)

Check for
updates

Enhancing Secure Coding Assistant System
with Design by Contract and Programming
Logic

Wenhui Liang, Cui Zhang, and Jun Dai®®

Department of Computer Science, California State University, Sacramento 6000 J Street,
Sacramento, CA 95819, USA
{wenhuiliang, zhangc, jun.dai}@csus.edu

Abstract. The system titled Secure Coding Assistant was developed to automate
early detection for a subset of the Java secure coding rules specified by the SEI
CERT at the Carnegie Mellon University. This system can help Java programmers
significantly reduce security vulnerabilities in their code caused by the violations
of secure coding rules. Since other software defects can also lead to security vul-
nerabilities, efforts have been taken to extend Secure Coding Assistant aiming at
empowering programmers to detect, locate and remove code errors during cod-
ing time. This paper presents an enhancement to Secure Coding Assistant by a
combination of Design by Contract and Programming Logic. Java programmers
using this system are advised to provide their design contracts, i.e., logic asser-
tions, for program structures of methods, if-then-else statements and while-loop
statements. The design contracts defined by programmers can be automatically
checked at the time of their program execution. To further facilitate the process of
detecting and locating of code errors, using the programmers-defined design con-
tracts, sub-design contracts can be automatically generated by the system based
on the inference rules for the if-then-else statement and the while-loop statement
in programming logic. The sub-design contracts generated by the system can also
be automatically checked at dynamic time. In addition, based on the assignment
axiom and the inference rule for the sequence statement in programming logic, the
weakest pre-conditions of certain assignment sequences can be automatically gen-
erated from the post-conditions of the sequences, enabling programmers to stati-
cally analyze the correctness of the corresponding design contracts they specify.
With the enhancement presented, Secure Coding Assistant can assist programmers
for the early detections of not only secure coding rule violations but also errors in
code. These early detections are performed in unison with the coding process to
pursue software security.

Keywords: Secure coding - Software security - Design by contract -
Programming logic

1 Introduction

Network attacks have become more and more common in recent decades. Cybersecurity
Ventures predicts that in the next five years, the cost of global cybercrime will grow at

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K.-K. R. Choo et al. (Eds.): NCS 2021, LNNS 310, pp. 124-140, 2022.
https://doi.org/10.1007/978-3-030-84614-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84614-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-84614-5_10

Enhancing Secure Coding Assistant System 125

an annual rate of 15%, reaching $10.5 trillion USD by 2025, more than $3 trillion USD
in 2015 [4]. Since 2018, McAfee estimate the cost of cybercrime worldwide to be more
than $1 trillion. They estimate that the money loss caused by cybercrime is about 945
billion US dollars. In addition, global cybersecurity spending is expected to exceed $145
billion by 2020. Today, it is a trillion dollar drag on the global economy [18]. Software
enterprises face many challenges in diverse areas such as system security, application
security, sensitive information protection. Developing software security is an inevitable
trend.

To address the increasing needs for software security, the SEI CERT at the Carnegie
Mellon University specified secure coding standards for a group of programming lan-
guages [15]. One of the standards is the SEI CERT Oracle Coding Standard for Java [17].
To facilitate the application of the Java secure coding rules to the software development
practice, the system titled Secure Coding Assistant, that is available at http://benw40
8701.github.io/SecureCodingAssistant/, was developed at California State University
Sacramento, in the Eclipse development environment, to automate the early detection
for a subset of the Java secure coding rules during coding time [19, 20]. This system can
help Java programmers significantly reduce security vulnerabilities in their code caused
by the violations of secure coding rules. Since it is also a common knowledge that many
other software defects can lead to security vulnerabilities, it is highly desirable to extend
Secure Coding Assistant not only for detecting violations of secure coding rules but also
for assisting programmers to detect, locate and remove errors in their code. It is also
highly desirable to perform all these detections during coding time. To this end, efforts
have been taken at California State University Sacramento in recent years through a
number of projects.

Inspired by Bertrand Meyer’s Design by Contract methodology effective for devel-
oping robust and reliable software products [10], one project was conducted to enhance
Secure Coding Assistant by using Design by Contract [6]. This enhancement was imple-
mented by integrating Secure Coding Assistant with an existing open-source software
tool Cofoja that provides the functionality for Design by Contract [7]. Programmers
using this enhanced system are advised to provide design contracts, i.e., logic assertions
of pre-conditions and post-conditions, for the methods defined in their code. The pro-
grammers defined design contracts can then be automatically and dynamically checked
to help programmers detect and remove defects in their code. This project demonstrated
that detecting violations of secure coding rules and detecting other software defects can
be automated or semi-automated in the same system. However, the program structures
covered then needed to be extended, and how to help programmers detect and finally
locate errors in lengthy code remained a challenge.

Another project separated from Secure Coding Assistant was conducted to experi-
ment the combination of Design by Contract and Programming Logic [1]. A tool called
Subcontractor for Java was built upon an open-source tool OpenJML for Design by
Contract [13]. Programmers provided design contracts are automatically checked at
dynamic time of their program execution. In addition, for program structures of if-then-
statements and while-loop statements, this tool can generate sub-design contracts from
the programmers provided design contracts. The automatic generation of sub-design

http://benw408701.github.io/SecureCodingAssistant/

126 W. Liang et al.

contracts is based on the inference rules for the if-then-else statement and the while-
loop statement in programming logic [11, 14]. The tool generated sub-design contracts
can be automatically inserted into the proper places in code for dynamic checking. This
tool (i.e., Subcontractor) demonstrated the feasibility of combining Design by Contract
and Programming Logic. By decomposing an original large program verification prob-
lem into smaller program verification problems, this tool can facilitate the process of
detecting, locating and removing of code defects. However, this tool development was
heavily relying on OpenJML, and making the detection of secure coding rule violations
and the detection of software defects by the demonstrated combination both available
in the Java development environment such as Eclipse remained a challenge.

Building upon the experiences of the above-mentioned two projects, a new project
has been designed and conducted to address the challenges for the extension of Secure
Coding Assistant. As a result, this paper presents an enhancement to Secure Coding
Assistant by a combination of Design by Contract and Programming Logic. Java pro-
grammers using this enhanced system are advised to provide their design contracts
of logic assertions for three program structures, i.e., methods, if-then-else statements
and while-loop statements. For each method or if-then-else statement, its design con-
tract is formed by its pre-condition and post-condition. For each while-loop statement,
its design contract consists of its pre-condition, post-condition and loop-invariant. The
programmers-defined design contracts can be automatically inserted into proper places
in the code and checked at dynamic time. Based on the inference rules for the if-then-else
statement and the while-loop statement in programming logic [11, 14], sub-design con-
tracts can be automatically generated from the programmers-defined design contracts.
The system-generated sub-design contracts can also be automatically inserted into code
and dynamically checked. As an additional feature, based on the assignment axiom and
the inference rule for the sequence statement [11, 14], the weakest pre-conditions of
certain assignment sequences can be automatically generated from the post-conditions
of the sequences, enabling programmers to statically analyze the correctness of the cor-
responding design contracts they defined. As for the implementation of this project, all
functionalities extended are implemented mainly by augmenting source code and in a
way cohesive with the implementation of the original system without using any open-
source tools for Design by Contract. Compared with previous versions of the system,
the current Secure Coding Assistant with the enhancement presented can better help
programmers for the early detections not only for violations of secure coding rules but
also for errors in code. All the detections are performed in unison with the coding process
of software development to pursue software security.

2 Background and Related Work

2.1 Design by Contract

Bertrand Meyer’s Design by Contract methodology was the first implemented in the
programming language Eiffel [9, 10]. With the Eiffel programming environment, pro-
grammers are encouraged to specify design contracts during coding development. Each
design contract is formed by logic assertions on obligations and benefits. The clients or
users of the software functionality must meet the obligations specified. The suppliers

Enhancing Secure Coding Assistant System 127

of the software functionality must provide the benefits specified if the obligations are
met. The obligations and benefits are usually specified in terms of pre-conditions, post-
conditions, and invariants. The Eiffel language provides programmers with key words
to specify design contracts. The system automatically checks the programmers-defined
design contracts at dynamic time of their program execution. This methodology signifi-
cantly improves the robustness and reliability of software products. In addition, in Eiffel
system, design contracts are used to create software documents that are semantically
consistent with the software products finally delivered.

Java does not directly support Design by Contract as a built-in feature. However,
there are several tools that are developed to provide Design by Contract for the Java
programming language, such as Cofoja [7], iContract [5], Jass [3], and OpenJML [13].

2.2 Secure Coding Assistant

There are several existing tools that can help programmer to detect vulnerability of their
code. However, most of these tools are close source static analysis tools and do not
provide early detection of security vulnerabilities in the code. The first version of Secure
Coding Assistant developed at California State University Sacramento is an open source
tool based on early detection for static analysis of software security vulnerabilities [19,
20]. The design of this tool is inspired and based on a subset of the security rules for
Java developed by SEI CERT at Carnegie Mellon University. Secure Coding Assistant
automates the detection of violations of security rules during the time of coding devel-
opment. Since its birth, the Secure Coding Assistant system has gone through a series
of updates, including the automation of a subset of the SEI CERT securer coding rules
for the C programming language [12, 16].

One of the important updates is the enhancement by the Design by Contract method-
ology. The open source tool Cofoja is integrated with Secure Coding Assistant to provide
contract programming for Java programmers using the Eclipse development environment
[6, 7]. This enhancement demonstrated that detecting violations of secure coding rules
and detecting other software defects can be automated or semi-automated in the same
system. However, this enhancement heavily relied on the open source tool Cofoja. Only
the program structure of methods was covered. Furthermore, how to help programmers
detect and finally locate errors in lengthy code was not addressed.

2.3 Subcontractor

Subcontractor is a tool that combines Design by Contract and Programming Logic [1].
It was implemented based on the open source tool OpenJML. In addition to dynamically
checking programmers-defined design contracts, Subcontractor can help programmers
locate logic errors in their large pieces of code by automatically generating and exam-
ining sub-design contracts. The sub-design contracts are generated based on inference
rules for if-then-else statements and while-loop statements in programming logic [11,
14]. Subcontractor demonstrated the feasibility of combining Design by Contract and
Programming Logic. This combination enables the decomposition of bigger program
verification problems into smaller ones using the inference rules. However, this tool

128 W. Liang et al.

development was heavily relying on OpenJML, and was yet to support the detection of
secure coding rule violations.

3 The Enhancement to Secure Coding Assistant

3.1 Goal

This enhancement presented is to enable both detection of secure coding rule violations
and detection of program errors by using a combination of Design by Contract and
Programming Logic. The enhancement aims at providing the following:

e Advising programmers to provide their design contracts of logic assertions for three
program structures, i.e., methods, if-then-else statements and while-loop statements.
For each method or if-then-else statement, its design contract is formed by its pre-
condition and post-condition. For each while-loop statement, its design contract
consists of its pre-condition, post-condition and loop-invariant.

e Generating automatically sub-design contracts for if-then-else statements and the
while-loop statements based on inference rules in programming logic [11, 14].

e Checking dynamically programmers-defined design contracts and system-generated
sub-design contracts.

e Generating automatically the weakest pre-conditions of certain assignment sequences
from the post-conditions of the sequences based on the assignment axioms and
the inference rule for sequence statements in programming logic [11, 14], to help
programmers statically analyze their design contracts.

3.2 Functionality

The tool can detect if programmers do not provide design contracts, i.e., pre-conditions,
post-conditions and/or invariants to the methods, if-then-else statements or while-loop
statements in the source code. If the design contracts for those structures are missing in
the code, a marker will be created by the system and a dialog box will be prompted to
advise programmers to specify their design contracts in the source code.

Functionality for Methods. As shown in Fig. 1, a method structure missing its design
contract is detected and a dialog box is prompted to advise programmers to provide
their pre-condition and post-condition for the method. The syntactic format for writing
pre-condition starts with //@Precodition and is followed by the programmer-provided
pre-condition. The syntactic format for writing post-condition is similar. When clicking
on “Add precondition and postcondition,” the insertion of user-provided pre-condition
and post-condition is performed.

Enhancing Secure Coding Assistant System 129

public void stock(int n, String change) {
if (change.equa
this.numbe

System. out

}else if (chal o
if (number<| Rule description: Automatically dynamic checking of the design contract for method

+Rule violated: Missing precondition and postcondition for method
Severity:

number = n
System.out| Rule Solution: Provide your precondition and postcondition for the method, i.e,, provide your design
} contract for your method.
} Format:
//@Precondition
public static | //@Postcondition
ProductRec|
itemsinfo.
itemsinfo.| ® Add precondition and postcondition

1 quick fix available:

3 Console =
les to display at this time. 5

Fig. 1. Advice for the definition of design contracts for methods.

As shown in Fig. 2, after the programmer provides the pre-condition and post-
condition for the method, the programmer can elect to automatically perform the dynamic
checking of design contracts for the method. The system will generate code for overall
pre-condition and post-condition checking based on the assertions given.

= Rule violated: Null
Severity:

Rule description: Automatically dynamic checking of the design contract for method statements

Rule Solution: (1) Overall precondition and postcondition check: checking overall {P} and {Q} for
method; (2) Using assignment axiom for the sequence of assignmnet: if the method is a sequence of
assigment, the weakest precondition of the sequence can be generated from the postconditon of
sequence.

2 quick fixes available:

« (1) Overall precondition postcondition check
(2) Using assignment axiom for the sequence of assignment

e

Fig. 2. Dynamic checking options for methods.

Functionality for If-Then-Else Statements. Figure 3 shows the dialog box created by
the system when an if-then-else statement is detected missing its pre-condition and post-
condition. The programmer is advised to provide the design contract for the statement.

The syntactic format for writing pre-condition of the if-then-else statement starts with
//@Precodition and is followed by the programmer-provided pre-condition. However,
more specific advice on writing the post-condition assertion is provided in the dialog.
Programmers need to provide the data type of the variable if they need to use the key
word old_ followed by the variable name, to store the old value of the variable. The
logic assertion before “or” is for the truth branch of the statement, and the assertion after
“or” is for the false branch. When clicking on “Add precondition and postcondition,”
the insertion of user-provided pre-condition and post-condition is performed.

130 W. Liang et al.

>ublic void stock(int n, String change) {
if (change.equals ("purchase")) {

this o pule violated: Missing precondition and postcondition for if-then-else statement

System Frogs
Jelse if Severity:

if (num
number|

System
} Rule Solution: Provide your precondition and postcondition for the if-then-else statement i.e., provide

} your design contract for your if-then-else statement.
Format:
public sta //@Precondition
Produc| //@Postcondition type variable1 == old_variable2 + variale3(true condition) or type variable1 ==

itemsi o|d variable2 + variale3(false condition);
itemsi

Rule description: Automatically dynamic checking of the design contract for if-then-else statement

1 quick fix available:
Add precondition and postcondition

L)

Fig. 3. Advice for the definition of design contracts for if-then-else statements.

*Rule violated: Null.
Severity:

Rule description: Automatically dynamic checking of the design contract for if-then-else statement

Rule Solution: (1) Overall precondition and postcondition check: checking overall {P} and {Q} for
if-then-else statement; (2) Generate subcontracts: if your design contract is {P} if B then S1 else S2 {Q},
based on the inference rule for the if-then-else statement, the subcontracts for if-then-else are {P and
B} S1{Q} and {P and (not B)} S2 {Q}; (3) Using assignment axiom for the sequence of assignmnet: if the
true branch is a sequence of assigment, the weakest precondition of the sequence can be generated
from the postconditon of the sequence; (4) Using assignment axiom for the sequence of assignmnet: if
the false branch is a sequence of assigment, the weakest precondition of the sequence can be
generated from the postconditon of the sequence.

4 quick fixes available:

{1) Overall precondition postcondition check

(2) Generate subcontracts

(3) Using assignment axiom for the sequence of assignment for true branch
(4) Using assignment axiom for the sequence of assignmnet for false branch

&

Fig. 4. Dynamic checking options for if-then-else statements.

As shown in Fig. 4, after the programmer provides the pre-condition and post-
condition for the if-then-else statement, the programmer can use “Overall precondition
and postcondition check” to dynamically check the design contracts provided by the
programmer. If the programmer wants to further analyze the code to locate errors, electing
“Generate subcontracts” will lead to the automatic generation of sub-design contracts,
based on the inference rule shown below for the if-then-else statement in programming
logic [11, 14].

{P AB}S1{0Q},{P A (not B)} S2{0Q}
{P}if B them S1 else S2{Q}

In the rule above, {P} and {Q} indicate the pre-condition and post-condition given
by the programmer. The two sub-design contracts generated by the system for if-then-
else statement are {P A B} S1{Q} and {P A (not B)} S2 {Q}. B is the condition of the
if-then-else statement.

Enhancing Secure Coding Assistant System 131

After the programmer elects “Overall precondition and postcondition check” and/or
“Generate subcontracts”, the system will generate code for the overall pre-condition
and post-condition checking based on the assertions given by the programmer, and also
generate code for the dynamic checking of the sub-design contracts created.

Functionality for While-Loop Statements. For a while-loop statement, there is an
additional logic assertion called loop-invariant in the design contract. When a while-
loop statement is detected missing its pre-condition, post-condition, and loop-invariant,
a dialog box as shown in Fig. 5 is prompted, to advise the programmer to define the
design contract for the statement. The syntactic format for writing the design contracts
for while-loop statements is similar to that for methods and if-then-else statement. When
clicking on “Add precondition, postcondition and invariant,” the programmer-provided
pre-condition, post-condition and loop-invariant are inserted to the code.

public void cal(int c) {
int x = c;
int y = 0;

System.out.println("Before: x is " + x + ", y is " + y);
while (x>0) {
; i ; = Rule violated: Missing precondition, postcondition and invariant for while-loop statement

} Severity:

}

public static Rule description: Automatically dynamic checking of the design contract for while-loop statement

methodtest| Rule Solution: Provide your precondition, postcondition and invariant for the while-loop statement.
test.cal (6 i.e, provide your design contract for your while-loop statement.
} Format:
//@Precondition
} //@Postcondition
//@Inv
1 quick fix available:
Add precondition, postcondition and invariant

)

Fig. 5. Advice for the definition of design contracts for while-loop statements.

As shown in Fig. 6, after the programmer provides the pre-condition, post-condition
and loop-invariant for the while-loop statement, the programmer can use “Overall pre-
condition and postcondition check” to dynamically check the design contracts provided
by the programmer. If the programmer wants to further analyze the code to locate errors,
electing “Generate subcontracts” will lead to the automatic generation of sub-design
contracts, based on the inference rule shown below for the while-loop statement in
programming logic [11, 14].

P = Inv, {Inv A B} S {Inv}, Inv A (not B) = Q
{P} while B do S {Q}

In the rule above, {P}, {Q}, and Inv indicate the pre-condition, post-condition,
and the loop-invariant provided by the programmer. The three sub-design contracts
generated by the system for while-loop statement are P = Inv, {Inv A B} S {Inv}, and
Inv A (not B) = Q. P = Inv must be satisfied before the execution enters the loop,
{Inv A B} S {Inv} ensures the preservation of the loop-invariant property after each time
of executing the loop body. Inv A (not B) = Q must be satisfied right after the execution
of the entire loop statement.

132 W. Liang et al.

Rule violated: Null.
Severity:

Rule description: Automatically dynamic checking of the design contract for while-loop statement

Rule Solution: (1) Overall precondition and postcondition check: checking overall {P} and {Q} for
while-loop statement; (2) Generate subcontracts: if your design contract is {P} while B do S {Q}, based
on the inference rule for the while-loop statement, the subcontracts for while-loop are P => Inv, {Inv
and B} S {Inv} and Inv and (not B) => Q; (3) Using assignment axiom for sequence of assignmnets: if
your loop body is a sequence of assigment, the weakest precondition of the sequence can be
generated from the postconditon of the sequence.

3 quick fixes available:

@ {1) Overall precondition postcondition check
(2) Generate subcontracts
(3) Using assignment axiom for the sequence of assignment

)

Fig. 6. Dynamic checking options for while-loop statements.

Functionality for a Sequence of Assignments. If the body of a method, a branch of an
if-then-else statement, or a body of a while-loop statement is a sequence of assignments,
there is an additional option called “Using assignment axiom for sequence of assign-
ment”, available in the dialog boxes as shown in Fig. 2, Fig. 4 and Fig. 6. This option will
not be available for other types of code structures. The axiom with backward method for
assignments and the inference rule for the sequence statements are used to generate the
weakest pre-condition of the sequence from the post-condition of the sequence. Below
are the axiom for assignments [11, 14] and the inference rule of sequence of statements
[11, 14] used in this process:

{P}v = E{Q}

{P}ST{R}, {R}S2{Q)}
{P}S1; $2{0}

3.3 Workflow

Asasystem for early detection, Secure Coding Assistant can provide immediate feedback
to programmers. It runs in the background to monitor code changes and detect rule
conflicts [19, 20]. Abstract Syntax Tree (AST) is used to represent the structure of the
source code for analysis. When a rule violation is detected, a marker is created where
the violation takes place. Any subsequent code changes will clear all existing markers
and trigger a new round of AST node traversal [6].

Figure 7 shows the workflow of functionalities extended to the Secure Coding Assis-
tant. Specifically, this enhancement to Secure Coding Assistant inherits the previous
design for all monitoring in the background and AST node traversal. The function vio-
lated() in Secure Coding Assistant travels across AST nodes. If there is a method, an
if-then-else statement or a while-loop statement, a marker will be created. If any design

Enhancing Secure Coding Assistant System 133

contract, i.e., pre-condition, post-condition and/or loop-invariant, is detected missing,
the system will advise programmers to define the design contract in the form of logic
assertions. After logic assertions are provided, the function getSolutions() of Secure Cod-
ing Assistant will be called to provide programmers with the option of inserting code
for dynamic checking of programmer-defined overall design contracts. If the execution
of the program does not lead to expected results, and if the programmer wants to further
analyze the code to locate errors, the system provides another option, called “Generate
subcontracts”, to generate sub-design contracts for if-the-else statements and while-loop
statements. The code for this dynamic checking will be automatically inserted into the
programmer’s code. When the augmented code is executed in the Eclipse environment,
the programmer can analyze the result of the dynamic checking of all the assertions. If
the body of a method, a branch of an if-then-else statement, or a body of a while-loop
statement is a sequence of assignments, the function getSolutions() is called to provide
programmers with the option of generating the weakest pre-condition of the sequence
from the post-condition of the sequence.

Programmer provide

Checking
precondition,

and/or invariant

Insert code for Generate
Sequence of overall precondition Run the code in Result of the subcontract and Run the code in
assignment? P MM Ly eclipse environment uite . |———#{ eclipse environment
and postcondition checking insert checking code
to see the result N to see the result
check into source code

Y

1 and/
or invariant

Generate the weakest
precondition of the
sequence from the End

postcondition of the

sequence

Change the
code

Fig. 7. Workflow of functionalities extended to the Secure Coding Assistant.

3.4 Implementation

To implement Design by Contract, the key words @ Precondition, @ Postcondition and
@Jnv are defined, and programmer can use comments to write logic assertions to the
source code if needed. Functions in Java’s IWorkbenchWindow interface are used to get
active page for the workbench window and the Java function getPath() is used to get the
path of the source code. Eclipse JDT ASTParser is used to parse Java source files by using
the path and the Java function gerCommentList() from the CompilationUnit interface
is used to get comments. The Java function accept() is used to make the comments
accessible. The Java function visif() from ASTVisitor class is overridden to store pre-
condition, post-condition and/or loop-invariant into the Java Map structure. The function
violated() in Secure Coding Assistant is overridden to identify methods, if-then-else

134 W. Liang et al.

statements or while-loop statements in the source code. If one of these structures is
identified, a marker will be created in that location.

To insert code for dynamic checking of the overall pre-condition and post-condition
checking, and to insert code for dynamic checking of the system-generated sub-design
contracts, source code needed to be edited. The Java function getASTRewrite() from
ASTRewrite class is used in Secure Coding Assistant function getSolutions(), which is
rewritten to insert the generated code into the proper places in the source code. The
getASTRewrite() returns an ASTRewrite instance from which this ListRewriter was
created [2]. The Java functions insertFirst(), insertLast(), insertAfter() and insertBefore()
are used to insert code for dynamic checking of logic assertions to their corresponding
location.

More design and implementation details for the enhancement presented are available
from the project report [8].

4 Examples

To evaluate the enhancement presented in this paper, we run the system for several
examples. Below please find illustrative results for an if-then-else statement, a while-loop
statement, and a sequence of assignments statements.

Example for an If-Then-Else Statement. An example of an if-then-else statement is
shown in Fig. 8. Following the system advice, the programmer provides the pre-condition
and the post-condition for this if-then-else statement.

public class A n
private int balance:;

public Account () {
this.balance = 0;

ll’rograuuncr-dcﬁutd design contract

public void test (int
if (of t 1.equals ("de
ba >

System.out.println (" fter deposit amount "+ +" is: "+balance):
jelse if (t n.equals ("wit aw”))

if (balance<an nt) throw new RuntimeException();

balance = t ba e;

System.out.println("ba

r withdraw amount "+ + is: "+ balance):

String[] ar) |

public static void mair {
N - = new Account():

Account

"withdraw");

Fig. 8. Source code with programmer-defined design contract for an if-then-else.

If the programmer clicks the option called “Overall precondition and postcondition
check” as shown in Fig. 4, the system will automatically generate code for dynami-
cal checking of the design contract. Figure 9 shows that this code along with system-
generated comments is inserted into the original code. When the programmer executes
the augmented code in Eclipse, the result of the overall pre-condition and post-condition

Enhancing Secure Coding Assistant System 135

checking is given in Fig. 10. The result shows that the pre-condition is true, the post-
condition is false, and the result of the program execution is —950 that is not correct.
This means that there is some error either in the code or in the design contract.

public class Account {
private int balance;

public Account () {
this.balance = 0;
}

|Pr0grammer-deﬁned design contract

public void test (int amount , String operation) {

boolean OVE@LLPWTCONDITION = amount > 0; System_generated code for
int old_balance balance;

System.err.println("Overall Precondition is "+OVERALLPRECONDITION) dynamic checking of the de-

1f (operation.equals ("deposit™) (kign contract
balance= amount + balance:;

System.out.println("balan after deposit amount "+ amount +" is: "+balance);
Jelse if (operation.equals("withdraw")){

if (balance<amount) throw new RuntimeException():

balance = amount - balance;

System.out.println("balance after withdraw amount "+amount+" is: "+ balance):;
)
boolean OVERALLPOSTCONDITION balance old_balance + amount || balance old_balance - amoust;

System.err.println("Overall Postcondition is "+OVERALLPOSTCONDITION) :

}

public static void main(String() args) {
Account SampleAccount = new Account();:
SampleAccount .balance=1000;
SampleAccount.test (50, "withdraw");

Fig. 9. Code with pre-condition and post-condition checking for an if-then-else.

: B Console =

<terminated> Account [Java Application] D:\java\jdk1.8.0_65\bin\javaw.exe
Overall Precondition is true

Overall Postcondition is false

balance after withdraw amount 50 is: -950

Fig. 10. Result of pre-condition and post-condition checking for an if-then-else.

To locate the error, the programmer can click the option called “Generate subcon-
tracts” as shown in Fig. 4. The system will then automatically generate the code for the
dynamic checking of sub-design contracts based on the inference rule for if-then-else
statements. This code along with related comments generated by the system is inserted
into the original code. Figure 11 presents the original code and the inserted code for
dynamic checking of the system-generated sub-design contracts. Due to the space limit,
the inserted code for the dynamic checking of the programmer-provided design contract
is removed from Fig. 11 in this paper. Figure 12 shows that actually the false branch
of this if-then-else statement is executed for the dynamic checking of system-generated
sub-design contract. As the result, its pre-condition is true and its post-condition is false.
This means that the dynamic checking of the sub-design contract helps the programmer
locate the error in the false branch of this if-then-else statement. The programmer needs
to analyze the design contract and the false branch code to remove the defect. Figure 13
shows the expected correct result of the dynamic checking of this false branch after the
programmer changes the line of the code “balance = amount — balance’ to “balance =
balance — amount”.

136 W. Liang et al.

public void test (int amount ,
if (operation.equals(“"deposit”)) {

boolean PRECONDITION = ((amount > 0) && (operat

System.err.println("P and B:
int old balance = balance;

String operation) {

b’rogrammer—defmed design contract

ICode for dynamic checking
of the system-generated
sub-design contracts

"))) is "+PRECONDITION) <7

quals ("dej
ion.equal

((_amount > 0) && (o

balance= amount + balance;

System.out.println("balance after deposit amount "+ amount +" is: "+balance);

«

(balance == old balance + amount))

System.err.println("Q: (balance == old balance + amount) is "+

Jelse if (operation.equals("withdraw")){

boolean PRECONDITION = (amount > 0) && !(operation.equals

))& (operation.equal. draw”)) ;
System.err.println("P and !B and B':(amount > 0) && !(operation.equals(\"deposit\"))&& (operation.equals(\"withdraw\")) is ["+PRECONDITION);
int old balance = balance;
if (bal) throw new RuntimeException ()7
balance = amount - balance;
System.out.println("balance after withdraw amount "+amount+ " is: "+ balance);
err.println("Q: (balance == old balance - amount) is "+ (balance == old balance - amount)) i

2iniShrinall avmel 1

Fig. 11. An if-then-else statement with sub-design contracts.

P and !B and B':(amount > 0) && ! (operation.equals("deposit"))&& (operation.equals("withdraw")) is true
Q: (balance == old _balance - amount) is false
balance after withdraw amount 50 is: -950
Fig. 12. Result of sub-design contract checking for an if-then-else.
balance after withdraw amount 50 is: 950
P and !B and B':(amount > 0) && ! (operation.equals("deposit"))&& (operation.equals("withdraw")) is true
Q: (balance == old_balance - amount) is true

Fig. 13. Result of sub-design contract checking for an if-then-else after the code is changed.

Example for a While-Loop Statement. An example of a while-loop statement is
shown in Fig. 14. Following the system advice, the programmer provides the pre-
condition, the post-condition, the loop-invariant for this while-loop statement.

public class Count {
private static int n =

&& mul==0;

//@ mul==(n m && k>-0 [Programmer-defined design contract
public int multi(int n, int 1Y
int mul = 0;
int k = n;
while (k>0) {
mul = mul - m;
k=k-1;
b
return mul;
}

public static void main(String[] args) {

Count count = new Count ()

System.out.println("Product: "+count.multi(5,6)):

1

Fig. 14. Java source code with programmer-defined design contracts for a while-loop.

Enhancing Secure Coding Assistant System 137

If the programmer clicks the option called “Overall precondition and postcondition
check” as shown in Fig. 6, the system will automatically generate code for dynamical
checking of the design contract. Similar to the above-given example for if-then-else
statement, this code along with system-generated comments is inserted into the original
code. When the programmer executes the augmented code in Eclipse, the result of the
overall pre-condition and post-condition checking is given in Fig. 15. The dynamic
checking result shows that the pre-condition is true, the post-condition is false, and the
result of the program execution is —30 that is not the correct one. This means there is
some error either in the design contract or in the code.

Overall P
Overall Postco
Product: -30

Fig. 15. Result of pre-condition and post-condition checking for a while-loop.

To locate the error, the programmer can click the option called “Generate subcon-
tracts” as shown in Fig. 6. The system will then automatically generate the code for the
dynamic checking of sub-design contracts based on the inference rule for while-loop
statements. This code along with related comments generated by the system is inserted
into the original code. Figure 16 presents the original code and the inserted code for
dynamic checking of the system-generated sub-design contracts. Due to the space limit,
the inserted code for the dynamic checking of the programmer-provided design contract
is removed from Fig. 16. Figure 17 shows that P = Inv is true, {Inv A B}S{Inv} is not
satisfied for every time of executing the loop body, and Inv A (not B) = Q is true. This
means the dynamic checking of the sub-design contract helps the programmer locate
the error in this loop body. The programmer needs to analyze the design contract and
the code for the loop body to remove the defect. Figure 18 shows the expected correct
result of the dynamic checking of this loop statement after the programmer changes the
line of the code “mul = mul — m” to “mul = mul + m”.

Example for a Sequence of Assignments. Figure 19 shows an example of using the
assignment axiom and the inference rule for the sequence of statements to automat-
ically generate the weakest pre-condition of an assignment sequence from the given
post-condition of the sequence. The backward method associated with the assignment
axiom is used in the process. For this example, the generated weakest pre-condition is
equivalent to the programmer-defined pre-condition. In general, there should be an impli-
cation relationship from the programmer-defined pre-condition to the system-generated
weakest pre-condition. If this logic relationship is not satisfied, the programmer needs
to analyze and then correct the pre-condition, post-condition, and/or code. This analysis
and correction are performed statically.

138 W. Liang et al.

//@Precondition n>0 && k==n && mul==0;

//@Postcondition mul=

-defined design contract

//8Inv mul==(n-kK)*m && k>=0 [

public int multi(int n, int m){
int mul = 0;
int k = n;
//Insert
/* Precondition ==> Invariant: >mul==(n-k) *m && k>=0 */

boolean PRECONDITION = n>0 && k
boolean INV = mul==(n-k)*m && k>=0;
System.err.println("Precondition is
//end

below is the

priginal code

"+PRECONDITION+",

Inv is "+INV+",

P implies Inv is "+(!PRECONDITION || INV)) 4

while (k>0) {
//Insert code: ™
/* Inv and B: mul==(n-k)*m && k>=0 && k>0 */ [~
boolean INVANDB = mul==(n-k)*m && k>=0 && k>0;
System.err.println("Inv and B is "+INVANDB):
//end ICode for dynamic checking of
i\ui X Tui,. e the system-generated sub-design
/7above is
/* Inv: mul */
INV = mu (n-k) *m && k>=
System.err.println("Inv is "+INV); |g
//end
i) A
//above is the origi code
/* Inv and !B ==> postcondition: mul==(n-k)*m && k>=0 && !(k>0)==>mul==m*n*/

boolean POSTCONDITION = mul==m*n;
System. er:
(1 (INV && ! (k>0))
//end

|| POSTCONDITION)):

println("Inv and !B is "+(INV && !(k>0))+",

Postcondition is "+POSTCONDITION+",

(Inv and !B)implies Q is "+

return mul;

Fig. 16. A while-loop statement with sub-design contracts.

Precondition
Inv and B is
Inv is false
Inv and B is
Inv is false
Inv and B is
Inv is false
Inv and B is
Inv is fals
Inv and B is
Inv is false
Inv and !B is false,
Product: -30

true

false
false
false

false

Postcondition is

false,

is true, Inv is true, P implies Inv is true

(Inv and !B)implies Q is

Fig. 17. Result of sub-design contract checking for a while-loop.

is true,
true

Precondition
Inv and B is
Inv is true
Inv and B is
Inv is true
Inv and B is
Inv is true
Inv and B is
Inv is true
Inv and B is
Inv is true
Inv and !B is true,
Product: 30

true

true

true

true

Inv is true,

Postcondition is true,

P implies Inv is true

(Inv and !B)implies Q is true

Fig. 18. Result of sub-design contract checking for a while-loop after the code is changed.

Enhancing Secure Coding Assistant System 139

public class Count {
private static int n

c lI’rogmmmcr-dcﬁncd design conlmcll
ti(int n, int m){

public int mul
int mul
int k = n;
while (k>0) { Pre-condition of the sequence|

Sl = ol ¥ 5 : A

d weakest pre-c

o
2
s
g
=
=
B
=l
S
g
P
4
g
2
2
—

return mul;

atic void main (S
count = new Cot

Fig. 19. Result of using assignment axiom and inference rule of sequence statements for a
sequence of assignments.

5 Conclusion and Future Work

The enhanced Secure Coding Assistant supports early detection of secure coding rule
violations as defined by SET CERT, and the early detection of code defects based on a
combination of Design by Contract and Programming Logic. It can help programmers
improve software security by removing potential security vulnerabilities during coding.
The future work will focus on the nested code structures, such as nested while-loop
statements and if-then-else statements. The challenge is to repeatedly or recursively
generate sub-design contracts for nested code structures based on inference rules.

References

1. Aldausari, N., Zhang, C., Dai. J.: Combining design by contract and inference rules of
programming logic towards software reliability. In: Proceedings of SECRYPT 2018 (2018)
2. ASTRewrite. https://www.ibm.com/support/knowledgecenter/ko/SSZHNR _1.0.0/org.ecl
ipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/rewrite/ListRewrite.html
3. Bartetzko, D., Fischer, C., Moller, M., Wehrheim, H.: Jass — Java with assertions. Electron.
Notes Theor. Comput. Sci. 55(2), 103-117 (2001)
4. Cybercrime Facts and Statistics. https://1c7fab3im83f5gqiow2qqs2k-wpengine.netdna-ssl.
com/wp-content/uploads/2021/01/Cyberwarfare-2021-Report.pdf
5. Kramer, R.: iContract - the Java(tm) design by contract(tm) tool. In: Proceedings of the
Technology of Object-Oriented Languages and Systems (1998)
6. Li, C., Dai.J., Zhang, C.: Enhancing secure coding assistant with error correction and contract
programming. In: Proceedings of the National Cyber Summit, 6—8 June 2017 (2017)
7. Le, N.M.: Cofoja github page. http://github.com/nhatminhle/cofoja
8. Liang, W.: Combining design by contract and programming logic to enhance secure coding
assistant system. MS Project Report, California State University, Sacramento, May 2021
9. Meyer, B.: Eiffel: a language for software engineering. Technical Report TR-CS-85-19
University of California, Santa Barbara (1985)
10. Meyer, B.: Applying ‘design by contract.” Computer 25(10), 40-51 (1992). https://doi.org/
10.1109/2.161279

https://www.ibm.com/support/knowledgecenter/ko/SSZHNR_1.0.0/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/rewrite/ListRewrite.html
https://1c7fab3im83f5gqiow2qqs2k-wpengine.netdna-ssl.com/wp-content/uploads/2021/01/Cyberwarfare-2021-Report.pdf
http://github.com/nhatminhle/cofoja
https://doi.org/10.1109/2.161279

140

11.

12.

13.
14.

15.
16.

17.

18.

19.

20.

W. Liang et al.

Meyer, B.: Introduction to the Theory of Programming Languages. Prentice Hall, Hoboken
(1990)

Melnik, V., Dai, J., Zhang, C., White, B.: Enforcing secure coding rules for the C program-
ming language using the eclipse development environment. In: Choo, K.-K.R., Morris, T.H.,
Peterson, G.L. (eds.) NCS 2019. AISC, vol. 1055, pp. 140-152. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-31239-8_12

OpenJML. http://www.openjml.org/

Slonneger, K., Kurtz, B.L.: Formal Syntax and Semantics of Programming Languages.
Addison Wesley, Boston (1995)

SEI CERT Coding Standards. https://wiki.sei.cmu.edu/confluence/display/seccode

SEI CERT C Coding Standard. https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+
C+Coding+Standard

SEI CERT Oracle Coding Standard for Java. https://wiki.sei.cmu.edu/confluence/display/
java/SEI+CERT+Oracle+Coding+Standard+for+Java

The Hidden Costs of Cybercrime. https://www.mcafee.com/enterprise/en-us/assets/reports/
rp-hidden-costs-of-cybercrime.pdf

White, B., Dai. J., Zhang, C.: Secure coding assistant: enforcing secure coding practices using
the eclipse development environment. National Cyber Summit (2016)

White, B., Dai, J., Zhang, C.: An early detection tool in eclipse to support secure coding
practices. Int. J. Inf. Priv. Secur. Integr. 3(4), 284-309 (2018)

https://doi.org/10.1007/978-3-030-31239-8_12
http://www.openjml.org/
https://wiki.sei.cmu.edu/confluence/display/seccode
https://wiki.sei.cmu.edu/confluence/display/c/SEI%2BCERT%2BC%2BCoding%2BStandard
https://wiki.sei.cmu.edu/confluence/display/java/SEI%2BCERT%2BOracle%2BCoding%2BStandard%2Bfor%2BJava
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf

	Preface
	Organization
	Organizing Committee
	General Chairs
	Program Committee Chairs
	Program Committee and External Reviewers
	Program Committee Members
	External Reviewers

	Contents
	Cyber Security Education
	An Integrated System for Connecting Cybersecurity Competency, Student Activities and Career Building
	1 Introduction
	2 Literature Review
	3 The Cyberpassport System
	3.1 System Design
	3.2 Implementation

	4 Usability Testing
	5 Discussion
	6 Conclusions
	References

	Simulating Industrial Control Systems Using Node-RED and Unreal Engine 4
	1 Introduction
	2 Industrial Control System Problems
	3 Industrial Control System Prototypes Within Educational Modules - CyberForce Competition™
	4 Proposed Research Solution
	4.1 Node-RED Software
	4.2 Modeling
	4.3 Wind Turbine Simulation

	5 Future Research
	6 Conclusion
	References

	Student Educational Learning Experience Through Cooperative Research
	1 Introduction
	2 Relevant Research
	3 Methodology
	4 Results
	5 Summary
	6 Future Work
	References

	Digital Forensics Education: Challenges and Future Opportunities
	1 Introduction
	2 Digital Forensics
	2.1 The Multidisciplinary Nature of Digital Forensics
	2.2 Topics in Digital Forensics Education

	3 Discussion
	3.1 Understanding Gaps Between Topics Taught and Emerging Trends
	3.2 Challenges in Developing Digital Forensic Education Programs
	3.3 Implications to Policy Makers and Higher Education

	4 Conclusion
	A Appendix
	References

	Designing a Cybersecurity Curriculum Library: Best Practices from Digital Library Research
	1 The Need for a Cybersecurity Digital Library
	2 What Makes a Successful Digital Library?
	3 CLARK - Cybersecurity Curriculum Library
	3.1 The CLARK Curriculum Model
	3.2 The CLARK System

	4 Future Directions
	4.1 Outreach and Innovation
	4.2 Cyber Range
	4.3 National Cyber Academy

	5 Summary
	References

	Design of a Virtual Cybersecurity Escape Room
	1 Introduction
	1.1 Motivation
	1.2 Problem Description

	2 Literature Review
	2.1 Benefits of Gamification
	2.2 Benefits of Physical Escape Rooms
	2.3 Benefits of a Virtual Cybersecurity Learning Environment
	2.4 Artifact Requirements

	3 Artifact Design and Development
	3.1 Virtual Cybersecurity Escape Room Concept Map
	3.2 Design/Refine of a Mental Model
	3.3 Model Prototyping

	4 Demonstration and Evaluation
	5 Contribution, Limitations, and Future Work
	References

	Cyber Security Technology
	A Novel Method for the Automatic Generation of JOP Chain Exploits
	1 Introduction
	2 Related Work
	2.1 Code-Reuse Attacks
	2.2 Jump-Oriented Programming
	2.3 Automatic Generation of ROP Chains
	2.4 Code-Reuse Mitigations

	3 Design and Evaluation of JOP ROCKET
	3.1 Design of the JOP ROCKET
	3.2 Discovery of Dispatcher Gadgets and Functional Gadgets
	3.3 Classification of JOP Gadgets
	3.4 Automatic JOP Chain Generation
	3.5 Evaluation Criteria for JOP ROCKET

	4 Evaluation Results and Contributions
	4.1 Validity and Reliability of Results
	4.2 Satisfying Design Science Requirements
	4.3 Contributions
	4.4 Practical Contributions

	5 Final Remarks
	References

	Increasing Log Availability in Unmanned Vehicle Systems
	1 Introduction
	2 Background
	2.1 Target System
	2.2 Blockchain
	2.3 Consensus
	2.4 Protocol Requirements

	3 Unmanned Vehicle System Logging Protocol (UVSLP)
	3.1 Block Generation and Commitment
	3.2 Blockchain Reconcile

	4 Verification
	4.1 Monterey Phoenix Behavioral Modeling
	4.2 Full Implementation Testing

	5 Conclusion and Implications
	References

	Testing Detection of K-Ary Code Obfuscated by Metamorphic and Polymorphic Techniques
	1 Introduction
	2 Background
	2.1 Malware Detection Methods
	2.2 Techniques of Malware to Avoid Detection

	3 Our Methods
	3.1 Implementation of Our K-Ary Program
	3.2 Implementation of Anomaly-Based Malware Detection

	4 Results
	5 Conclusions and Future Work
	References

	Enhancing Secure Coding Assistant System with Design by Contract and Programming Logic
	1 Introduction
	2 Background and Related Work
	2.1 Design by Contract
	2.2 Secure Coding Assistant
	2.3 Subcontractor

	3 The Enhancement to Secure Coding Assistant
	3.1 Goal
	3.2 Functionality
	3.3 Workflow
	3.4 Implementation

	4 Examples
	5 Conclusion and Future Work
	References

	Social Engineering Attacks in Healthcare Systems: A Survey
	1 Introduction
	1.1 Cybersecurity Issues in Telehealth

	2 Use of IoT in Healthcare
	3 Social Engineering Attacks
	3.1 Common Social Engineering Attacks
	3.2 Social Engineering Attacks in Healthcare Systems

	4 Handling Social Engineering Attacks
	4.1 Tactics for Prevention
	4.2 Using Automated Solutions
	4.3 Use of Machine Learning to Detect Social Engineering Attacks

	5 Summary
	References

	Identifying Anomalous Industrial-Control-System Network Flow Activity Using Cloud Honeypots
	1 Introduction
	2 Previous Work
	3 Experiments
	3.1 Design of Phases 1–2
	3.2 Changes to the Conpot and GridPot Servers
	3.3 Phases 1–2 Deployment
	3.4 Phases 3–5 Deployment
	3.5 Data Analysis Methods

	4 Results
	4.1 Network Scanning
	4.2 Compromises in Phase 2
	4.3 Overall Comparison of the Phases

	5 Conclusions and Future Work
	References

	Risks of Electric Vehicle Supply Equipment Integration Within Building Energy Management System Environments: A Look at Remote Attack Surface and Implications
	1 Introduction
	1.1 Technical Background

	2 EVSE Vulnerability Analysis Methodology
	3 EVSE Findings
	4 Risks of Exploitation
	5 Expanding the EVSE Threat Model to Include BEMS/BMS
	6 Conclusions
	7 Future Research
	References

	Author Index

