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Many applications deployed to public clouds are concerned about the confidentiality of their outsourced data,

such as financial services and electronic patient records. A plausible solution to this problem is homomorphic

encryption (HE), which supports certain algebraic operations directly over the ciphertexts. The downside

of HE schemes is their significant, if not prohibitive, performance overhead for data-intensive workloads

that are very common for outsourced databases, or database-as-a-serve in cloud computing. The objective of

this work is to mitigate the performance overhead incurred by the HE module in outsourced databases. To

that end, this paper proposes a radix-based parallel caching optimization for accelerating the performance of

homomorphic encryption (HE) of outsourced databases in cloud computing. The key insight of the proposed

optimization is caching selected radix-ciphertexts in parallel without violating existing security guarantees of

the primitive/base HE scheme. We design the radix HE algorithm and apply it to both batch- and incremental-

HE schemes; we demonstrate the security of those radix-based HE schemes by showing that the problem of

breaking them can be reduced to the problem of breaking their base HE schemes that are known IND-CPA (i.e.

Indistinguishability under Chosen-Plaintext Attack). We implement the radix-based schemes as middleware

of a 10-node Cassandra cluster on CloudLab; experiments on six workloads show that the proposed caching

can boost state-of-the-art HE schemes, such as Paillier and Symmetria, by up to five orders of magnitude.
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1 INTRODUCTION
1.1 Background and Motivation
While increasinglymore applications are deployed on the public clouds, one of the biggest challenges

lies in confidentiality, especially for those applications that usually touch on sensitive data in the

fields such as public health [37], bioinformatics [65], and financial services [35]. Although various

encryption schemes (e.g., AES [47], RSA [54]) can be applied before the data are sent to the cloud,
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it would defeat the purpose of cloud computing if the users must download and decrypt the

encrypted data for processing: the cloud in this case works merely as remote storage with no

computing functionalities. One plausible solution to the above confidentiality problem is adopting

specific encryption schemes such that the ciphertexts stored on the cloud can perform certain

computations, which are known as homomorphic encryption (HE). Although most HE schemes

support only primitive arithmetic operations such as addition and multiplication, it turns out that

many commonly-used operations (e.g., comparison) can be constructed on top of circuits of additions

and multiplications [28]. However, a scheme supporting both addition and multiplication over

ciphertexts, namely fully homomorphic encryption (FHE), usually incurs a much higher performance

overhead than (partial) HE, or PHE schemes by orders of magnitude. These PHE schemes can be

categorized into two types depending on how the key is distributed.

The first type of PHE schemes, e.g., Symmetria [57], is implemented as a symmetric operation

for the scenarios where a secret key can be securely shared among parties. In order to ensure

high security, Symmetria introduces a randomization component in the ciphertext that keeps

growing, which might cause significant performance overhead. Seabed [49] is another symmetric

PHE cryptosystem but only supports primitive additions (e.g., no subtraction or negation).

The second type of PHE scheme, e.g., Paillier [48], is implemented as an asymmetric operation

with a pair of public and private keys. An asymmetric scheme employs hard mathematical problems

in number theory and group theory to safely distribute the public keys, rendering it orders of

magnitude slower than a symmetric scheme. Although a hybrid scheme can be used with symmetric

key for encryption and asymmetric operation for key distribution, key distribution is needed per

session in database-as-a-service (DaaS), implying that asymmetric operations would be invoked

routinely.

Although PHE is much more efficient than FHE, PHE still cannot meet the performance re-

quirements for data-intensive workloads in DaaS. As we will show later in this paper (§??), the
state-of-the-art PHE scheme, Symmetria [57], can only encrypt data at a rate of 3 Mbps—much

lower than the commodity network bandwidth (cf. Fig. 11) that is in the order of tens of Mbps or

even Gbps. That being said, the performance bottleneck of data-intensive applications, such as

video analysis [21, 32], lies at the encryption subsystem.

Our long-term goal is to improve the performance of homomorphic encryption applied to large

volumes of outsourced data; this paper attains the above goal, as the first step, by proposing a

new caching approach to reduce the computational overhead in both symmetric- and asymmetric-

PHE schemes for outsourced databases or DaaS in cloud computing. It is our hope that data-

intensive applications would better exploit the high security and low overhead of PHE schemes by

incorporating the proposed technique.

1.2 Contributions
The key insights of our proposed caching technique include: (i) precomputing and caching some

homomorphic ciphertexts before encrypting the large volume of plaintexts; (ii) expanding a re-

quested plaintext into a summation of additive radix entries; (iii) constructing the ciphertexts with

randomized homomorphic addition, without touching on encryption primitives; and (iv) enabling

incremental encryption based on the extended entries of the cached ciphertexts.

Formally, we claim the following technical contributions.

• Firstly, we propose an algorithm to reconstruct the ciphertext using radixes in the context of

homomorphic encryption (HE). We name the new algorithm radix homomorphic encryption,
or RHE. We conduct a thorough analysis of parametrization for RHE. (§3)
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• Secondly, we design a full-fledged protocol called Radix-additive caching for homomorphic

encryption (Rache), which adopts RHE to securely encrypt a large volume of data. We

articulate the security goal, threat model, and security assumptions, under which the RHE

protocol is proven secure. (§4)

• Thirdly, we extend Rache into an incremental protocol that allows for efficient homomorphic

encryption of data streams. We also demonstrate the provable security of this incremental

protocol. (§5)

2 PRELIMINARIES AND RELATEDWORK
2.1 Confidentiality of Outsourced Data
We review four important techniques to ensure the confidentiality of outsourced data: encrypted

storage, encrypted tuples, encrypted fields, and secure multi-party computation.

Encrypted Storage. The database instance from the cloud vendor is considered as storage of

encrypted data and the client is responsible for nontrivial queries. This solution is viable only if (i)

the relations touched on by the query are small enough that the network overhead of transmitting

those relations is acceptable, and (ii) the user has the capability (both computation and storage) to

execute the query locally. We stress that this solution might defeat the purpose of outsourcing the

database service to the cloud.

Encrypted Tuples. Every tuple of the original relation 𝑅 is encrypted into a ciphertext that is

stored in column𝑇 of a new relation 𝑅𝑠 . For each attribute𝐴𝑖 in 𝑅, there is a corresponding attribute

𝐴𝑠𝑖 in 𝑅
𝑠
, whose value is the index of 𝑅.𝐴𝑖 . The index is usually assigned by a random integer based

on some partitioning criteria and can be retrieved with the metadata stored on the client, i.e., the
user’s local node. As a result, the schema stored at the cloud provider is 𝑅𝑠 (𝑇,𝐴𝑠

1
, . . . , 𝐴𝑠𝑖 , . . . ). When

the user submits a query𝑄 , the client splits𝑄 into two subqueries𝑄𝑠 and𝑄𝑐 .𝑄𝑠 serves as a filter to

eliminate those unqualified tuples based on the indices in 𝑅𝑠 and transmits the qualified tuples (in

ciphertexts) to the client. 𝑄𝑐 then ensures that those false-positive tuples are eliminated after the

encrypted tuples are decrypted using the secret key presumably stored on the client. This approach

involves both the client (i.e., the user) and the server (i.e., the cloud provider) when completing a

query, often referred to as information hiding approaches [30].

Encrypted Fields. The third approach aims to minimize the involvement of clients when

processing the query over the encrypted data stored at the cloud vendor. The idea is to encrypt

the relations at a finer granularity—each attribute of a relation is separately encrypted. The key

challenge of this approach lies in its expressiveness, e.g., how to apply arithmetic or string operations

over the encrypted fields. While fully homomorphic encryption (FHE) [28] can support a large

set of computing problems, the performance of current FHE implementations cannot meet the

requirements of practical database systems [50, 51]. An alternative solution is partially homomorphic

encryption (PHE) schemes [26, 48], which are orders of magnitude faster than FHE but only support

a single algebraic operation. Traditional PHE schemes are designed for public-key (asymmetric)

encryption, which is desirable for straightforward key distribution over insecure channels but

significantly more expensive than secret-key (symmetric) encryption. However, in the context of

DaaS, the user usually serves as both the sender and the receiver and there is no need to distribute

the key. To this end, symmetric (partially) homomorphic encryption (SHE), was proposed [49, 57].

Secure Multi-Party Computation (MPC). In addition to HE-based methods, another widely-

used technique for data privacy is securemulti-party computation (MPC), which originated from [64]

and has been mostly built upon oblivious transfer [29, 39], threshold homomorphic encryption [17,

19], and secret sharing [52, 59]. MPC has been applied in multiple machine learning frameworks,

such as DeepSecure [55], SecureML [45], and ABY [23].
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2.2 Homomorphic Encryption
The term homomorphic or homomorphism originates from group theory, which depicts such a

function that can be applied either before or after the operations conducted in the domain or the

image. Formally, we have the following mathematical definition.

Definition 1 (Homomorphism). Given two groups (𝐹, ⊕) and (𝐺, ⊗), a function ℎ : 𝐹 → 𝐺 is
called a homomorphism if ℎ(𝑓1 ⊕ 𝑓2) = ℎ(𝑓1) ⊗ ℎ(𝑓2), ∀𝑓1, 𝑓2 ∈ 𝐹 .

There are many examples of homomorphism. The following is a simple one we have seen in

basic mathematics.

Example 1. We can define two groups 𝐹 = (R, +) and 𝐺 = (R+,×) with the regular arithmetic

operations, whereR andR+ denotes real numbers and positive real numbers, respectively. Moreover,

we define a function ℎ(𝑥) = 2
𝑥
, where 𝑥 ∈ R. Evidently, the following equation holds: ℎ(𝑎 + 𝑏) =

2
𝑎+𝑏 = 2

𝑎 × 2𝑏 = ℎ(𝑎) × ℎ(𝑏). △

Homomorphic encryption (HE) is a specific type of encryption where certain operations between

operands can be performed directly on the ciphertexts in the sense that the result can be decrypted

into the same value as if the operations were applied to the plaintexts. If we connect HE to the

group-theoretical definition of homomorphism, the encryption function can be thought of the

homomorphism, the set of plaintexts as the domain of the homomorphism, and the set of ciphertexts

as the image of the homomorphism.

An HE scheme that supports the arithmetic addition over the ciphertexts is called additive. That
is to say, we can define an addition operation ⊕ between two ciphertexts, say 𝑒𝑛𝑐 (𝑥) and 𝑒𝑛𝑐 (𝑦)
encrypted by function 𝑒𝑛𝑐 (·), such that

𝑑𝑒𝑐 (𝑒𝑛𝑐 (𝑥) ⊕ 𝑒𝑛𝑐 (𝑦)) = 𝑥 + 𝑦, (1)

where 𝑑𝑒𝑐 (·) denotes the decryption function corresponding to 𝑒𝑛𝑐 (·). It should be noted that Eq. (1)
does not necessarily imply a mathematical homomorphism as defined in Def. 1; that is, we generally

do not require 𝑒𝑛𝑐 (𝑥) ⊕𝑒𝑛𝑐 (𝑦) = 𝑒𝑛𝑐 (𝑥 +𝑦). This is more of a practical security consideration rather

than a mathematical one: randomness is always required for cryptographic schemes in practice (e.g.,

to defeat chosen-plaintext cryptanalysis), and therefore, repeated encryption of the same plaintext

should look different, i.e., random.

Many encryption schemes in the literature are homomorphic, such as Symmetria [57] and

Paillier [48]. Symmetria is a symmetric encryption scheme, meaning that a single secret key is

used to both encrypt and decrypt the messages. By contrast, Paillier is asymmetric, where a pair of

public and private keys are used for encryption and decryption, respectively. Due to the expensive

arithmetical operations performed by the asymmetric encryption, Paillier is orders of magnitude

slower than Symmetria. However, Paillier is particularly useful when there is no secure channel to

share the secret key among parties.

An HE scheme that supports multiplication is called multiplicative. Symmetria [57] is also

multiplicative using a distinct scheme than the one for addition. Other well-known multiplicative

HE schemes include RSA [54] and ElGamal [26]. A multiplicative HE scheme ensures the following

equality,

𝑑𝑒𝑐 (𝑒𝑛𝑐 (𝑎) ⊗ 𝑒𝑛𝑐 (𝑏)) = 𝑎 × 𝑏,
where ⊗ denotes the multiplication defined over ciphertexts.

An HE scheme that supports both addition and multiplication is called a fully HE (FHE) scheme.
This requirement should not be confused with specific addition and multiplication parameters,

such as Symmetria [57] and NTRU [34]. That is, the addition and multiplication must be supported
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homomorphically under exactly the same scheme:{
𝑑𝑒𝑐 (𝑒𝑛𝑐 (𝑎) ⊕ 𝑒𝑛𝑐 (𝑏)) = 𝑎 + 𝑏
𝑑𝑒𝑐 (𝑒𝑛𝑐 (𝑎) ⊗ 𝑒𝑛𝑐 (𝑏)) = 𝑎 × 𝑏

It turned out to be extremely hard to construct FHE schemes until Gentry [28] demonstrated

that such a scheme can be constructed using lattice theory. Indeed, multiple implementations

are available today, such as BGV [31], BFV [27], and CKKS [15]. Nonetheless, the performance

overhead of FHE implementations still cannotmeet the requirement of many real-world applications,

especially those data-intensive applications. Two popular open-source libraries of FHE schemes

are IBM HElib [33] and Microsoft SEAL [58]. Some more recent implementations are optimized for

machine learning and vector computation, such as TenSEAL [11].

A lot of research efforts have been put to optimize the performance of HE schemes. For instance,

hardware-based optimization [24, 53, 56] has been heavily exploited. A recent article argues that

the current performance bottleneck of HE lies in the memory wall [22]. The notion of incremental
cryptography was first formalized in 1990s [9, 10], mainly from a theoretical perspective. More

recent work on incremental encryption schemes can be found in [5, 40, 44]. Incremental encryption

recently draws a lot of research interests for efficient data encoding in the resource-constraint

contexts such as mobile computing [12, 38, 63].

2.3 Provable Security
When employing an encryption scheme in an application, it is highly desirable to demonstrate its

security in a provable manner. Formally, we need to clearly identify the following three important

pieces for provable security of a given encryption scheme: security goal, threat model, and as-

sumptions. The security goal spells out the desired effect when the application is under attack; the

threat model articulates what an adversary can do with the attack, such as what information of the

plaintext/ciphertext can be collected and the resource/time limitation of the attack; the assumption

lists the presumed specifics of the subsystems or components of the cryptographic scheme, which

is usually an important building block for the security proof, e.g., reduction. The security goal and

threat model are usually called security definition collectively.

One well-accepted security definition with a good balance between efficiency and security is

that the adversary is able to launch a chosen-plaintext attack (CPA), defined as follows.

Definition 2 (Chosen-Plaintext Attack). Given a security parameter 𝑛, i.e., the bitstring length
of the key, an adversary can obtain up to 𝑝𝑜𝑙𝑦 (𝑛) of plaintext-ciphertext pairs (𝑚,𝑐), where 𝑚 is
arbitrarily chosen by the adversary and 𝑝𝑜𝑙𝑦 (·) is a polynomial function on 𝑛. With such information,
the adversary tries to decrypt a 𝑐 ′ that is not included in the polynomial number of known ciphertexts.

The polynomial requirement is only for practical reasons, as we usually assume that the adversary

should only be able to run a polynomial algorithm without unlimited resources. Accordingly, we

want to design encryption schemes that are CPA secure: even if the adversary A can obtain those

extra pieces of information, A should not be able to decode the ciphertext better than a random

guess up to a very small probability. To quantify the degree of this small probability, negligible
function is defined as below.

Definition 3. A function 𝜇 (·) is called negligible if for all polynomials 𝑝𝑜𝑙𝑦 (𝑛) the inequality
𝜇 (𝑛) < 1

𝑝𝑜𝑙𝑦 (𝑛) holds for sufficiently large 𝑛’s.

For completeness, we list the following lemmas for negligible functions that will be used in later

sections. We state them without the proofs, which can be found in introductory cryptography or

complexity theory texts.
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Lemma 1 (Summation of two negligible functions is a negligible function). Let 𝜇1 (𝑛)
and 𝜇2 (𝑛) be both negligible functions. Then 𝜇 (𝑛) is a negligible function that is defined as 𝜇 (𝑛) def=
𝜇1 (𝑛) + 𝜇2 (𝑛).

Lemma 2 (Quotient of a polynomial function over an exponential function is a neg-

ligible function).
𝑝𝑜𝑙𝑦 (𝑛)

2
𝑛 is a negligible function. That is, ∃𝑁 ∈ N, ∀𝑛 ≥ 𝑁 :

𝑝𝑜𝑙𝑦 (𝑛)
2
𝑛 < 1

𝑝𝑜𝑙𝑦 (𝑛) ,
where N denotes natural numbers.

3 RHE: RADIX HOMOMORPHIC ENCRYPTION
3.1 Overview
Our key observation is that although a HE encryption operation is costly, the algebraic operation

over the ciphertexts is comparatively cheaper. While the concrete performance gap is dependent on

how a specific HE scheme is implemented and to which data the scheme is applied, we exemplify

such gaps in our experiments: Figure 2 in §6.4.1 shows that the addition of two ciphertexts takes

less than 1% time than the encryption of a plaintext in Paillier [48]. With that said, if we convert the

expensive encryption operation of a given plaintext into an equivalent set of algebraic operations

over existing (i.e., cached) ciphertexts, we may obtain a performance edge. There are two questions,

however, in this idea.

First, which ciphertexts should we cache? Evidently, we can always cache only ℎ𝑒 (1) and then

compute ℎ𝑒 (𝑚) of 𝑛-bit plaintext𝑚 with ⊕𝑚𝑖=1ℎ𝑒 (1). However, the accumulative overhead caused

by a lot of homomorphic additions would at some point outweigh the encryption cost due to O(2𝑛)
additions. We propose to only cache a set of selective ciphertexts; specifically, let 𝑟 be a radix (and

we will show how to pick 𝑟 in §3.3), then the ciphertexts of 𝑟 -power series will be pre-computed:

ℎ𝑒 (𝑟 𝑖 ), where 𝑟 𝑖 ≤ 2
𝑛
. By doing so, the target ciphertext will be constructed through O(𝑛) additions.

It should be noted that the target ciphertext at this point is merely a deterministic ciphertext with

no security.

Second, how to ensure the randomness of the ciphertext? Randomness must be added to the

ciphertext to achieve a practical security level, e.g., anti- chosen-plaintext attack (CPA). Informally,

the randomness must be probabilistic small, which usually takes the form of picking a piece of data

out of an exponential space. From the above discussion, we have 𝑛 cached ciphertexts; we will use

these ciphertexts as ingredients to add a random ℎ𝑒 (0) to the deterministic ciphertext. The random

ℎ𝑒 (0) is constructed by working on every radix-power 𝑟 𝑖 : randomly adding radix-power ℎ𝑒 (𝑟 𝑖 ) and
if so, then subtracting 𝑟 times of ℎ𝑒 (𝑟 𝑖−1). Overall, there are O(𝑟𝑛) homomorphic additions that will

result in ℎ𝑒 (0), which is randomly selected from an exponential space O(2𝑛). The above radix-wise
homomorphic additions can be parallelized with the many-core architecture in modern CPUs.

Before formalizing the algorithm, we illustrate the idea of Rache in an oversimplified scenario

Example 2.

Example 2. Let’s try to encrypt number 100 using the Rache encryption scheme. For the sake

of simplicity, let 𝑟 = 2, 𝐶𝑡𝑥𝑡 [] be the list of cached 𝑟 -power ciphertexts, and ⊕ be the addition on

the ciphertexts. Obviously, 100 = 64 + 32 + 4 = 𝑟 6 + 𝑟 5 + 𝑟 2. Therefore, 𝑅𝑎𝑐ℎ𝑒 (100) = 𝑅𝑎𝑐ℎ𝑒 (𝑟 6) ⊕
𝑅𝑎𝑐ℎ𝑒 (𝑟 5) ⊕ 𝑅𝑎𝑐ℎ𝑒 (𝑟 2) = 𝐶𝑡𝑥𝑡 [6] ⊕ 𝐶𝑡𝑥𝑡 [5] ⊕ 𝐶𝑡𝑥𝑡 [2]. That is, instead of calculating 𝑅𝑎𝑐ℎ𝑒 (100)
using sophisticated number-theoretical rules, we can simply construct 𝑅𝑎𝑐ℎ𝑒 (100) through two

homomorphic additions of cached ciphertexts, which are much simpler and faster. △

3.2 Algorithm
Algorithm 1 formalizes the radix-based procedure. Let 𝑛 denote the security parameter of the

underlying PHE scheme, i.e., the bitstring length of the key 𝑘 that is usually generated by 𝑘 ←
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Algorithm 1: RHE: Radix Homomorphic Encryption

Input: An array of plaintexts 𝑃𝑡𝑥𝑡 [], each being a padded 𝑛-bitstring; A homomorphic

encryption function ℎ𝑒 (·) s.t. ∀𝑎𝑖 ∈ 𝑃𝑡𝑥𝑡 [],
⊕

𝑖 ℎ𝑒 (𝑎𝑖 ) = ℎ𝑒 (
∑
𝑖 𝑎𝑖 ); Radix 𝑟 ;

Output: An array of ciphertexts 𝐶𝑡𝑥𝑡 [] such that ∀𝑖 , ℎ𝑒−1 (𝐶𝑡𝑥𝑡 [𝑖]) == 𝑃𝑡𝑥𝑡 [𝑖], where
ℎ𝑒−1 denotes the decryption function;

// Initialization

1 𝑚 B 2
𝑛 − 1

2 for 𝑖 = 0; 𝑖 <= ⌊log𝑟 𝑚⌋; 𝑖 + + do
3 𝑟𝑎𝑑𝑖𝑥𝑒𝑠 [𝑖] B ℎ𝑒 (𝑟 𝑖 )
4 end
5 𝑟𝑎𝑑𝑖𝑥𝑒𝑠

[
⌊log𝑟 𝑚⌋ + 1

]
B ℎ𝑒 (0)

// Encoding

6 for i = 0; i < Ptxt.size(); i++ do
7 for 𝑗 = 0; 𝑗 <= ⌊log𝑟 𝑚⌋; 𝑗 + + do
8 𝑖𝑑𝑥 [ 𝑗] B (𝑃𝑡𝑥𝑡 [𝑖] / 𝑟 𝑗 ) % 𝑟
9 end

// 𝑃𝑡𝑥𝑡 [𝑖] = ∑
𝑗 𝑖𝑑𝑥 [ 𝑗] × 𝑟 𝑗

10 𝐶𝑡𝑥𝑡 [𝑖] B
⊕ ⌊log𝑟 𝑚⌋

𝑘=0

⊕𝑖𝑑𝑥 [𝑘 ]
𝑗=1 𝑟𝑎𝑑𝑖𝑥𝑒𝑠 [𝑘]

// Randomization

11 isSwap

$←− {0, 1}
12 if 1 == isSwap then
13 𝐶𝑡𝑥𝑡 [𝑖] B 𝐶𝑡𝑥𝑡 [𝑖] ⊕ 𝑟𝑎𝑑𝑖𝑥𝑒𝑠

[
⌊log𝑟 𝑚⌋ + 1

]
14 end
15 for 𝑗 = 1; 𝑗 < ⌊log𝑟 𝑚⌋; 𝑗 + + do
16 isSwap

$←− {0, 1}
17 if 1 == isSwap then
18 𝐶𝑡𝑥𝑡 [𝑖] B 𝐶𝑡𝑥𝑡 [𝑖] ⊕ 𝑟𝑎𝑑𝑖𝑥𝑒𝑠 [ 𝑗]
19 for 𝑘 = 0;𝑘 < 𝑟 ;𝑘 + + do
20 𝐶𝑡𝑥𝑡 [𝑖] B 𝐶𝑡𝑥𝑡 [𝑖] ⊖ 𝑟𝑎𝑑𝑖𝑥𝑒𝑠 [ 𝑗 − 1]
21 end
22 end
23 end
24 end

𝐺𝑒𝑛(1𝑛), where 𝐺𝑒𝑛() is a pseudorandom generator. For the sake of clarity, we assume that the

original plaintext value can be converted into a bitstring of length 𝑛 or smaller; this should not

be a technical limitation in practice, as we can always split a large value into multiple blocks of
𝑛-bits, each of which is encrypted with randomization. In other words, we construct a block cipher
using Algorithm 1. If there are identical blocks, the security is nonetheless guaranteed because

Algorithm 1 is randomized (Lines 11 and 16).
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Lines 1–5 initialize the reused entries of the integral powers of radix 𝑟 for future construction of

ciphertexts. Specifically, Line 5 precomputes the homomorphic encryption of plaintext 0, which will

be used for the base case during the randomization (Lines 11–14). Lines 6–24 encode the plaintexts,

each of which is computed directly over the encoded radixes that are initialized at the beginning

of the protocol. For each plaintext, Lines 11–14 randomize the radix summation of ciphertexts

such that repeated plaintexts will result in distinct ciphertexts. The idea of the randomization is

to iterate every precomputed ciphertext 𝑟𝑎𝑑𝑖𝑥𝑒𝑠 [𝑖] and randomly add it to the ciphertext; if the

addition happens, we subtract ciphertext 𝑟𝑎𝑑𝑖𝑥𝑒𝑠 [𝑖 − 1] repeatedly 𝑟 times.

The correctness of Algorithm 1 can be verified by straightforward algebraic computation. We

skip the full computation here due to space constraints.

3.3 Parameterization
3.3.1 Heuristic Radix Selection. This section will discuss heuristic methods to decide the radix

value 𝑟 in practice. The discussion will remain mostly informal as there are unlimited factors

in real-world applications; a more rigorous approach to be presented in the next section (§3.3.2)

focuses on the worst-case scenario, where we can make more assumptions of the factors that allow

us to conduct a more quantitative analysis.

In practice, the initialization cost can be thought of a constant cost because it can be amortized

by a large number of follow-up computations. As a result, the key trade-off lies at the cost of ⊕’s
and that of encrypting the plaintext message𝑚. Let 𝑔 denote the ratio of computational costs of

ciphertext addition over homomorphic encryption:

𝑔
def

=
𝑇𝑖𝑚𝑒 (𝐶𝑡𝑥𝑡 [𝑖] ⊕ 𝐶𝑡𝑥𝑡 [ 𝑗])

𝑇𝑖𝑚𝑒 (𝑅𝑎𝑐ℎ𝑒 (𝑚)) ,

where𝑇𝑖𝑚𝑒 () denotes the time function and𝐶𝑡𝑥𝑡 [] denotes the list of cached ciphertexts. Evidently,
the bottom line is to ensure the average cost of

∑
𝑘∈𝐾 𝐶𝑡𝑥𝑡 [𝑘] for a requested ciphertext is lower

than that of 𝑅𝑎𝑐ℎ𝑒 (𝑚), or 𝑔|𝐾 | < 1, because otherwise there is no performance improvement from

caching the ciphertext. In a specific HE scheme, 𝑔 can be estimated using some benchmarks; for

example, Figure 2 shows that ciphertext addition is two orders of magnitude faster than encryption

in Paillier: 𝑔 = 0.01. This implies that, on average, |𝐾 | should be smaller than 100. With radix 𝑟 ,

the maximal possible upper bound would be 𝑟 100. Therefore, we need to pick 𝑟 to ensure that the

maximal value of the plaintext set is smaller than 𝑟 100 in Paillier. If𝑀 is the maximal message, then

we require𝑀 < 𝑟 100 or 𝑟 > 𝑀
1

100 . If the plaintext space is a set of 256-bit strings, then𝑀 = 2
256

and

𝑟 > (2256) 1

100 > 2
2.56 ≈ 5.9. Therefore, 𝑟 can be set to 6.

3.3.2 Optimal Radix in the Worst Case. This section will investigate the optimal radix in the worst

case. Let𝑚 ≥ 2 denote the maximal value to be encrypted in the application. Let 𝑟 ≥ 2 denote

the radix or base of the homomorphic encryption. Obviously, given an arbitrary number 𝑥 , where

0 ≤ 𝑥 ≤ 𝑚, there are 𝑘 + 1 radix entries: 𝑟 0, 𝑟 1, . . . , 𝑟𝑘 , where 𝑘 = ⌊log𝑚𝑟 ⌋. Let 0 ≤ 𝜅 ≤ 𝑘 . In the

worst case, each 𝑟𝜅 radix-entry incurs 𝑟 − 2 times of homomorphic addition, i.e., when computing

(𝑟 − 1) · 𝑥𝜅 . Since one more homomorphic addition needs to be taken for the summation of each

radix, the overall times of homomorphic addition, in the worst case when𝑚 is one less than the

next integral power of 𝑟 (i.e., ⌊log𝑚𝑟 ⌋ = log
𝑚+1
𝑟 −1), is

𝑓 (𝑟 ) = (𝑟 − 2) (𝑘 + 1) + 𝑘 = (𝑟 − 1) log𝑚+1𝑟 −1.

Our goal is therefore to find out the optimal 𝑟 that minimizes 𝑓 (𝑟 ). This can be achieved by

calculating the first-order and second-order derivatives of 𝑓 (𝑟 ). We skip the detailed computation

here for the sake of space; the following elementary calculus and algebra sketch the procedure to
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derive that 𝑟 = 2 leads to the minimum number of homomorphic additions in the worst case.

𝑓 ′(𝑟 ) = 𝑑

𝑑𝑟
𝑓 (𝑟 ) = ln(𝑚 + 1) · (ln 𝑟 )−2 · 𝑟−1 · (𝑟 ln 𝑟 − 𝑟 + 1) .

The stationary point is therefore the solution to 𝑔(𝑟 ) = 𝑓 ′(𝑟 ) = 0, which yields 𝑟 = 1. Since we

require 𝑟 ≥ 2, we need to find another qualified radix. First, we calculate 𝑔(2):
𝑔(2) = 2 ln 2 − 2 + 1 ≥ 2 × 0.69 − 1 > 0.

Then, let 𝑟 ≥ 3, therefore ln 𝑟 > 1, which yields:

𝑔(𝑟 ) |𝑟 ≥3 = 𝑟 ln 𝑟 − 𝑟 + 1 = 𝑟 (ln 𝑟 − 1) + 1 > 0.

Note that by definition, the following equation holds:

𝑓 ′(𝑟 ) = ln(𝑚 + 1) · (ln 𝑟 )−2 · 𝑟−1 · 𝑔(𝑟 ).
If we assume 𝑚 ≥ 2, then ln(𝑚 + 1) > 0. Both (ln 𝑟 )−2 and 𝑟−1 factors are obviously positive.

Therefore, 𝑓 ′(𝑟 ) is always positive, meaning that 𝑓 (𝑟 ) is a monotonically increasing function. It

follows that the minimal qualified radix 𝑟 = 2 leads to the minimum number of homomorphic

additions.

4 RACHE: RADIX-ADDITIVE CACHING FOR HOMOMORPHIC ENCRYPTION
4.1 Security Definitions and Assumptions
The security goal of our target outsourced databases is computational secrecy, which implies that any

adversary cannot differentiate between the encrypted data and a random string with a probability

significantly larger than 50%, coined as indistinguishability. This means that when an adversary is

given a ciphertext, he or she cannot do much better than randomly guessing the corresponding

plaintext with reasonable resources. Technically, the degree of closeness is quantified by a negligible

function; we refer readers to §2.3 for more technical details. Indeed, if we want to be strict on the

50% requirement, then it is called perfect secrecy (information-theoretical secrecy), which is beyond

the scope of this paper.

In the context of computational secrecy, we assume that the adversary cannot obtain unlimited

computing resources and can only run probabilistic polynomial-time (PPT) algorithms. We also

assume that the adversary can launch a chosen-plaintext attack (CPA), meaning that the adver-

sary can obtain 𝑝𝑜𝑙𝑦 (𝑛) arbitrary pairs of (plaintext, ciphertext), where 𝑛 denotes the security

parameter and 𝑝𝑜𝑙𝑦 (·) denotes a polynomial function. We call a scheme IND-CPA if it exhibits

indistinguishability under CPA.
Finally, we assume the primitive homomorphic encryption schemes, into which radix-caching

is integrated, are IND-CPA. This is technically required because we will need this assumption

to prove that Rache is IND-CPA. We call those original homomorphic encryption schemes base
schemes, whose encryption function must not be deterministic—a necessary (but not sufficient)

requirement for any scheme to be IND-CPA. In practice, many existing base schemes have been

proven IND-CPA; for instance, both base schemes (Paillier [48], Symmetria [57]) used by Rache are

IND-CPA.

4.2 Scheme Description
We start with integrating RHE into a symmetric homomorphic encryption scheme. We denote a

quadruple

Π = (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐, ⊕)
as a symmetric homomorphic encryption, where 𝐺𝑒𝑛 denotes the function to generate a random

key 𝑘 of length 𝑛, 𝐸𝑛𝑐 denotes the encryption function parameterized with 𝑘 to encode a plaintext
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𝑚 into a ciphertext 𝑐 , 𝐷𝑒𝑐 denotes a decryption function with parameter 𝑘 to decode 𝑐 back into𝑚,

and ⊕ denotes the additive operation over two ciphertexts 𝐸𝑛𝑐 (𝑚1) and 𝐸𝑛𝑐 (𝑚2) such that

𝐷𝑒𝑐𝑘 (𝐸𝑛𝑐𝑘 (𝑚1) ⊕ 𝐸𝑛𝑐𝑘 (𝑚2)) =𝑚1 +𝑚2.

A symmetric Rache scheme built upon Π is a triple

Π̃(𝐺𝑒𝑛, 𝑅𝐻𝐸, 𝐷𝑒𝑐), (2)

where 𝑅𝐻𝐸 denotes the procedure defined in Algorithm 1. Note that 𝑅𝐻𝐸 (𝑚) is equal to 𝐸𝑛𝑐 (𝑚)
up to O(𝑛) random ciphertexts of zeros (out of the overall 𝑟𝑛 parameter space):

𝑅𝐻𝐸𝑘 (𝑚) ≡ 𝐸𝑛𝑐𝑘 (𝑚)
(⊕

𝐼

𝐸𝑛𝑐𝑘 (0)
)
,

where 𝐼 is an index set whose cardinality is a polynomial on𝑛. By definition, the equality𝐷𝑒𝑐𝑘 (𝑅𝐻𝐸𝑘 (𝑚)) =
𝑚 holds.

An asymmetric Rache scheme can be similarly built upon an asymmetric base HE scheme, except

for the keys for 𝐸𝑛𝑐 and 𝐷𝑒𝑐: two random keys—public key 𝑝𝑘 and private key 𝑠𝑘—are generated

by 𝐺𝑒𝑛. For instance, we now require the following equality holds when RHE is built upon an

asymmetric base scheme:

𝐷𝑒𝑐𝑠𝑘 (𝑅𝐻𝐸𝑝𝑘 (𝑚1) ⊕ 𝑅𝐻𝐸𝑝𝑘 (𝑚2)) =𝑚1 +𝑚2.

Because RHE touches on only the encryption function, there is no need to differentiate between

symmetric and asymmetric base schemes. Therefore, in the following discussion, we assume the

underlying base scheme is symmetric for more succinct notations.

4.3 Provable Security
This subsection proves that the Rache scheme is IND-CPA. We first explain the intuition why Rache

is CPA-secure and then give the formal proof.

Recall that Rache precomputes and caches log𝑟 2
𝑛
radix entries. If we assume the system picks

the optimal 𝑟 = 2 in the worst case, then the scheme will simply cache 𝑛 radix entries. Therefore,

those ciphertexts cached by Rache should not significantly help the adversary—who presumably

runs a probabilistic polynomial-time (PPT) Turing machine—as the overall space is exponential

(Lines 11–23, Algorithm 1).

Technically, we want to reduce the problem of breaking the base homomorphic encryption scheme

Π to the problem of breaking its Rache extension Π̃. That is, if a PPT adversaryA takes an algorithm

𝑎𝑙𝑔 to break Π̃, then A can efficiently (i.e., in polynomial time) construct another algorithm 𝑎𝑙𝑔′

that calls 𝑎𝑙𝑔 as a subroutine to break Π as well (simulating 𝑎𝑙𝑔′ with 𝑎𝑙𝑔). However, we assume

that the base scheme is IND-CPA, so the above cannot happen—leading to a contradiction. We

formalize the above in the following proposition.

Proposition 1. If HE schemeΠ is IND-CPA, then its Rache-extension Π̃ defined in Eq.(2) is IND-CPA.

Proof. Let 𝐶𝑃𝐴A
𝑋

denote the indistinguishability experiment with scheme 𝑋 . The probability

for A to successfully break Π and Π̃ are 𝑃𝑟
[
𝐶𝑃𝐴AΠ = 1

]
and 𝑃𝑟

[
𝐶𝑃𝐴A

Π̃
= 1

]
, respectively. By

assumption, the following inequality holds:

𝑃𝑟
[
𝐶𝑃𝐴AΠ = 1

]
≤ 1

2

+ 𝜖, (3)

where 𝜖 is a negligible probability. By comparing Π and Π̃, the latter yields 𝑛 additional pairs

of plaintexts and ciphertexts out of the total 2
𝑛
possible pairs in the worst case. Therefore, the
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following inequality holds:

𝑃𝑟

[
𝐶𝑃𝐴A

Π̃
= 1

]
− 𝑃𝑟

[
𝐶𝑃𝐴AΠ = 1

]
≤ 𝑝𝑜𝑙𝑦 (𝑛)

2
𝑛

. (4)

Combining Eq. (3) and Eq. (4) yields the following inequality:

𝑃𝑟

[
𝐶𝑃𝐴A

Π̃
= 1

]
≤ 1

2

+ 𝜖 + 𝑝𝑜𝑙𝑦 (𝑛)
2
𝑛

.

Now, we only need to show that the summation of the last two terms, 𝜖 + 𝑝𝑜𝑙𝑦 (𝑛)
2
𝑛 , is negligible.

According to Lemma 1 and Lemma 2 (§2), this is indeed the case. Therefore, the probability for the

adversary A to succeed in the 𝐶𝑃𝐴A
Π̃

experiment is only negligibly higher than
1

2
, proving that

Rache is IND-CPA, as claimed. □

5 INCREMENTAL RACHE
5.1 Overview
While Rache can effectively precompute and cache those selected ciphertexts given an upper bound

of the plaintexts, the principle cannot be applied to data streams where the maximal value is

unknown a priori. To that end, we propose to dynamically precompute those 𝑟 powers when a

newly seen maximum is observed. The key idea is straightforward: whenever the cipher encounters

a plaintext that is significantly larger than the largest (cached) value, we submit a request to expand

the list of cached values by adding a few precomputed ciphertexts that are closer to the new large

plaintext. The remaining job is then to quantify the meaning of significantly and a few, which will

be elaborated on in the remainder of this section. Before the formal discussion, we illustrate the

high-level idea of incremental Rache by extending Example 2 into the following Example 3: recall

that we have a good set of cached ciphertexts now for up to 𝑟 6, where 𝑟 = 2.

Example 3. Now let’s assume that a new value 200 is being encrypted. In theory, we could compute

𝑅𝑎𝑐ℎ𝑒 (200) = 𝑅𝑎𝑐ℎ𝑒 (𝑟 6) ⊕𝑅𝑎𝑐ℎ𝑒 (𝑟 6) ⊕𝑅𝑎𝑐ℎ𝑒 (𝑟 6) ⊕𝑅𝑎𝑐ℎ𝑒 (𝑟 3); however, this naive approach would

not scale: at some point the cost of many ⊕’s would outweigh that of the original encryption.

An alternative is to precompute some larger ciphertexts and append them into 𝐶𝑡𝑥𝑡 []: 𝐶𝑡𝑥𝑡 [7] =
𝑅𝑎𝑐ℎ𝑒 (𝑟 7) = 𝑅𝑎𝑐ℎ𝑒 (128). As a result, we can compute 𝑅𝑎𝑐ℎ𝑒 (200) = 𝑅𝑎𝑐ℎ𝑒 (𝑟 7) ⊕ 𝑅𝑎𝑐ℎ𝑒 (𝑟 6) ⊕
𝑅𝑎𝑐ℎ𝑒 (𝑟 3) = 𝐶𝑡𝑥𝑡 [7] ⊕ 𝐶𝑡𝑥𝑡 [6] ⊕ 𝐶𝑡𝑥𝑡 [3], which saves one ⊕ in this example; but for larger

plaintexts, the saving would look much more significant. △

5.2 Definitions and Notations
We begin by defining two important building blocks of incremental Rache, pivot and nuance.

Definition 4 (Pivot). Apivot in incremental Rache is one plaintext whose ciphertext is precomputed
and cached.

By definition, the preimage of every entry of the 𝑟𝑎𝑑𝑖𝑥𝑒𝑠 [] array discussed in Alg. 1 is a pivot.

However, the converse is not true in general for incremental Rache: we might optionally choose to

cache more “important” ciphertexts in addition to those in 𝑟𝑎𝑑𝑖𝑥𝑒𝑠 [].
Definition 5 (Nuance). A nuance in incremental Rache is a pair (𝜉, 𝑅𝐻𝐸 (𝜉)), where 𝜉 is a

plaintext and 𝑅𝐻𝐸 (𝜉) is the Rache ciphertext of 𝜉 .
We use 𝑝 = Θ(𝑝𝑜𝑙𝑦 (𝑛)) to denote the asymptotic number of pivots that will be preprocessed.

Common values for 𝑝 include 𝑛𝑐 , 1 ≤ 𝑐 ≤ 5 [6]. Similarly, we use 𝑑 = Θ(𝑝𝑜𝑙𝑦 (𝑛)) to denote the

asymptotic number of nuances that will be cached. We assume the plaintext can be encoded with

the security parameter 𝑛. Again, we can pad shorter ones or break longer ones into blocks to ensure

the aligned lengths. We denote by𝑚 the number of plaintexts (thus𝑚 ≤ 2
𝑛
).
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5.3 Scheme Description
To make it more concrete, we slightly extend the triple expression of an HE scheme into a quintuple

by considering the spaces of plaintexts and ciphertexts. Formally, we denote by quintuple Π =

(P, C,K, E,D) an HE scheme, where P is the set of plaintexts, C is the set of ciphertexts, K is the

set of secret keys (for succinctness assuming the scheme is symmetric), E and D are sets of keyed

encryption and decryption functions that satisfy the following predicate,

∀𝐾 ∈ K, ∀𝑥 ∈ P, ∃𝑒𝐾 ∈ E, ∃𝑑𝐾 ∈ D, 𝑑𝐾 (𝑒𝐾 (𝑥)) = 𝑥 .
An incremental Rache is a septuple extended from Π:

Π̃ = (P, C,K, Ẽ,D,B,N), (5)

where B is a function from plaintexts to the set of the indexed pivots, N is a nuance function from

a polynomial number of plaintexts to their ciphertexts, and Ẽ is the set of keyed functions for

incremental encryption. While P, C, K , and D inherit the same semantics from Π, others need

more explanation. We elaborate on B, N , and Ẽ as follows.

We start with B. Recall that we assume the size of the current data set is𝑚, implying its index

𝑚 − 1 (counting from 0). The newly added data point, therefore, has index𝑚. The value of function

B(𝑚) is calculated as the encryption of the largest pivot that is smaller than the new data point. If

we sort the pivots 𝑃𝑖 ’s in an increasing order (𝑃0 ≤ 𝑃1 ≤ 𝑃2 ≤ . . . ), then we can formally define B
as follows:

B(𝑚) def= 𝑒𝐾 (𝑃𝑖 ),
where 𝑃𝑖 ≤ 𝑚 < 𝑃𝑖+1 and 𝑖 denotes the pivot index.

The nuance function N maps a logarithmic distance from 𝑃𝑖 to its encryption:

N :

[
1,

⌈
𝑃𝑖+1 − 𝑃𝑖

2

⌉]
→ C,

𝜉 ↦→ 𝑒𝐾 (𝜉),

where 𝜉 ∈
{
2
𝑗
: ∀𝑗 ∈ N, 2𝑗 ≤

⌈
𝑃𝑖+1−𝑃𝑖

2

⌉}
and 𝑒𝐾 ∈ Ẽ. By convention, we use 𝑑𝑜𝑚(N) to denote the

domain of functionN , i.e., the set of nuance plaintexts between two adjacent pivots. It is evident to

see that the new data point, denoted 𝑃𝑡𝑥𝑡 [𝑚], can be calculated as follows:

𝑃𝑡𝑥𝑡 [𝑚] = 𝑃𝑖 +
|𝑑𝑜𝑚 (N) |∑

𝑗=1

{0, 1} × 2𝑗 .

We are now ready to define Ẽ. Let 𝑅𝐻𝐸𝑖𝑛𝑐
𝐾
∈ Ẽ with key 𝐾 , then an incremental encryption

function in Ẽ is defined as follows:

𝑅𝐻𝐸𝑖𝑛𝑐𝐾 (𝑚)
def

= 𝑒𝐾

(
𝑃𝑖 +

|𝑑𝑜𝑚 (N) |∑
𝑗=1

{0, 1} × 2𝑗
)

= 𝑒𝐾 (𝑃𝑖 ) ⊕ 𝑒𝐾

( |𝑑𝑜𝑚 (N) |∑
𝑗=1

{0, 1} × 2𝑗
)

= 𝑒𝐾 (𝑃𝑖 ) ⊕
|𝑑𝑜𝑚 (N) |⊕

𝑗=1

𝑒𝐾
(
{0, 1} × 2𝑗

)
= B(𝑚) ⊕

⊕
𝜉 ∈𝑑𝑜𝑚 (N)

N(𝜉) × {0, 1}.
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5.4 Provable Security
We will demonstrate that incremental Rache is IND-CPA. We formalize the proof in the following

proposition.

Proposition 2. If a homomorphic encryption Π is IND-CPA, then its corresponding incremental
Rache-extension Π̃ defined in Eq. (5) is IND-CPA.

Proof. The probability for an adversary A to successfully break Π and Π̃ are 𝑃𝑟
[
𝐶𝑃𝐴AΠ = 1

]
and 𝑃𝑟

[
𝐶𝑃𝐴A

Π̃
= 1

]
, respectively. By assumption, the following inequality holds:

𝑃𝑟
[
𝐶𝑃𝐴AΠ = 1

]
≤ 1

2

+ 𝜖, (6)

where 𝜖 is a negligible probability. By comparing Π and Π̃, the latter yields 𝑝 + 𝑑 additional pairs

of plaintexts and ciphertexts out of the total 2
𝑛
possible pairs in the worst case. Therefore, the

following inequality holds:

𝑃𝑟

[
𝐶𝑃𝐴A

Π̃
= 1

]
− 𝑃𝑟

[
𝐶𝑃𝐴AΠ = 1

]
≤ 𝑝 + 𝑑

2
𝑛
. (7)

Combining Eq. (6) and Eq. (7) yields the following inequality:

𝑃𝑟

[
𝐶𝑃𝐴A

Π̂
= 1

]
≤ 1

2

+ 𝜖 + 𝑝 + 𝑑
2
𝑛

=
1

2

+ 𝜖 + 𝑝𝑜𝑙𝑦 (𝑛)
2
𝑛

,

where the last equality comes from the simple fact that the summation of two polynomials is also a

polynomial:

∀𝑥,𝑦 ∈ 𝑝𝑜𝑙𝑦 (𝑛) : (𝑥 + 𝑦) ∈ 𝑝𝑜𝑙𝑦 (𝑛).
Now, we only need to show that the summation of the last two terms, 𝜖 + 𝑝𝑜𝑙𝑦 (𝑛)

2
𝑛 , is negligible.

According to Lemma 1 and Lemma 2 (§2), this is indeed the case. Therefore, the probability for the

adversary A to succeed in the 𝐶𝑃𝐴A
Π̃

experiment is only negligibly higher than
1

2
, proving that

incremental Rache is IND-CPA, as claimed. □

6 EVALUATION
6.1 Objectives
We aim to answer the following questions experimentally:

• What is the performance overhead of encryption in outsourced databases? (§6.3)

• How does Rache perform comparing with state-of-the-art HE schemes in term of computa-

tional time and scalability? (§6.4)

• How does incremental Rache help reduce the performance overhead of encrypting data

streams? (§6.5)

Specifically, in §6.3, we report the performance overhead of homomorphic encryption schemes,

i.e., Cassandra performance with and without data encryption. In §6.4, we report the performance of

Rache from three perspectives: comparison on three micro benchmarks (§§6.4.1–6.4.3), comparison

on three real-world applications (§§6.4.4–6.4.6), and scalability on the number of parallel cores and

input sizes (§6.4.7). In §6.5, we report the performance of incremental Rache from the following

three perspectives. The performance and overhead are reported in sections §§6.5.1–6.5.2. The

effectiveness of incremental encryption for aggregation functions is reported in §6.5.3. Lastly

in §6.5.4, we show that incremental Rache outperforms Symmetria even for an arbitrary message

with the original cache.
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6.2 Experimental Setup
6.2.1 Systems and Implementation. We implement Rache (both the batch and the incremental

versions) upon two base schemes, an asymmetric scheme Paillier [48] and a symmetric one Sym-

metria [57]. Both base schemes have proven to be IND-CPA [48, 57]. Our implementation follows

the same spirit of CryptDB [51], which leaves the vanilla database unchanged but plugs in the

cryptographic subsystem as a middleware. As a result, we integrate Rache into Cassandra [41]

through the DataStax Java driver [20].

The project is managed by Maven 3.6.3 and compiled with Java 11. The parallelization (e.g.,

randomized radix additions on Lines 15–23, Algorithm 1) is implemented with OpenMPI 4.0.3 [46].

At the time of writing this paper, the implementation consists of 29,584 lines of code.

We deploy the Rache-enabled Cassandra on a 10-node cluster hosted at CloudLab [25]. Each

node is equipped with two 36-core Intel Xeon Platinum 8360Y CPUs, 256 GB ECC DDR4-2666

memory, and two 1 TB SSDs. The operating system image is Ubuntu 20.04.3 LTS. All servers are

connected via a 1 Gbps control link (Dell D3048 switches) and a 10 Gbps experimental link (Dell

S5048 switches). We only use the experimental links for our evaluation.

6.2.2 Configurations. Some of the most important parameters of Cassandra are as follows. The

replica factor is set to three. Hinted handoff is enabled globally. Themaximum throttle of each thread

is the default 1,024 KB. The internal buffers are flushed to disk every 10 seconds. The partitioner is

the default Murmur3Partitioner. There is one seed node (i.e., node 0) with the SimpleSeedProvider

class (implementing the SeedProvider interface). The concurrency of reads and writes (including

materialized view writes) is set to 32. The full specification can be found in the cassandra.yaml
file in the source code.

6.2.3 Workloads. We have tested the system prototype with six workloads, all of which are publicly

available. These workloads include three micro-benchmarks and three real-world applications.

The first benchmark is a micro-benchmark to quantify the cost of homomorphic encryption and

homomorphic addition, respectively. For the former, a sequence of integers [0, 32,768) are homo-

morphically encrypted; for the latter, the ciphertexts stored at radix entries are homomorphically

summed up in a round-robin fashion 32,768 times.

The second benchmark is TPC-H ver. 3.0.0 [62], a standard relational database benchmark. TPC-H

allows the user to specify the scales of the generated data; in this paper we set the scale as one,

resulting in about one gigabyte of data. We will focus on the part table, which consists of 200,000

tuples.

The third benchmark is a dynamic set of random numbers for homomorphic encryption. This

benchmark is mainly used for the purpose of weak scaling, allowing for the scalability test ranging

between 1,024 and 32,768 numbers.

The first application is the U.S. national COVID-19 statistics from April 2020 to March 2021 [16].

The data set has 341 days of 16 metrics, such as death increase, positive increase, and hospitalized
increase.

The second application is the human genome reference 38 [36], commonly known as hg38, which
includes 34,424 rows of singular attributes, e.g., transcription positions, coding regions, and number
of exons, last updated in March 2020.

The third application is the history of Bitcoin trade volume [13] since it was first exchanged in

the public in February 2013. The data consists of the accumulated Bitcoin exchange on a 3-day

basis from February 2013 to January 2022, totaling 1,086 large numbers.
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6.3 Performance with and without Homomorphic Encryption
We record the execution time of Cassandra when inserting three real-world data sets. The configu-

ration of Cassandra and data set specification can be found in the previous section §6.2. We repeat

the experiments three times and report both the average and the standard variation in the figure.

To eliminate the possible caching effect, we truncate the table every time before starting the timer

for the execution.

Figure 1 reports the results, which clearly shows that Rache significantly improves the perfor-

mance of homomorphic encryption. For the Covid-19 data set (left column), the original Paillier

scheme incurs 20× overhead while Rache only incurs about 2×. For the Bitcoin data set (center

column), the originial Paillier scheme incurs 4× overhead while Rache’s overhead is negligible.

Similarly, for the hg38 data set (right column), Paillier incurs about 10× overhead and Rache’s

overhead is marginal.

6.4 Batch Rache
6.4.1 Encryption vs. Addition. Fig. 2 shows that the homomorphic addition is a much cheaper

operation than homomorphic encryption in Paillier. Regardless of the number of available cores,

homomorphic encryption takes more than two orders of magnitude time than homomorphic

addition.

6.4.2 TPC-H. We report Rache’s performance of encoding the TPC-H [62] data in Fig. 3. We report

the execution time of initializing the radixes and that of encoding with Rache, respectively. The

former is referred to as Rache Init and the latter as Rache Exec in the figure. The initialization time

of Rache is roughly flattened, showing a marginal increase when more cores are involved due to

the inter-process communication (IPC) overhead. It should be noted that, however, the Rache Init
overhead is a one-time cost. Specifically, the Init cost is the execution time to construct the 𝑃𝑡𝑥𝑡 []
vector, which stores the radix values for future additive computation over ciphertexts. We observe

that Rache outperforms Paillier by four orders of magnitude at all scales.

In general, the overhead incurred by Rache on different number of cores comes from the coordina-

tion of multiple processes and threads, such as MPI_Reduce that aggregates the partial summations

over ciphertexts. The overhead discrepancy of different workloads, however, largely depends on

the maximal value in the message space (assuming the radix 𝑟 is fixed). As we will see soon in the

following sections, the Rache initialization overhead (i.e., Rache Init) is lower than others (i.e.,

Figures 4–7). This can be best explained by the fact that the Part relation in TPC-H has its maximal

numeric values in the order of thousands, which are much smaller than other benchmarks. Because

the maximal value is smaller in TPC-H, Rache needs to precompute and cache fewer ciphertexts

during the initialization phase, which results in smaller overhead than other benchmarks. This
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observation also explains why the overhead stays roughly constant from one core to 32 cores:

each core precomputes the same set of cached ciphertexts that are determined by radix 𝑟 and the

maximal plaintext message, both of which are the same on 1–32 cores.

6.4.3 Random Numbers. In this benchmark, 𝑛 random numbers are generated in a uniform distri-

bution by modular 𝑛. We report the results of Rache and Paillier in Fig. 4. The Rache overhead stays

roughly constant for different numbers of cores, but not as low as TPC-H. Despite the overhead,

we observe that Rache’s encoding time is about two orders of magnitude lower than Paillier’s at all

scales.
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random numbers.
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6.4.4 U.S. COVID-19 Statistics. Fig. 5 reports the encoding performance of the U.S. COVID-19

statistics published at [16]. We observe that with few cores (e.g., 1 and 2) the overhead is smaller

than the encoding cost, while with more cores (e.g., 16, 32) the per-core encoding is very efficient

and takes less time than the overhead. Some of the overhead, i.e., precomputing and caching the

large radixes, is unnecessary for those small values, and yet has to exist due to those extremely

large values. We stress that the overhead is a one-time thing though: if there were, say, ten years

of COVID-19 data, the overhead would look roughly the same and would be outweighed by the

increased cost of encoding the data.

6.4.5 Human Genome Reference 38. Fig. 6 reports the encoding performance of Rache and Paillier

on a database of human genome [36] (hg38) that was last updated in March 2020, under the umbrella

of the Augustus gene prediction project [7]. As expected, Rache outperforms Paillier at all scales

by orders of magnitude. In sheer contrast to the COVID-19 dataset, the initialization overhead

of Rache in hg38 is much less significant: even at 32-core, the overhead is less than 30%. This is

mainly due to a large number of plaintexts (172,120), whose encoding time greatly outweighs the

initialization, which is not trivial: 29 radixes for values as large as 248,937,123.

6.4.6 Bitcoin Trade Volume. We apply Rache and Paillier to the historical trade volume of Bitcoin

exchanges since 2013 [13]. Fig. 7 shows that Rache outperforms Paillier by more than one order

of magnitude, which is consistent with what we have found so far. The notable thing here is the

large overhead incurred by Rache: on a single core, the overhead is on par with Rache’s encoding

time; on 32 cores, the overhead is on par with the Paillier processing time and orders of magnitude

larger than Rache’s encoding time. This phenomenon is due to two reasons. First, the Bitcoin trade

volume consists of very large numbers—most are in the order of millions and the largest one is

4,956,849,516 requiring 34 radixes. Second, the number of plaintexts is relatively small: there are

1,086 plaintexts, each of which records the Bitcoin exchange for the last three days.
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6.4.7 Scalability. We evaluate the scalability of Rache in this section. We focus on the data sets of

random numbers rather than specific benchmarks or applications simply because we can generate

arbitrarily large data sets of random numbers. Fig. 8 reports the conventional weak-scaling experi-

ment. We control the workload to be proportional to the number of cores: 1,024 plaintexts for every

core. That is, the workloads range from 1,024 to 32,768 plaintexts of uniformly distributed random

numbers. In each workload, the maximal value is close to the maximal number due to the uniform

distribution.

Rache outperforms Paillier by orders of magnitude at all scales. However, Rache seems to exhibit

a higher slope of encoding time. We stress that the absolute values of Rache performance are

sub-seconds (and the 𝑦-axis is logarithmic), therefore the overhead can be best explained by the

IPC overhead. To verify this, we conduct the following experiment, in which we fix the number of

cores but increase the workloads.

Fig. 9 shows the encoding time when we fix the number of cores as 32 but increase the number

of plaintexts from 1,024 to 32,768. We observe that when the IPC overhead is fixed (for 32 cores),

the encoding time is proportionally increased regarding the workload size.

6.5 Incremental Rache
6.5.1 TPC-H. We compare Rache

1
and Symmetria on TPC-H with the option “-s 100”; there are

overall 20,000,000 tuples in the Part table. We vary the number of pivots (i.e., 𝑝) on the 𝑥-axis

between 2 and 64. We report the performance of Rache (without the overhead of constructing the

pivots 𝑝’s and nuances 𝑑’s, which will be reported in the next experiment), and compare it against

Symmetria in Fig. 10. Generally speaking, larger 𝑝 values allow Rache to complete faster because

of the finer granularity of the gaps among 𝑝’s as well as fewer nuances. Notably, Rache is about

3x faster than Symmetria when 𝑝 = 32. If the plaintexts are overly split (e.g., 𝑝 = 64), the extra

cost for maintaining the pivots may outweigh the benefit of 𝑑 dictionaries, causing suboptimal

performance.

6.5.2 Random Numbers. We compare the performance of Symmetria and Rache when encrypting

1,024 random numbers of variable lengths in Fig. 11. We on the 𝑥-axis vary the (𝑛, 𝑝) pairs ranging
between 8 and 32, where 𝑛 indicates the bitstring length and 𝑝 indicates the number of pivots,

respectively. We observe that Rache consistently outperforms Symmetria for all (𝑛, 𝑝) pairs by up

to 50% reduction in running time, which is aligned with the results of the TPC-H benchmark in

Fig. 10.

We measure the time overhead for precomputing pivots and nuances of 2
32
random values. Note

that this experiment has a much larger data set than that in Fig. 11 (i.e., 1,024 = 2
10
) because we will,

1
For simplicity, we use Rache to indicate incremental Rache in this section.
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to a large extent, vary both the number of pivots 𝑝 = 𝑛𝑥 , 2 ≤ 𝑥 ≤ 5 (𝑥 is considered as a practical

upper bound in complexity theory [6]), and the number of nuances 𝑑 = 𝑛𝑦 , 𝑥 ≤ 𝑦. We set 𝑛 = 32,

meaning that there are up to 2
32
distinct values in the underlying data set. The 𝑥-axis of Fig. 12

enumerates those (𝑥,𝑦) pairs.

6.5.3 Aggregating Encrypted Fields. For a simple aggregate query shown in Listing 1 (i.e., the

average part size), its Rache execution on the scale-10 TPC-H is illustrated in the following equation:

𝑒𝑘

(
2,000,000∑
𝑖=1

𝑠𝑖

)
=

2,000,000⊕
𝑖=1

𝑒𝐾 (𝑠𝑖 ),

where 𝑠𝑖 denotes the value of the P_Size field of the 𝑖-th row of relation Part.

1 -- TPC -H 3.0, "dbgen -s 10", two million tuples

2 SELECT AVG(P_Size)

3 FROM Part;

Listing 1. A simple SQL aggregate query on TPC-H.

Directly adding up 𝑒𝐾 (𝑠𝑖 ) is more costly than arithmetic operations because ⊕ on ciphertexts is

number-theoretical. Rache allows us to cache the ciphertexts of both pivot and nuance along with

their frequencies in plaintexts. Therefore, we can reduce the frequency of ⊕ by arithmetic × if the

HE scheme supports it (Symmetria [57] does) and calculate the result as follows:

𝑒𝑘

(
2,000,000∑
𝑖=1

𝑠𝑖

)
= 𝑓 𝑟𝑒𝑞

𝑝

𝑖
×

𝑝⊕
𝑖=1

𝑒𝐾 (𝑃𝑖 ) + 𝑓 𝑟𝑒𝑞𝜉𝑗 ×
𝑑⊕
𝑗=1

𝑒𝐾 (𝜉 𝑗 ),

where 𝑝 and 𝑑 are much smaller than 200,000 (e.g., 𝑝 = 𝑑 = 32), 𝑓 𝑟𝑒𝑞
𝑦
𝑥 indicates the frequency of the

𝑥-th element in the 𝑦-container, and 𝑒𝐾 (·)’s are part of the entries (trees of pivots and dictionaries

of nuances) cached in memory.

Fig. 13 reports the time for aggregating 200,000 Part.P_Size fields on scale-1 TPC-H, where each

step aggregates additional 10,000 encrypted fields. We observe that the one-step cost of Symmetria

is not constant: in a later step, it takes more time to aggregate the same number of new ciphertexts.

This is concerning because it implies that the batch HE scheme is not scalable and would stop

working at some point. To investigate how bad it could become, Fig. 14 reports the same workload

on TPC-H of both scales-1 and scale-10; we did not report the scale-100 results because Symmetria

finished only 53% (10,550,000 out of 20,000,000) ciphertext additions after 100 hours of execution.

We observe that Rache can aggregate 2,000,000 fields within a second while Symmetria takes hours

to complete the same workload.
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6.5.4 Computing Nuances On-the-fly. The previous experiments assume that there is sufficient

memory capacity to accommodate 𝑝 pivots and𝑑 nuances. In certain application scenarios (e.g., edge

computing [1, 2], supply chains [60], system-on-chip [14]), we might have limited resources and

may not be able to hold, say, 2
32
nuances. Therefore, the following experiment will investigate the

worst-case scenario where we are forced to compute nuances on the fly. We report the performance

of adopting a single nuance for a random value in

[
0, 264

)
in Fig. 15. The worst-case overhead of

calculating a single nuance leads to as low as 1.3x speedup over the vanilla Symmetria encryption.

In the best case, i.e., when nuance is set to one, the speedup is over 2.1x.

6.6 Summary of Experimental Results
Rache. Both micro benchmarks and real-world applications confirm the efficiency of Rache:

Rache incurs insignificant overhead to Cassandra while the conventional Paillier encryption is 2-10

times slower. Rache also exhibits strong scalability on up to 32 cores and 32× larger input data size.

Incremental Rache. Incremental Rache is 2–3× faster than Symmetria and the initialization

overhead is as low as 10 ms. In particular, incremental Rache is 3–5 orders of magnitude faster

than Symmetria for aggregation workloads that are commonly deployed in outsourced databases.

Finally, incremental Rache outperforms Symmetria by 1.3–2.2× speedup even though incremental

ciphertexts are not cached.

7 CONCLUSION AND FUTUREWORK
This paper proposes radix-based parallel caching optimization for accelerating the performance of

homomorphic encryption (HE) of outsourced databases in cloud computing. The key insight of the

proposed optimization is caching selected radix-ciphertexts in parallel without violating existing

security guarantees of the original HE scheme. We design the radix HE algorithm and apply it

to both batch and incremental HE schemes; we demonstrate the security of those radix-based

HE schemes by reducing the Rache-extended problem to the base HE schemes that are known

IND-CPA. We implement the radix-based schemes as middleware of a 10-node Cassandra cluster

on CloudLab; experiments on six workloads show that the proposed caching significantly improves

the performance of state-of-the-art HE schemes.

Our future work will focus on integrating radix-based caching into scientific blockchains [3, 4]

such that sensitive scientific data can be shared and verified among the collaborators confidentially.

One orthogonal optimization in this context will be to exploit the specific data format used in

scientific workflows [43, 61] and array databases [8, 18]. We also plan to apply radix caching in

federated learning [42].
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