Enforcing Secure Coding Rules for the C Programing
Language Using the Eclipse Development Environment

Victor Melnik!, Jun Dai', Cui Zhang', Benjamin White'?

! Computer Science, California State University, Sacramento, CA 95819
2 Mother Lode Holding Company, Roseville, CA 95747
jun.dai@csus.edu

Abstract. Creating secure software is challenging, but necessary due to the prev-
alence of large data breaches that have occurred for organizations such as
Equifax, Uber, and U.S. Securities and Exchange Commission. Many static anal-
ysis tools are available that can identify vulnerable code, however many are pro-
prietary, do not disclose their rule set or do not integrate with development envi-
ronments. One open source tool that integrates well with the Eclipse development
environment is the Secure Coding Assistant that was developed at California
State University, Sacramento (CSUS), which is featured by early error detection.
The tool provides support for secure coding rules for the Java programming lan-
guage that were developed at the CERT division of the Software Engineering
Institute at Carnegie Mellon University. The tool also provides error correction
and contract programming support. To provide secure coding assistance in C pro-
gramming, we further extend the tool to support the C programming language by
semi-automating a subset of the CERT secure coding rules for C. The tool detects
rule violations for the C programming language in the Eclipse development en-
vironment and provides feedback to aid and educate developers in secure coding
practices. The tool is open source to the community and maintained at GitHub
(http://benw408701.github.io/SecureCodingAssistant/).

Keywords: Secure Coding, Software Security, C Programming

1 Introduction

Developing software using secure coding practices is becoming increasingly important
as the frequency and severity of data breaches continue to rise. According to the Identity
Theft Resource Center, 2017 set a record of the highest number of data breaches in the
United States of America, with an increase of 44.7% compared to the previous year [1].
In 2017 the world also observed some of the largest data breaches to date. For instance,
in the beginning of 2017, Uber disclosed that 57 million Uber users and driver’s infor-
mation was stolen, which included “names, email addresses, phone numbers, driver’s
license numbers”, and other personal information [2]. Later that year the largest data
breach to date occurred at Equifax, a consumer credit reporting agency. Hackers were
able to steal “145.5 million records containing social security numbers, names, ad-

dresses, credit card numbers and other personal information” [7]. Lastly, the U.S. Se-
curities and Exchange Commission’s Electronic Data Gathering, Analysis, and Re-
trieval (EDGAR) system was infiltrated and information regarding mergers, acquisi-
tions and other company data was exfiltrated [3]. The severity of this data breach is
difficult to assess, because the data retrieved could be used in the future to make mil-
lions to billions of dollars for criminal organizations. Many of these attacks could have
been mitigated or prevented if the organizations enforced more stringent coding prac-
tices.

There are many vulnerabilities that are reported and published on the Common Vul-
nerability Enumeration (CVE) website. It would take a good deal of effort to keep up
with ever newly published vulnerability. In 2017 alone, 14,712 CVEs were published
[12]. This was an unprecedented spike in code vulnerabilities compared to 2016, where
only 6,447 CVEs were published [12]. According to IEEE Senior Member Gary
McGraw, “there has been too much focus on common bugs and not enough on secure
design and avoidance of flaws™ [13].

To stay ahead of the curve of newly published vulnerabilities, various tools were
developed to provide code weakness detection and secure coding assistance. Our tool
named Secure Coding Assistant is one of these efforts, which is open source and im-
plements the CERT secure coding rules for Java programming language [7] [18-19]. It
is a static analysis tool that was developed in 2016 [18-19] and later enhance in 2017
at [7]. The tool, featured by early detection, provides support for the CERT secure cod-
ing rules for the Java language. It also provides error correction and contract program-
ming for the Java language. The rules were developed at the CERT division of the
Software Engineering Institute at Carnegie Mellon University. By enforcing the rules
throughout coding, newly developed software can avoid common security pitfalls.

This paper is focused on the enhancement of the tool by semi-automating the secure
coding rules for C programming language. To achieve this goal, a subset of the CERT
secure coding rules for C will be carefully selected and implemented. Specifically, the
tool will flag unsecure code segments similar to problem markers generated during the
compilation process. These markers will provide the developer with the name of the
violated rule and information on how to remediate the vulnerable code. These problem
markers will help educate software developers on secure coding principles.

Throughout this paper, the enhancement to provide support for the C language to the
Secure Coding Assistant will be referred to as the Secure Coding Assistant for C. Secure
Coding Assistant for Java will be used to refer to the original software that was devel-
oped for the Java language. The Secure Coding Assistant for C and Secure Coding
Assistant for Java are integrated as part of the same tool but are mutually exclusive
components within the tool, due to their inherent difference in programming language.

2 Related Work

There are currently many static analysis tools that are available to aid developers in
making secure software. Table 1 provides a list of some of these available tools. The
first five are commercial tools while the rest are open source ones.

All the tools that are closed source do not disclose the rule set or the methodologies
that are used to detect vulnerabilities in the developer’s source code. The first four open
source tools, scan source code for vulnerabilities but do not disclose which rule set the
tool is based on. Also, two of these open source tools have not been updated for a few
years. VisualCodeGrepper has not been updated in the past two years, while PreFast
has not been updated since 2005. The tool that is most closely related to our tool in
Flawfinder. Flawfinder is an open source tool that is available for download on GitHub.
Flawfinder is based on the Common Weaknesses Enumeration (CWE) database and
detects vulnerable code segments by matching code against a database of C/C++ func-
tions with known problems. Unlike Flawfinder, Secure Coding Assistant is based on
an established secure coding rule set and does not rely on new vulnerabilities to be
published to update the tool. Secure Coding Assistant will be maintained and further
developed by the Department of Computer Science at CSUS.

Table 1. Current Secure Code Analysis Tools.

Company Tools Rule Set Open/Closed
Synopsys Coverity Static Analysis Tool Proprietary Closed
Veracode Static Analysis SAST Proprietary Closed
Rouge Wave Software ~ KlocWork Proprietary Closed
Viva64 PVS-Studio Analyzer Proprietary Closed
Micro Focus Fortify Static Code Analyzer Proprietary Closed
Microsoft PreFast Custom Open
NCC Group Visual Code Grepper Custom Open
Michael Scovetta Yasca Custom Open
Daniel Marjamaki CPPCheck Custom Open
David Wheeler Flawfinder CWE Open

3 Design

3.1 Goals

There are two goals that are expected by enhancing the Secure Coding Assistant. The
first goal is to provide developers with feedback when compiling their source code.
This will be similar to warnings and error problem reports that are generated during the
compilation process. This feedback will allow developers to mitigate security vulnera-
bilities during the development of their software.

The second goal is to educate developers on secure coding practices for the C lan-
guage. This goal will be accomplished by providing developers with problem alerts that
provide a clear message that specifies the violated rule and guideline on how to reme-
diate the unsecure code segment. These two implemented goals will create a learning
environment that will educate software developers on the secure coding practices for
the C language.

3.2 Architecture

The Secure Coding Assistant for C runs when the build command in Eclipse is called.
The build command is used to compile all the C source code files within an open pro-
ject. Eclipse refers to source code files that are inputted into a compiler as translation
units. As the build command runs, all the nodes in the translation unit are analyzed to
determine if any rules are violated. Fig. 1 shows the high-level flow on the overall de-
sign for the Secure Coding Assistant for C. When the build command is called all the
pre-existing markers in the source code are cleared, and the first node within the first
translation unit is visited. If a rule is violated in the node, a marker is generated with
the name of the rule violated and its remediation information. Then the next node in the
translation unit is visited. This process continues until all the nodes in the translation
unit have been visited and analyzed. If there are more translation units in that need to
be compiled, the next translation unit is visited, and all its node are subsequently ana-
lyzed. Once all the translation units within the project are visited and analyzed, the
Secure Coding Assistant for C displays all the markers that have been created during
the build processes. The Secure Coding Assistant for C will run and display all the
problem markers in the project’s translation units, even if the build fails to compile the
project successfully.

4 Run Build ’

Clear all existing
markers, visit first
source file in
project and visit
first node in
abstract syntax
tree

Create Marker

with rule violation
and remediation
information

Go to next source!

file and visit first

node in abstract
syntax tree

Display Markers
in source code
file

Fig. 1. Secure Coding Assistant for C High-level Flow Chart.
4 Implementation

The idea to use the Eclipse Development Environment as the common platform decides
that the Secure Coding Assistant for C and the Secure Coding Assistant for Java could
share methodologies for implementation. The difference between the two analyzers is
mainly that they utilize a different Eclipse tooling library. Specifically, the Secure Cod-
ing Assistant for C utilizes the Eclipse C/C++ Development Tooling (CDT) library,
while the Secure Coding Assistant for Java utilizes the Eclipse Java Development Tool-
ing (JDT) library.

4.1 Rule Selection

The CERT secure coding standard provides a total of 120 rules for C which are divided
into 17 specific categories. To determine which rules are to be incorporated into the
Secure Coding Assistant for C, the rules are first divided into two categories: rule that
could be automated and rules that could not be automated. For a majority of the C
secure coding rules, the CERT website provides information on whether the rule can
be automated or not.

An example of a rule that could not be automated is the F/O32-C rule, which states
to not perform file operations on devices that are only appropriate for files [15]. In the
UNIX and Windows operating systems, special files are used to represent devices. To
determine if this rule was violated, the tool would require a mechanism of identifying
each file as it was inputted into a file operation function. Since this information could
only be gathered during runtime, this rule could not be automated in a static analysis
tool.

Additionally, the CERT secure coding standard for C contained three rule categories
that did not contain any rules that could be automated. One of these rule categories is
the Preprocessor category. The Preprocessor rule category could not be automated due
to the limitation of the Eclipse CDT library. The library did not provide a method to
analyze preprocessor code segments in a translation unit. This limitation prevented the
tool from being able to automate any of the rules within this rule category.

From the 120 CERT rules for C, 38 were determined to be automatable. From the
38 rules that were determined to be automatable 20 rules were selected to be automated
in the tool. The 20 rules that were selected for this tool were determined based on their
severity, and the likelihood that the rule violation would occur. The CERT website pro-
vided the classification for each rule. Additionally, rules were also selected to represent
all the 17 rule categories that did contain automatable rules.

4.2 Plugin Implementation

To develop the Secure Coding Assistant for C, the Eclipse Plugin Development Envi-
ronment (PDE) was utilized. The Eclipse PDE provides developers with extension
points that can be used to improve and customize the existing development environ-
ment. Extension points are a combination of XML mark-up language and a Java inter-
face, that allow for one plugin to extend and customize the functionality of another
plugin [4].

The Secure Coding Assistant for C extends one extension point. The extension point
is org.eclipse.cdt.core.ErrorParser. This extension point allows the plugin to fulfil two
functions. First, it allows the plugin to interact with the C build process. Build is used
to compile and link the source files in an open project. Second, it allows for the gener-
ation of problem markers. Problem markers are used to mark the segment of code that
contains a rule violation and provide a tool-tip that contains information on the violated
rule and how to remediate the unsecure code.

4.3 Abstract Syntax Tree

Each translation unit in a C project is represented as an Abstract Syntax Tree (AST).
An AST is a tree model that is used to represent the structure of a programming lan-
guage’s source code file. An AST can be traversed depth-first from top to bottom or
bottom to top.

The Eclipse CDT library provides a mechanism to examine the AST through the
org.eclipse.cdt.core.dom.ast ~ package. To traverse the AST, the
org.eclipse.cdt.core.dom.ast package provides the class ASTVisitor. ASTVisitor pro-
vides a visit() method for each of the different types of nodes (variable declaration,
expression statement, function parameters, etc.). The visit() method allows for each
node within a translation unit to be visited and examined.

The Secure Coding Assistant for C has two classes that extend the ASTVisitor class:
SecureCodingNodeVisitor C and ASTNodeProcessor. SecureCodingNodeVisitor C
class is used to access the AST during the build process. ASTNodeProcessor class is
used by the Utility C library to aid in the detection of rule violations.

4.4 Rule Detection

The Secure Coding Assistant for C uses two Java classes to fulfil the task of detecting
rule violations: ASTNodeProcessor_C, and Utility C.

ASTNodeProcessor _C is at the heart of rule detection. ASTNodeProcessor C
traverses the AST of a translation unit a second time and creates collections of various
node types such as variable declarations, function definitions, assignment statements,
etc. ASTNodeProcessor_C also assigns a numerical value to each node to keep track of
the order in which the nodes appear in the source code. These collections of nodes
allowed for easy retrieval of nodes that were called before and after the node being
currently analyzed.

Table 2. Utility C Library.

Utility Method
Get scope of node getScope(IASTNode)

Determine if inner node is contained within

isEmbedded(IASTNode, IASTNode)

outer node
Get list of all variables in th
et list of a Varl?heej 01(111e e same scope as allVarNameType()
Get list of function call parameter getFunctionParamaterVarName()

Get list of function call parameters for printf . .
functi P P getFunctionParameterVarNamePrintf()
unctions

Utility C library is a collection of methods that are used by more than one rule. Since
many of the CERT rules share common rule detection logic, Utility C library was used
to simplify the logic for each rule. This library created a list of methods that could be
used by future developers to expand the tool. The list of methods in the Utility C, along
with the purpose they serve is show in Table 2. The Utility C library was expanded

during the development of the Secure Coding Assistant for C tool. A new method was
added when more than one rule was determined to share similar rule detection logic.
Using both the ASTNodeProcessor_C class and the Utility C library simplified the rule
logic for each rule and allows for code reusability.

4.5 Rule Interface

Each rule implements the SecureCodingRule C interface. The interface provides meth-
ods for detecting a rule violation and for provide feedback to the user of the tool. Table
3 provides the methods contained in the SecureCodingRule C interface.

Table 3. SecureCodingRule _C Interface [18].

Method Signature Description

Boolean violated CDT(IASTNode) Checks to see if a rule has been violated for a node
String getRuleText() The description of the violated rule

String getRuleName() The description of the violated rule

String getRuleID() The ID of the violated rule

String getRuleRecommendation() Suggestions to remediate the insecure node

The security level of the violated rule: HIGH,
MEDIUM, LOW
String getRuleURL() The URL to the rule on the CERT website

Int securityLevel()

This interface is borrowed from the Secure Coding Assistant for Java developed by
[18-19]. However, since both tools use different Eclipse development libraries, the Se-
cureCodingRule C.violated() function is modified to accommodate the difference.

The SecureCodingRule C.violated() method takes one parameter, i.c. the node that
is currently being processed by the SecureCodingNodeVisitor C. The node is analyzed
by the method and returns true if the rule has been violated. This method made the code
required for running each rule against all the nodes in a translation unit simple. Fig. 2
displays the rule traversal logic used in SecureCodingNodeVisitor C.

5 Evaluation

5.1 Accuracy
5.1.1 CERT Validation

The CERT website provides a list of example code as well as the definitions for each
of the CERT rules. Each rule contains a pair of code samples: one with a rule violation
and one with the rule violation remediated. Some of the rules contained more than one
pair of code examples. To initially develop the Secure Coding Assistant for C, the tool
focused on detecting the rule violation in the unsecure code segments. It also made sure
that any false positives were remediated during this process. Once the Secure Coding
Assistant for C was able to detect all the rule violation in the CERT’s rule sample code,
the rule logic was considered to be complete.

5.1.2 False Positive

public void traverseRule(IASTNode checkNode)
for (IRule_C rule : c_rules)
if(rule.violate_CDT(checkNode))
Globals.insecureGlobalNode = checkNode;
Globals.cdt_InsecureCodeSegments.add(

ew InsecureCodeSegment_C(checkNode,rule, localITU));
}

}
}

Fig. 2. Rule Detection Logic in SecureCodingNodeVisitor C.

* Convert

to int * o
data = atoi(inputBuffer); u .

& Rule violated: ERR34-C Detect errors when converting a string to a numbers
Severity: LOW

==

NOTE: The text and/or code below is from the CERT website:
https://wiki.sei.cmu.edu/confluence/display/c/ERR34-C.
5 b

{ +Detect h g g

Rule Description: CERT Website- The atoi(), atol(), atoll(, and atof() functions convert the initial portion of a
string token to int, long int, long long int, and double , respectively. L , atoi(),
related functions, and scanf family of functions lack a mechanism for reporting errors for invalid values.

Rule Solution: Use one of the C Standard Library strto*() functions instead.
Press ‘F2'for focu|

Fig. 3. ERR34-C rule violation from Juliet Test Suite for C/C++ detected by Secure Coding As-
sistant [11].

The Juliet Test Suite for C/C++ developed by the NSA Center for Assured Software
was used to conduct a false positive study [11]. This test suite consists of 64,099 C/C++
source code files which are categorized under 118 different CWEs. Each source code
file contains an unsecure code example paired with a secure code correction. The au-
thors of the files provide comments within each file to identify the code segments that
contain weaknesses. Many of the weaknesses that were documented in the Juliet Test
Suite for C/C++ were not detected by the Secure Coding Assistant for C because most
CWEs do not directly translate over to any CERT rules. For example, CERT does not
include any rules for code weaknesses such as unchecked return values or unreachable
code segments.

The Secure Coding Assistant for C generated 11,021 secure coding warning which
are shown in Table 4. Ten of the 20 rules that were implemented in the tool detected
rule violations. The top two rules that were detected are the FRR34-C and MEM31-C
rules, which collectively account for 68% of all the rule violations. The ERR34-C rule
states to detect errors when converting strings to a number [5]. This rule detects rule
violations when using string to integer conversion functions that lack error reporting
mechanism such as atoi, atoll, and atoll [5]. Fig. 3 shows an example of a rule violation
for the ERR34-C rule with its accompanied problem alert window. The rule MEM31-C
states that dynamically allocated memory should be freed once it is no longer needed
by the program [16]. This rule was detected, since many CWEs are associated with
memory leakage and corrupt memory pointers.

Table 4. Juliet Test Suite for C/C++ Results.

Level | Rule Name Total Percent
L3 ERR34-C. Detect errors when converting a string to a number 3784 34.3%
L2 MEM31-C. Free dynamically allocated memory when no longer needed 3750 34.0%
L2 INT33-C. Ensure that division and remainder operations do not result in divide-by- | 2010 18.2%

ZEro errors
L2 MSC30-C. Do not use the rand() function for generating pseudorandom numbers 812 7.4%
L1 ENV33-C. Do not call system() 557 5.0%
L2 ARR36-C. Do not subtract or compare two pointers that do not refer to the same | 36 0.3%
arra;
L2 FIOZ;S—C. Avoid TOCTOU race conditions while accessing files 36 0.3%
L1 SIG30-C. Call only asynchronous-safe functions within signal handlers 18 0.2%
L2 SIG31-C. Do not access shared objects in signal handlers 18 0.2%
L2 FIO47-C. Use valid format strings 18 0.2%
12 DCL36-C. Do not declare an identifier with conflicting linkage classifications 0 0.0%
L3 DCL38-C. Use the correct syntax when declaring a flexible array member 0 0.0%
L3 DCLA1-C. Do not declare variables inside a switch statement before the first case | 0 0.0%
label
L2 EXP32-C. Do not access a volatile object through a nonvolatile reference 0 0.0%
L2 FLP30-C. Do not use floating-point variables as loop counters 0 0.0%
L2 STR34-C. Cast characters to unsigned char before converting to larger integer sizes 0 0.0%
L3 STR37-C. Arguments to character-handling functions must be representable as an | 0 0.0%
unsigned char
L1 STR38-C. Do not confuse narrow and wide character strings and functions 0 0.0%
L2 FIO47-C. Use valid format strings 0 0.0%
L2 CONA40-C. Do not refer to an atomic variable twice in an expression 0 0.0%
L2 POS33-C. Do not use yfork() 0 0.0%
Total 11,021

Each rule detection in Table 4 was manually inspected to determine if the alert was
a true positive or false positive. Table 5 displays the false positives that were identified.
False positives accounted for 25% of all of the rule detections. Only two rules were
determined to have false positive detections: the INT33-C and the MSC30-C rules.

The highest false positive result was attributed to the /NT33-C rule. This rule states
that “division and modular operations should not result in a divide-by-zero error” [14].
These false positives stem from floating point division, where a conditional statement
checks to see if the divisor is greater than the value of .00001 before performing divi-
sion. The rule logic in the tool is structured to check if the divisor is greater than zero,
greater than or equal to one, or not equal zero. It would be difficult to account for the
different variations of conditional statements that can be satisfied to check if a floating-
point number is not equal to zero. This makes avoiding false positives for this rule
difficult. This rule highlights that the rule detection logic for this rule should be revis-
ited.

The second highest false positive result is attributed to the MSC30-C rule. This rule
states to not use the function rand() to generate pseudorandom numbers for application
that have a strong pseudorandom number requirement [9]. The false positive results
found were in source files that were using rand() for purposes that did not need strong
pseudorandom values. It would be difficult to fix the false positives that were generated
by this rule, because it requires context into how these random number will be used in
an application. Future release of the Secure Coding Assistant for C could provide the

10

option to hide a secure coding rule violation if there is disagreement with the tool. This

would help minimize the number of false positive detections.

Table 5. False Positive Results.

Rule Total True Pos. True Pos. False Pos. False Pos.
Count Count (%) Count (%)
INT33 2,010 1,519 75.57 491 24.43
MSC30 812 505 62.19 307 37.81
Total 2,822 2,024 71.72 798 28.28

5.1.3 False Negative

To conduct a false negative study on the Secure Coding Assistant for C, the Juliet Test
Suite for C/C++ [11] and the CWE website database [10] were used. These sources
were used because they contained code segments that provided documented vulnera-
bilities. The false negative study was done by looking through both sources and deter-
mining if the documented vulnerability should have been picked up by the tool. The
tool failed to detect rule violations for the F1045-C and STR34-C rules.

The false negative instance for the F/O45-C rule was found in the Juliet Test Suite
for C/C++. The FI045-C rule states that a TOCTOU (time-of-check, time-of-use) race
conditions should be avoided when more than one concurrent process is operating on a
shared file system [17]. The code segment that should have been picked up by the tool
is shown in Fig. 4. The Secure Coding Assistant for C did not flag this code segment
as a vulnerability because the #define preprocessor directive was used to rename the
file operations stat and open to STAT and OPEN, respectively.

if (STAT(filename, &statBuffer) == -1)
r
exit(1);

fileDesc = OPEN(filename, Q_RDWR);
if (fileDesc == -1)

exit(1);

Fig. 4. Code segment from Juliet Test Suite for C/C++[11].

The false negative instance for the STR34-C rule was discovered on the CWE web-
site under CWE-843: Access of Resource Using Incompatible Type [10]. CWE-843
does not relate to the CERT rule STR34-C, however the CWE code example contained
a segment of code that violated the STR34-C rule. The STR34-C rule states that char
should be cast to an unsigned char before converting the value to a larger integer size
[6]. Fig. 5 displays the code segment from CWE-843 that should have been detected as
a rule violation under the STR34-C rule. The character variable defaultMessage is cast
to the integer buf -namelD without first casting the char to an unsigned char. Custom
code was written to identify the variable being accessed using the member access op-
erator for variables declared within complex data structures such as union and struct.

11

This code was written since the Eclipse CDT library lacked this mechanism. The logic
failed to consider a complex data structure being nested within another complex data
structure. This case was not considered because none of the CERT examples provided
code segments where this case occurred. This is a limitation of the tool that will be
addresses in future developments.

#define NAME_TYPE 1|
struct MessageBuffer
{
int msgType;
union {

char *name;
int namelD;

3

|5

int main (int arge, char **argv) {

struct MessageBuffer buf;

char *defaultMessage = "Mello World";
buf.msgType = NAME_TYPE;

buf.name = defaultMessage;

printf("Pointer of buf.name is Xp\n", buf.name);

buf.nameID = (int)(defaultMessage + 1);

}
}

Fig. 5. CWE-843 code segment from CWE website [10].

5.2 Efficiency

The tool’s efficiency was measured by running the build command against test suites
from [11] and test files that were generate from the CERT website examples to initially
test this tool. Each project was built 3 times with and without the tool enabled to gather
the average build time. After each build, the c/ean command was called to delete all the
generate binaries. The Secure Coding Assistant for C efficiency result are shown in
Table 6. The second to last column in Table 6 shows the increase in time to build the
binaries for a project. The time it takes to build a project appears to be correlated with
the number of files in a project, as well as the number of detected violations. There is
an average 4.45% increase in build time with the tool enabled.

Table 6. Efficiency Test Results.

Project | Files | Alerts | Time Increase (s) | Increase (%)
CERT 20 50 1.21 5.74

Test 45 66 13 3.48 15.84

Test 46 64 18 4.75 21.65

Test 101 | 58 29 5.42 9.04

Test 106 | 247 113 14.71 12.44

12

6 Limitations, Conclusion and Future Work

The enhancement to the Secure Coding Assistant for C programming language has
proven to be pragmatic, efficient and accurate. The future developments will focus on
improving the efficiency of the tool by fine tuning the rule logic and by minimizing the
false positive and false negative rates. There will also be a focus on adding additional
features such as providing the user the ability to hide problem markers if they disagree
with the tool and by providing support for the C++ language. Additionally, the rest for
the CERT rules for C that were identified as automatable will be implemented.

There are many static analysis tools that provide secure code analysis that are avail-
able for developers. However, none of these tools implement the CERT secure coding
rules for the C programming language. This paper provides C programmers with an
educational development tool that enforce secure coding standards. This tool is open
source and will continue to be maintained by the Department of Computer Science at
CSUS. The tool 1is available on the project website at GitHub
(http://benw408701.github.io/SecureCodingAssistant/).

This project was conducted when Victor Melnik was a student in MS Computer Sci-
ence program at California State University, Sacramento. More implementation details
can be found in his Master Project Report [20], that is an extended version of this paper.

7 Acknowledgements

Acknowledgements and attributions are given to Carnegie Mellon University and its
Software Engineering Institute, as this publication incorporates portions of the “SEI
CERT C Coding Standard” (c) 2017 Carnegie Mellon University, with special permis-
sion from its Software Engineering Institute”. Any material of Carnegie Mellon Uni-
versity and/or its software engineering institute contained herein is furnished on an “as-
is” basis. Carnegie Mellon University makes no warranties of any kind, either expressed
or implied, as to any matter including, but not limited to, warranty of fitness for purpose
or merchantability, exclusivity, or results obtained from use of the material, Carnegie
Mellon University does not make any warranty of any kind with respect to freedom
from patent, trademark, or copyright infringement. This publication has not been re-
viewed nor is it endorsed by Carnegie Mellon University or its Software Engineering
Institute. CERT and CERT Coordination Center are registered trademarks of Carnegie
Mellon University.

References

1. 2017 Annual Data Breach Year-End Review, 2018.
https://www.idtheftcenter.org/images/breach/2017Breaches/2017AnnualDataBreachYear-
EndReview.pdf. Retrieved on Feb 27, 2019.

2. Bearak, S., 2017. Uber Data Breach Affects 57 Million: It is Time to Own Our Identities.
https://www.identityforce.com/business-blog/ubers-data-breach-affects-57-million-its-
time-to-own-our-identities. Retrieved on Feb 27, 2019.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

13

. Cimpanu, C., 2017. SEC Says Hackers Breached Its System, Might Have Stolen Data for

Insider Trading. https://www.bleepingcomputer.com/news/security/sec-says-hackers-
breached-its-system-might-have-used-stolen-data-for-insider-trading/. Retrieved on Feb 27,
2019.

Eclipse., 2018. Extensions and Extension Points. http://help.eclipse.org/luna/in-
dex.jsp?topic=%2Forg.eclipse.pde.doc.user%2Fconcepts%2Fextension.htm. Retrieved on
Feb 27, 2019.

. Hicken, A., 2018. ERR34-C. Detect errors when converting a string to a number.

https://wiki.sei.cmu.edu. Retrieved on Feb 27, 2019.

Hicken, A., & Seacord, R., 2018. STR34-C. Cast characters to unsigned char before con-
verting to larger integer sizes. https://wiki.sei.cmu.edu. Retrieved on Feb 27, 2019.

Leary, J., 2018. Equifax Breach Impacts 147.9 Million: Steps to Keep Your Identity Pro-
tected. https://www.identityforce.com/business-blog/equifax-breach-impacts-143-million-
steps-to-keep-your-identity-protected. Retrieved on Feb 27, 2019.

. Li, C., White, B., Dai, J., & Zhang, C., 2017. “Enhancing Secure Coding Assistant With

Error Correction and Contract Programming”. Proceeding of National Cyber Summit 2017,
Huntsville, AL, Jun 6-8, 2017.

Long, F., & Hicken, A., 2018. MSC30-C. Do not use the rand() function for generating
pseudorandom numbers. https://wiki.sei.cmu.edu. Retrieved on Feb 27, 2019.

MITRE, 2018. CWE-843: Access of Resource Using Incompatible Type ('Type Confusion').
Common Weakness Enumeration.

NIST, 2017. Test Suites, 4.9. NIST Samate: https://samate.nist.gov/SARD/testsuite.php. Re-
trieved on Feb 27, 2019.

Ozkan, S., 2018. Browse Vulnerabilities by Date. https://www.cvedetails.com/browse-by-
date.php. Retrieved on Feb 27, 2019.

Pretz, K., 2014. 10 Recommendation for Avoiding Software Security Design Flaws.
http://theinstitute.ieee.org/special-reports/special-reports/10-recommendations-for-avoid-
ing-software-security-design-flaws. Retrieved on Feb 27, 2019.

Razmyslov, S., 2018. INT33-C. Ensure that division and remainder operations do not result
in divide-by-zero errors. https://wiki.sei.cmu.edu. Retrieved on Feb 27, 2019.

Seacord, R., & Flynn, L., 2018. FIO32-C. Do not perform operations on devices that are
only appropriate for files. https://wiki.sei.cmu.edu. Retrieved on Feb 27, 2019.

Seacord, R., & Hicken, A., 2018. MEM31-C. Free dynamically allocated memory when no
longer needed. https://wiki.sei.cmu.edu. Retrieved on Feb 27, 2019.

Svoboda, D., & Snavely, W., 2017. FIO45-C. Avoid TOCTOU race conditions while ac-
cessing files. https://wiki.sei.cmu.edu. Retrieved on Feb 27, 2019.

White, B., Dai, J., & Zhang, C., 2016. “Secure Coding Assistant: Enforcing Secure Coding
Practices Using the Eclipse Development Environment”. Proceeding of National Cyber
Summit 2016, Huntsville, AL, Jun 8-9, 2016.

Benjamin White, Jun Dai, Cui Zhang, “An Early Detection Tool in Eclipse to Enforce Se-
cure Coding Practices”. International Journal of Information Privacy, Security and Integrity
(IJIPSI), Inderscience, 2018.

Victor Vladimirovich Melnik, “Enhancing Secure Coding Assistant: Enforcing Secure Cod-
ing Rules for C Programming Language”, Master Report at California State University, Sac-
ramento, 2018.

