Enhancing Secure Coding Assistant

With Error Correction and Contract Programming

Chen Li, Benjamin White, Jun Dai, Cui Zhang
Department of Computer Science
California State University, Sacramento
6000 J Street, Sacramento, CA 95819, USA

{li3, benwhite, jun.dai, zhangcl@csus.edu

ABSTRACT

As cyber-attacks have become more prevalent in the recent
decade, companies and governments have learnt the significant
importance of enforcing robust programming practices to ensure
software security and reliability during code generation. Various
tools have been developed for the purpose of assisting
programmers in secure coding, and the initial version of our tool
called “Secure Coding Assistant” is one of such development
efforts. Designed to support CERT rule violation detection, the
tool is featured by “providing a mechanism to detect rule
violations early” and by “filling the void of open source tools”.
The tool is promising in secure programming education compared
to other commercial products, however, the initial version does
not provide assistance in error correction, nor does it takes into
account the potentials of employing contract programming
enforcement to assist users in improving program reliability. To
achieve error correction and defect localization for both software
security and reliability in Java programs, this paper presents our
efforts for the implementations of assisting error correction and
enforcing contract programming. Our tool is maintained on
GitHub at http://benw408701.github.io/SecureCodingAssistant/.

Keywords
Robust Programming, Software Reliability, Software Security,
Eclipse, Java

1. INTRODUCTION

In the recent decade, cyber-attack has become more prevalent.
Based on the statistic published on Statista.com, between 2005
and 2014 millions of data records have been breached in the
United Stated [1]. For example, a data breach to Heartland
Payment Systems in 2008 and 2009 resulted in 130 million
records comprised [2]. JP Morgan Chase, the largest bank in the
United States, was the victim of a security breach in 2014
impacting over 76 million household accounts and seven million
small businesses [3]. In 2015, Anthem Blue Cross, one of the
largest health insurance companies in the US, was attacked
resulting in about 78.8 million people’s personal information
being stolen [4]. Had the security vulnerabilities been detected at
the software development stage, the likelihood of those incidents
would have been greatly reduced.

Despite of the security vulnerabilities which are exploited by
hackers to compromise the system, low software reliability is

This publication incorporates portions of the “SEI CERT Oracle Coding
Standard for Java” (c) 2017 Carnegie Mellon University, with special
permission from its Software Engineering Institute”. See Section 6 for
more acknowledgements and restrictions.

another contributor to poor quality of software and often leads to
security loopholes. The well-known incident of Ariane 5 in 1996
was the result of poor software reliability, which led to the fatal
crash of the rocket shortly after its launch. Investigation
conducted by the French Space Agency and European Space
Agency pointed to an overflow error introduced in the guidance
software converting a 64-bit floating-point horizontal velocity to a
16-bit signed integer. The error led to the shutdown of the
guidance system and eventually caused the rocket to veer off
course. The catastrophic event of Ariane 5 cost European Space
Agency 10 years of R&D effort and 7 billion dollars, making the
bug the most costly error in history [5]. The disaster could have
been avoided if contract programming methodology had been
applied to the guidance software development.

The above incidences call for “robust programming practices” to
detect and correct any defects in the code, for the purposes of
ensuring both software security (in case of any threats coming
from hackers) and reliability (in case of any risks from non-
malicious activities)®. The tool named “Secure Coding Assistant”
is our response to the community’s demands and efforts. The
initial version [6] mainly targets at solving the insecure coding
practices, by providing a mechanism based on CERT rules [7] to
detect any rule violations at the stage as early as writing code. To
fill the void of open source products, the tool is developed as a
non-commercial contribution and released through GitHub to
promote secure programming education.

However, with the focus on early defect detection, the initial
version of Secure Coding Assistant didn’t contain facilities to
provide assistance in error correction. It also didn’t provide
support to improve code correctness for the sake of risk mitigation
in terms of software reliability, where the scenarios may not have
any attackers (i.e. the vulnerability is trigger by other factors). Of
course, the design rationales at that time didn’t include the
potentials of contract programming, which can be integrated with
rule violation in one coherent ecosystem to enforce programming
practices to ensure software reliability as well as security. This
paper presents our efforts in the current version to fill the afore-
mentioned gaps, achieving the enforcement of code robustness,
based on assisting error correction and contract programming.

This paper is structured as follows: Section 2 reviews related
work, where Section 2.2 introduces more details about contract
programming. Section 3 outlines the design, Section 4 gives the
implementation details, and Section 5 makes the conclusion.

! Following paper [23], this paper uses the terms “secure
programming” and “robust programming” synonymously,
meaning actually “secure and robust programming”.

mailto:%7Bli3,%20benwhite,%20jun.dai,%20zhangc%7D@csus.edu
http://benw408701.github.io/SecureCodingAssistant/

2. RELATED WORK

2.1 Existing Tools for Enforcing Secure
Programming Practices

Fifteen existing static analysis tools, which were developed to
support the enforcement of secure coding practices, have been
reviewed by our previous work [6]. As shown in Table 1,
although nine of them support early detection, others are late in
defect localization, and most of them don’t provide much detail
regarding vulnerabilities and the mechanisms to find them. The
only three open source tools before our initial release are
FindBugs [8], ASIDE [9] and PMD [24], with FindBugs lacking
support in early detection of rule violation, ASIDE limited in only
providing assistance in web application development, and PMD
focusing on detection of inefficient code.

Amongst all the tools, only ASIDE supports assistance in
automatic fix [9]. However, it follows the OWASP rules and
primarily focuses on detecting and fixing vulnerabilities in web
application development. In contrast, the Secure Coding Assistant
is more generic, following CERT rules [7] and focuses on
providing solutions for any software development using Java.
Table 1 is the expansion of our previews review of static analysis
tools [6]. The highlighted columns compare the newly added
features between those tools and our new version.

Table 1. Review of static analysis tools for security
vulnerabilities

Tool Early/lfate Open/ Ci:?;zt Contract_
Detection Closed ion Programming
White Box
Testing/Binary Late Closed No No
Static Analysis
CFoodrstnitI?/tzlgr Late Closed No No
Sentinel Source Late Closed No No
Kllzcsl?g\;]cirk Early Closed No No
SecureAssist Early Closed No No
Early Security
Vulnerability Early Closed No No
Detector (ESVD)
Static Security
Vulnerability Early Closed No No
Analyzer
Cogélr?;gor Late Closed No No
SonarLint Early Closed No No
CxSuite Late Closed No No
Goanna Studio Early Closed No No
FindBugs Late Open No No
Coverity Prevent Early Closed No No
ASIDE Early Open Yes No
PMD Early Open No No
Secure Coding
Assistant (Current Early Open Yes Yes
Version)

2.2 Existing Tools for Contract Programming
in Java
Contract programming is also called Design by Contract [10]. It is

an approach which helps producing correct and reliable software
by specifying the contracts in terms of pre-conditions, post-

conditions for methods, and invariants for class, and by checking
the contracts automatically at run time. Eiffle [11] is the first
programming language which implemented Design by Contract.
Most other languages do not provide this built-in mechanism,
however, much effort has been made to provide tools for
supporting Design by Contract in other programming languages
such as Java [12-17], C# [18], PHP [19].

Specifically, Table 2 shows several Design by Contract tools
supported for Java [12-17]. Among them, Jass and iContract are
comment-based tools, jContractor uses additional methods to
define contract and performs contract checking using name
conversion, while Modern Jass, Contract4J and Cofoja specify the
contract via annotation.

After evaluating those tools, Cofoja [16] was selected for
integration with the new version of Secure Coding Assistant. This
tool uses annotations like @Invariant, @Requires and @Ensures
to specify the invariant, pre-condition, and post-condition
contracts, respectively. It provides run-time checking by utilizing
annotation processing and bytecode instrumentation [16]. The
rationales for this selection are listed below:

e Cofoja is featured with syntactic checking, which provides
instant feedback to developers upon the detection of
syntactic error in the contracts;

e The enforcement of Design by Contract methodology
requires Secure Coding Assistant to be able to analyze the
contract. Annotation-based tools have such advantages over
comment-based tools in locating and extracting contracts;

e Defining contract via annotations is more elegant, and brings
the benefit of code readability and ease of testing;

e Unlike Modern Jass, which doesn’t provide Window version
of the Eclipse plug-in jar file [20], Cofoja is compatible with
any system installed with JDK 6 or higher.

Table 2. Existing tools for Design by Contract in Java

Tool Implementation Support Contract
Syntactic Checking
Jass comment No
Modern Jass annotation Yes
iContract comment No
jContractor contract method No
Contract4J annotation No
Cofoja annotation Yes
3. Design
3.1 Goal

The goal of the project is to help developers learn and adopt
robust programming practices by providing them a mechanism
embedded into the Eclipse code development environment. The
mechanism is supposed to support assistance to users for both
defect localization and error correction, either through rule
violation checking or contract programming enforcement.

3.2 Architecture

To build an early detection tool which provides instant feedback
to the developers, the new version of Secure Coding Assistant
inherits its previous design to run background checking to

monitor code changes and to detect rule violations [6]. For code
analysis, the abstract syntax tree (AST) which represents the
structure of source code is traversed. When a rule violation is
detected, a marker is created at the place where a violation occurs.
Any subsequent code changes will clear all the markers created
and will trigger a new round of AST node traversal.

In the new version of the Secure Coding Assistant, we find that
the detection of the absence of “Design by Contract” can be
achieved based on the same design, i.e. AST node traversal afore-
mentioned to provide corrective solutions to developers. Based on
this observation, the enforcement of contract programming is also
done in terms of rule violation detection. Specifically, rules used
for checking the existence of pre-condition, post-condition, and
invariant are added to the RuleFactory along with CERT rules.
Upon detection of a rule violation, the newly added method
getSolutions() will be called and the solutions will be rendered to
developers along with the problem description. The workflow of
the new version of Secure Coding Assistant is shown in Figure 1.
This Figure is the expansion of our previous design [6]. The
highlighted blocks show the expansion of our new version.

(Start)

T

Compare new -

syntax tree to
prior
Changed?

Yes

Create markerin

source code with

rule infarmation
and quickfix
suggestions

Does node
wiolate CERT rule
or contract

checking

5o to next
node

Clearall existing

markers and solution

=nd start @ new round
of node analysis

Ve ™
Finish |
M y

Figure 1 Workflow of Secure Coding Assistant.

4. Implementation

4.1 Implementation of “Quick Fix” Feature

Plugin Development Environment (PDE) provided by Eclipse
allows developers to extend and customize the development
environment [21]. In the initial version, the extension point
org.eclipse.jdt.core.compilationParticipant was extended, which
enabled the tool to detect the occurrence of an event, such as
build action, clean action or reconcile operation, etc., and such
events further initiated code analysis for rule violation detection.
org.eclipse.core.resources.problemmarker was the other point
extended, which allowed the tool to customize a problem marker
upon the detection of a CERT rule violation [6].

In the new version of Secure Coding Assistant, an extra extension
point org.eclipse.ui.ide.markerResolution is extended to generate
solutions to the problem indicated by rule violations. To bind a
resolution generator with the problem marker, the ID of
org.eclipse.core.resources.problemmarker is assigned to the
markerType of org.eclipse.ui.ide.markerResolution. In addition,
two new attributes, rulelD and hashCode are added to
org.eclipse.core.resources.problemmarker to serve as a solution
map key. Once a problem marker is created, the getResolutions()
method is invoked with a problem marker object. Then, by

appending the hash code value to the rule ID, a key can be easily
formed and the ASTRewrite object used to generate the quick
fixes can be retrieved.

As an infrastructure that describes changes made to AST nodes,
the AST rewriter can translate those modifications into text edits.
By clicking on the label that is associated with the text edits, the
modification will be applied to the source code [22].

To fit into user needs in different scenarios, solutions are offered
as two groups of options as shown by Figure 2: to fix the issue or
to skip rule check. By choosing the former one, the original
source code will be modified upon the solution selected (Figure 3-
top), whereas by choosing the latter one, a @SkipRuleCheck
annotation containing the rule name is added before the method
(Figure 3-bottom). As a result, all the violations of the specific
rule in the method will be ignored and the corresponding problem
marker will be removed. If two or more rules are ignored within
the same method, the rule names will be listed together in the
annotation.

public veoid test() {
Random number = new Random();

}

£ Rule violated: Generate strong random numbers
Severity: High

NOTE: The text and/or code below is from the CERT website https://www.securecoding.certorg

Rule description: CERT Website-The Java AP| provides a PRNG, the java.util.Random class. This
PRNG is portable and repeatable. Conseguently, two instances of the java.utilRandom class that
are created using the same seed will generate identical sequences of numbers in all Java
implementations. Seed values are often reused on application initialization or after every system
reboot. In other cases, the seed is derived from the current time obtained from the system clock.
An attacker can learn the value of the seed by performing some reconnaissance on the vulnerable
target and can then build a lookup table for estimating future seed values.

Rule Solution: java.util.Random is not a secure random number generator, use
java.security.SecureRandom instead

2 quick fixes available:
Skip Rule Check

Use SecureRandom instead of Random

o

Figure 2 Secure Coding Assistant quick fix feature

14
public void test() {
Random number = new SecureRandom();
}

@skipRuleCheck({ "Mscez-1" })
public veid test() {
Random number = new Random();

}

Figure 3 Secure random generator quick fix results: use
SecureRandom (top) or skip rule check (bottom)

4.2 Integration of Design by Contract
Methodology

In the new version of Secure Coding Assistant, the enforcement
of “Design by Contract” is accomplished by the mandatory usage
of Cofoja, which means the tool itself only checks for the
presence of the contract annotations against Cofoja’s library,
while leaving the syntactic and semantic checking to Cofoja. The
same logic used for CERT rule violation detection is applied for
checking the presence of the annotations. Three classes
implementing the IRule interface are added to the RuleFactory,
and each method or type declaration node will be evaluated by
calling the violated() method in all the classes to check for
inclusion of the annotations of @Requires, @Ensures or

@Invariant based on the node’s type. As shown by Figure 4, a
problem marker will be created if a contract annotation is found
missing in the node.

Similar to the CERT rule violation, the checking of the contracts
can be skipped by adding the variable name or condition to the
value array of @SkiplnvariantCheck or @SkipConditionCheck,
placing the annotation before the class or method declaration. As
a result, the specified invariant or contract checking will be
waived and the problem marker will be removed accordingly, as
shown by Figure 5.

#import java.util.HashMap;

43 Rule violated: Invariant check

public class BookStore { Severity: High

private HashMap<Integer,
private int count;

Rule description: Variables should have invariant check

Rule Sclution: Add invariant check @Invariant{{*"}} or skip invariant

check @SkiplnvariantCheck

public BookStore() {
bookRepository = new

2 quick fixes available:

} @ Add unchecked variables to @Invariant

@ Add unchecked variables to @Skiplnvariant

o

Figure 4 Class and method without contract definition

@Invariant{{ "bookRepository != null", "count >= @" })
public class BookStore {

private HashMap<Integer, Book> bookRepository;
private int count;

@Ensures({"bookRepository != null"})
@skipConditionCheck({ "Precondition" })|
public BookStore() {

bookRepository = new HashMap<>();
}

Figure 5 Method skip precondition check

Figure 6 illustrates that the enforcement of “Design by Contract”
can also be waived all at once by checking the “Disable Design
by Contract Enforcement” button under “Secure Coding
Assistant” menu. This function is achieved by extending the
org.eclipse.ui.menus and org.eclipse.ui.commands extension
points, in which the three classes used to check the presence of
contracts are removed from the RuleFactory.

Navigate Search Project Run SecureCodingAssistant Window Help

Export Contract Annotation

L OSSP <[5 (1]
isable Design by Contract Enforcemant
T 11 *BookStore java
L= - 1 package designbycontracttest;
2
g a% import java.util.HashMap;
3 //@Invariant({ "bookRepository != null", "count >= @" })

racttest
Java
plejava
pleSub java
java

14 public class BookStore {

private HashMap<Integer, Book:> bookRepository;
private int count;

s({"bookRepository != null"})
ava //@skip itienCheck({ "Precondition” })
21 public BookStore() {
22 bookRepository = new HashMap<>();
«ClassLoader, 23 }

Figure 6 Class and method without contract definition and
with “Disable Design by Contract Enforcement” checked

In addition, to facilitate the documentation of contracts, the
contract annotation and the method signature can be exported by

clicking on the “Export Contract Annotation” button under
“Secure Coding Assistant” menu, which, as shown by Figure 7,
yields a text file with the same name of the class.

1] BookStore java BookStore.txt

@Invariant(value = {bookRepositery I= null, count >= 8})

@Ensures(value = {bookRepository != null})
1 void Bookstore()

@Requires(value = {id > 0))

@Ensures(value = {result != null})
8ook findBook(int 1d)

@Requires(value = {id > 0))
@ThrowEnsures(value = {I1legalArgumentException, old (true)})
int findPrice(int id)

Figure 7 Exporting the contracts and method signatures

5. Limitations, Conclusion and Future Work

This paper presents a coding assistance tool, which supports the
detection of CERT rule violations, the enforcement of contract
programming, and a one-click feature to help users quickly
correct the detected code defects. As an open source development,
the tool can serve as a practical and efficient application in
educating developers on robust programming practices. However,
for proof of concept, current implementation priorities are given
to only sample rules in a small subset (about one quarter) of
CERT library. In addition, the capability of the quick fix feature
has not been evaluated for all cases. The future work will focus on
expansion of the rule set, thorough tests of the tool features, as
well as education evaluations with the tool applied in possible
computer science classes with Java programming.

6. Acknowledgements

Acknowledgements and attributions are given to Carnegie Mellon
University and its Software Engineering Institute, as this
publication incorporates portions of the “SEI CERT Oracle
Coding Standard for Java” (c) 2017 Carnegie Mellon University,
with special permission from its Software Engineering Institute”.
Any material of Carnegie Mellon University and/or its software
engineering institute contained herein is furnished on an “as-is”
basis. Carnegie Mellon University makes no warranties of any
kind, either expressed or implied, as to any matter including, but
not limited to, warranty of fitness for purpose or merchantability,
exclusivity, or results obtained from use of the material, Carnegie
Mellon University does not make any warranty of any kind with
respect to freedom from patent, trademark, or copyright
infringement. This publication has not been reviewed nor is it
endorsed by Carnegie Mellon University or its Software
Engineering Institute. CERT and CERT Coordination Center are
registered trademarks of Carnegie Mellon University. Java is a
registered trademark of Oracle. Inc.

7. References

[1] Annual number of data breaches and exposed records in the
United States from 2005 to 2015 (in millions). URL=
http://www.statista.com/statistics/273550/data-breaches-
recorded-in-the-united-states-by-number-of-breaches-and-

records-exposed/.

[2] Lewis, D. Heartland Payment Systems Suffers Data Breach.
URL=
http://www.forbes.com/sites/davelewis/2015/05/31/heartland
-payment-systems-suffers-data-breach/#7821b60d2985.

http://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed/
http://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed/
http://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed/
http://www.forbes.com/sites/davelewis/2015/05/31/heartland-payment-systems-suffers-data-breach/#7821b60d2985
http://www.forbes.com/sites/davelewis/2015/05/31/heartland-payment-systems-suffers-data-breach/#7821b60d2985

[3] Gushe, D., October 5, 2014. JP Morgan Chase reveals
massive data breach affecting 76m households. The
Guardian. URL=
http://www.theguardian.com/business/2014/oct/02/jp-
morgan-76m-households-affected-data-breach.

[4] Richman, J. Anthem Blue Cross hack: What you need to
know about the health insurer’s personal information breach.
URL= http://www.mercurynews.com/2015/02/05/anthem-
blue-cross-hack-what-you-need-to-know-about-the-health-
insurers-personal-information-breach/.

[5] Lions, J.L. Ariane 5 Flight 501 Failure. URL=
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.htm
l.

[6] White, B., Dai. J., Zhang, C., 2016. Secure Coding Assistant:
Enforcing Secure Coding Practices Using the Eclipse
Development Environment. Proceedings of the National
Cyber Summit (Huntsville, AL, Jun 8-9 2016).

[7]1 CERT. Carnegie Mellon University. URL=
http://https://www.securecoding.cert.org.

[8] Cole, B., Hakim, D., Hovemeyer, D., Lazarus, R., Pugh, W.,
and Stephens, K., 2006. Improving your software using static
analysis to find bugs. Proceedings of the Companion to the
21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications
(Portland, Oregon, USA2006), ACM, 1176667, 673-674.
DOI= http://dx.doi.org/10.1145/1176617.1176667.

[9] Xie, J., Chu, B., Lipford, H.R., and Melton, J.T., 2011.
ASIDE: IDE support for web application security.
Proceedings of the the 27th Annual Computer Security
Applications Conference (Orlando, Florida, USA2011),
ACM, 2076770, 267-276. DOI=
http://dx.doi.org/10.1145/2076732.2076770.

[10] Meyer, B., 1992. Applying "Design by Contract". Computer
25, 10, 40-51. DOI= http://dx.doi.org/10.1109/2.161279.

[11] Meyer, B., 1985. Eiffel: A Language for Software
Engineering. Technical Report TR-CS-85-19 University of
California, Santa Barbara.

[12] Bartetzko, D., Fischer, C., Méller, M., and Wehrheim, H.,
2001. Jass — Java with Assertionsl 1This
work was partially funded by the German Research Council
(DFG) under grant OL 98/3-1. Electronic Notes in
Theoretical Computer Science 55, 2 (2001/10/01), 103-117.
DOI= http://dx.doi.org/http://dx.doi.org/10.1016/S1571-

0661(04)00247-6.

[13] Rieken, J., 2007. Design by contract for java-revised
Department of Information, University Oldenburg.

[14] Kramer, R., 1998. iContract - The Java(tm) Design by
Contract(tm) Tool. Proceedings of the Technology of Object-
Oriented Languages and Systems (1998), IEEE Computer
Society, 832856, 295.

[15] Karaorman, M., Holzle, U., and Bruno, J., 1999. jContractor:
A Reflective Java Library to Support Design by Contract.

[16] L&, N.M., 2011. Contracts for java: A practical framework
for contract programming. Google Switzerland GmbH.

[17] Contract4). URL=
http://https://deanwampler.github.io/contract4j/.

[18] Wu, R.H., 2004. Support for Design by Contract in the C#
Programming Language California State University,
Sacramento.

[19] Enderlin, 1., Dadeau, F., Giorgetti, A., and Ben Othman, A.,
2011. Praspel: A Specification Language for Contract-Based
Testing in PHP. In Testing Software and Systems: 23rd IFIP
WG 6.1 International Conference, ICTSS 2011, Paris,
France, November 7-10, 2011. Proceedings, B. WOLFF and
F. ZAIDI Eds. Springer Berlin Heidelberg, Berlin,
Heidelberg, 64-79. DOI= http://dx.doi.org/10.1007/978-3-
642-24580-0_6.

[20] Modern Jass. URL= http://modernjass.sourceforge.net/.
[21] PDE. URL= http://www.eclipse.org/pde/.

[22] ASTRewrite. URL=
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.
jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2F|dt%
2Fcore%2Fdom%2Frewrite%2FASTRewrite.html.

[23] Matt Bishop, Jun Dai, Melissa Dark, Ida Ngambeki, Phillip
Nico, and Minghua Zhu. Evaluating Secure Programming
Knowledge. In Proceedings of the10th World Conference on
Information Security Education (WISE 10), Rome, Italy,
May 29-31, 2017 (accepted, to appear).

[24] PMD Java source code analyzer.
URL=https://github.com/pmd/pmd.

http://www.theguardian.com/business/2014/oct/02/jp-morgan-76m-households-affected-data-breach
http://www.theguardian.com/business/2014/oct/02/jp-morgan-76m-households-affected-data-breach
http://www.mercurynews.com/2015/02/05/anthem-blue-cross-hack-what-you-need-to-know-about-the-health-insurers-personal-information-breach/
http://www.mercurynews.com/2015/02/05/anthem-blue-cross-hack-what-you-need-to-know-about-the-health-insurers-personal-information-breach/
http://www.mercurynews.com/2015/02/05/anthem-blue-cross-hack-what-you-need-to-know-about-the-health-insurers-personal-information-breach/
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://https/www.securecoding.cert.org
http://dx.doi.org/10.1145/1176617.1176667
http://dx.doi.org/10.1145/2076732.2076770
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/http:/dx.doi.org/10.1016/S1571-0661(04)00247-6
http://dx.doi.org/http:/dx.doi.org/10.1016/S1571-0661(04)00247-6
http://https/deanwampler.github.io/contract4j/
http://dx.doi.org/10.1007/978-3-642-24580-0_6
http://dx.doi.org/10.1007/978-3-642-24580-0_6
http://modernjass.sourceforge.net/
http://www.eclipse.org/pde/
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2Frewrite%2FASTRewrite.html
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2Frewrite%2FASTRewrite.html
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2Frewrite%2FASTRewrite.html

	1. INTRODUCTION
	2. RELATED WORK
	2.1 Existing Tools for Enforcing Secure Programming Practices
	2.2 Existing Tools for Contract Programming in Java

	3. Design
	3.1 Goal
	3.2 Architecture

	4. Implementation
	4.1 Implementation of “Quick Fix” Feature
	4.2 Integration of Design by Contract Methodology

	5. Limitations, Conclusion and Future Work
	6. Acknowledgements
	7. References

