex Transactions
	An Extended Case Study about Securing Smart Home Hubs through N-version Programming
	Lightweight Attribute-based Encryption Supporting Access Policy Update for Cloud Assisted IoT
	Intellectual Property Protection for Distributed Neural Networks - Towards Confidentiality of Data, Model, and Inference
	SABE: A Selective Attribute-based Encryption for an Efficient Threshold Multi-level Access Control
	A Blockchain based Access Control Scheme
	Distortion-free Watermarking Scheme for Compressed Data in Columnar Database
	An Efficient Privacy-preserving Recommender System for e-Healthcare Systems
	Anonymous Data Collection Scheme from Short Group Signatures
	Unobtrusive Psychological Profiling for Risk Analysis
	Fuzzy Logic based Model for Energy Consumption Trust Estimation in Electric Vehicular Networks
	Static Security Certification of Programs via Dynamic Labelling
	Verifying the Enforcement and Effectiveness of Network Lateral Movement Resistance Techniques
	Algebraic Side-Channel Attacks on Masked Implementations of AES
	Efficient Index-based Search Protocols for Encrypted Databases
	A Quantitative Framework to Model Advanced Persistent Threats

	Short Papers
	Hash-Based Signature with Constant-Sum Fingerprinting and Partial Construction of Hash Chains
	Big Data Anonymization Requirements vs Privacy Models
	Applying Deep Learning Techniques to CAN Bus Attacks for Supporting Identification and Analysis Tasks
	Privacy-preserving Distributed Access Control for Medical Data
	Theoretical Security Evaluation of the Human Semantic Authentication Protocol
	A Quantum-Secure Niederreiter Cryptosystem using Quasi-Cyclic Codes
	Secure Grouping and Aggregation with MapReduce
	Cost-effective Private Linear Key Agreement with Adaptive CCA Security from Prime Order Multilinear Maps and Tracing Traitors
	Combining Design by Contract and Inference Rules of Programming Logic towards Software Reliability
	The AVARE PATRON - A Holistic Privacy Approach for the Internet of Things
	Spoof-of-Work - Evaluating Device Authorisation in Mobile Mining Processes
	Analysis of Man-In-The-Middle of Attack on Bitcoin Address
	DBStore: A TrustZone-backed Database Management System for Mobile Applications
	Microcontroller Implementation of Simultaneous Protections Against Observation and Perturbation Attacks for ECC
	Malware Detection in PDF Files using Machine Learning
	Blind PDF Document Watermarking Robust Against PCA and ICA Attacks
	Blockchain for IoT: The Challenges and a Way Forward

	Posters
	A Machine Learning Approach for Privacy-preservation in E-business Applications
	Towards an Enhanced Security Data Analytic Platform
	Binary Edwards Curves for Intrinsically Secure ECC Implementations for the IoT
	A Flexible Framework for Rogue Access Point Detection
	Holistic Database Encryption
	KAuth: A Strong Single Sign-On Service based on PKI
	PAPEETE: Private, Authorized, and Fast Personal Genomic Testing
	Compact Lattice Signatures
	A Novel Lattice Reduction Algorithm
	Secure Authentication Solution for Cloud-based Smart City Surveillance System
	Crypto-democracy: A Decentralized Voting Scheme using Blockchain Technology
	Evaluating the Provision of Botnet Defences using Translational Research Concepts
	AVISPA versus AVANTSSAR in the Model Checking of Secure Communication Protocols
	Lightweight Ring Signatures for Decentralized Privacy-preserving Transactions
	Towards a Cloud-based System for Software Protection and Licensing
	Attribute Based Signatures: The Case for Automation
	Implicit Data Integrity: Protecting User Data without MACs
	Towards Efficient Software Protection Obeying Kerckhoffs’s Principle using Tamper-proof Hardware
	Learning Plaintext in Galbraith’s LWE Cryptosystem
	Phylogenetic Analysis for Ransomware Detection and Classification into Families
	Blockchain-based Consents Management for Personal Data Processing in the IoT Ecosystem

	Author Index

	Back Cover

