284 Int. J. Information Privacy, Security and Integrity, Vol. 3, No. 4, 2018

An early detection tool in Eclipse to support
secure coding practices

Benjamin White

California State University Sacramento,
Sacramento, CA 95819, USA

Email: benwhite@csus.edu

and

Mother Lode Holding Company,
Roseville, CA 95747, USA

Jun Dai* and Cui Zhang

California State University Sacramento,
Sacramento, CA 95819, USA

Email: jun.dai@csus.edu

Email: zhangc@csus.edu
*Corresponding author

Abstract: Developing secure software in a world where companies like Anthem
Blue Cross, Twitter, Facebook, and target have had massive amounts of data
stolen by hackers is as challenging as it is important. Insecure coding practices
are major contributors to software security vulnerabilities. Even though several
static analysis tools are available that can search for and identify security
holes in software applications, this process usually runs too late and any
remediation will be more costly after large portions of the software have been
built. The early detection tools that do exist are closed source and utilise
proprietary software vulnerability rule sets. What is missing is an open-source
secure coding enforcement tool utilising well-documented rules that software
developers can use to predict potential pitfalls, learn from their mistakes and
aid in the construction of secure programs as they build them. To address
the need, we have designed a new tool called secure coding assistant for the
Eclipse development environment that semi-automates several secure coding
rules set forth by the CERT division at Carnegie Mellon University. The
tool detects violations of the CERT rules for the Java programming language
but it is easily extensible to other languages supported by Eclipse. It is an
open-source tool with an emphasis on educating software developers in secure
coding practices. The tool and a tool demo is disseminated via github at
http://benw408701.github.io/SecureCodingAssistant/.

Keywords: secure coding; development tool; Java; Eclipse; static analysis;
education.

Reference to this paper should be made as follows: White, B., Dai, J. and
Zhang, C. (2018) ‘An early detection tool in Eclipse to support secure coding
practices’, Int. J. Information Privacy, Security and Integrity, Vol. 3, No. 4,
pp-284-309.

Copyright © 2018 Inderscience Enterprises Ltd.

An early detection tool in Eclipse to support secure coding practices 285

Biographical notes: Benjamin White is an IT Division Manager for
Mother Lode Holding Company (MLHC) and part time Lecturer at California
State University Sacramento (CSUS) in the Computer Science Department. At
MLHC he supports over 1,000 users that comprise several divisions of title
insurance companies. As part of the MLHC IT management team he oversees
software development and support and serves as a Systems and Software Analyst.
He received his MS in Computer Science from the CSUS and lectures now for
one introductory Java programming course.

Jun Dai is an Assistant Professor in the Department of Computer Science
at California State University Sacramento. He holds a PhD in Information
Science and Technology from the Penn State University. His expertise includes
network security and system security. His research includes hardware-enforced
virtualisation (such as QEMU-KVM), network-wide information flow
monitoring and tracking, attack graph-based vulnerability analysis, intrusion and
malware detection, cyber situation awareness, and secure programming.

Cui Zhang is a Professor in the Department of Computer Science at California
State University Sacramento. She holds a PhD in Computer Science from the
Nanjing University. Her research and teaching interests include formal methods
for secure software engineering, secure coding, computer-aided software
engineering (CASE), software architecture, and programming language theories
and paradigms.

This paper is a revised and expanded version of a paper entitled ‘Secure coding
assistant: enforcing secure coding practices using the Eclipse development
environment’ presented at National Cyber Summit, Huntsville, AL, 8-9 June
2016.

1 Introduction'

Finding secure coding standards is not difficult but following them is. In a 2011 study
(Zhu et al., 2014), Veracode analysed over 6,750 web applications and found that a third
of these had SQL code injection vulnerabilities. According to the study, secure coding
experts documented how to address these vulnerabilities over a decade ago and it involves
something as simple as parameterised SQL statements (Zhu et al., 2014). A study in India
(HT Media Ltd., 2014) found that less than 1% of engineering students are skilled in secure
programming. Even the most ‘security aware’ professionals are writing their code first
then adding security as an afterthought (Pandit, 2013). The evidence indicates that there is
an overwhelming lack of knowledge and experience when it comes to developing secure
software.

Coding for security and especially software security is an extremely important issue.
In 2013 Facebook, Twitter and Apple were all targets of large-scale attacks. The Twitter
attack detailed in the Journal of Internet Law (Vamialis, 2013) resulted in 250,000 accounts
compromised and stolen usernames, passwords and other personal information. Later that
year target was a victim of a security breach and as many as 40 million credit and debit
card accounts were compromised (Lindeman, 2013). Home Depot’s 2,157 stores fell prey
to a data security breach in 2014 (Elgin et al., 2014). CNN (Frates and Devine, 2014) also

286 B. White et al.

reported two alarming attacks on our government. In July 2014, the Department of Energy
was hacked and the attackers stole 100,000 records of personally identifiable information.
Earlier in the year, hackers hit the Army Corps of Engineers and took information on 85,000
dams across the nation. Lastly, the medical industry has been a large target as well and we
see in Gelsomini and Garcia (2015) that Anthem Blue Cross had a staggering ‘millions’
of personal health records stolen. If these companies had software systems developed to a
higher degree of secure coding standards, then these incidents would have been less likely
to have occurred.

Every year there are thousands of newly documented software vulnerabilities. The
common vulnerability enumeration (CVE) is a database of known security vulnerabilities
that is commonly cross-referenced by security tools and is one of the most recognisable
vulnerability databases today. The list of vulnerabilities may be accessed online at The
Mitre Corporation (2015a) in a raw format. Figure 1 is a compilation of these documented
vulnerabilities after removing all items marked as ‘reject’, ‘reserved’ or ‘deprecated’. The
remaining published vulnerabilities count in the thousands year over year, starting with
a mere 1,500 in 1999 when CVE was founded and leaping past 7,000 in 2014. There
is no possible way that a software developer could be expected to learn thousands of
CVE’s and understand how to write secure code that is resilient to them. The Software
Engineering Institute (SEI) of Carnegie Mellon University has made it so that they do not
have to. SEI’s CERT division documents secure coding rules and recommendations that are
language-specific and help protect against these thousands of known vulnerabilities Shrum
(2015). For instance, there are only 185 secure coding Java rules published by CERT as
opposed to the tens of thousands of published CVE’s.

Figure 1 CVE’s published year over year (see online version for colours)

Common Vulnerability Enumeration Count Year over Year
8000

7000
6000
5000
4000
3000
2000
1000

0

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

The goal of the secure coding assistant by California State University Sacramento,
commonly referred to as the ‘secure coding assistant’, is to alert developers when they
have violated a CERT rule, educate them on proper secure coding practices and provide an
open-source tool to the development community. Though other tools exist that implement

An early detection tool in Eclipse to support secure coding practices — 287

some of the CERT rules, the secure coding assistant is the only tool that specialises in CERT
rules and is open source. The initial version of the secure coding assistant detects 21 secure
coding rules for Java, see Section 5.1 for rule selection, but is designed to allow for the
addition of rules and programming languages.

The preliminary version of this paper has already appeared in White et al. (2016),
which is a short report of a graduate student project designed as a sustainable open-source
contribution to the secure programming education community (White, 2016). The short
version briefly introduced the concept of a secure coding assistant and its practical
applications in education and security vulnerability detection. This paper extends the
topics and the Secure Coding Assistant design and implementation in much greater depth,
including additional descriptions of static analysis tools and their relevance to secure coding
(Section 2), detailed project methodologies (Section 3), implementation-specific details
on rule IDS00-J (Section 4), additional information on the plugin extension points that
were used in the plugin implementation (Section 5.2), detailed explanation of the concept
of a ‘compilation participant’ (Section 5.3), graphical illustration of the concept of an
abstract syntax tree (AST) (Section 5.4), additional rules in the false positive analysis
(Section 6.1.1), and additional analysis of the false positive study results (Section 6.1.1).

2 Related work

There are many tools available to developers for building secure applications. In Table 1,
several of these tools are compared and classified as early- or late-detection as well
as open- or closed-source. The first three are widely used commercial tools and the
remaining represent a comprehensive list of vulnerability detection plugins for the Eclipse
development environment. Like the secure coding assistant, several of these tools provide
early-detection mechanisms. All of these tools are static analysis tools.

Static analysis tools as described by Diaz and Bermejo (2013) all follow the same basic
workflow: transform the code, analyse certain properties and display results. In this same
article, they also touch on the static analysis counterpart, dynamic analysis, which analyses
properties of an application while it is running. Dynamic tools are capable of detecting
vulnerabilities that static tools cannot but provide even later detection than static tools and
are not included in the comparison table. The cost of catching and fixing vulnerabilities
later in the software lifecycle is so significant that companies such as Microsoft have begun
to hold “developers [personally] liable for the security and integrity of the code they write”
(Fisher, 2003). The solution is to minimise the security vulnerabilities in application code at
the time the developer is writing it. The process described in Diaz and Bermejo (2013) must
be running in the background while the developer is typing their code. The tools in Table 1
listed as ‘early’ detection provide the live feedback necessary for the developer to write
secure code and learn as they do it. The tools listed as ‘late’ detection require the developer
to finish writing their code, launch the tool and load the code, then review the results and
make changes to the source as necessary. The secure coding assistant falls into the ‘carly’
category since it alerts the developer when they are at risk of violating a secure coding rule.
This type of tool provides feedback at the earliest possible stage in the development process
and teaches developers secure coding practices at the same time.

288 B. White et al.

Table 1 Static analysis tools that scan for security vulnerabilities compared.

Company Tool Early/late Open/closed
Veracode White box testing/binary Late Closed
static analysis (Veracode, 2018)
Micro Focus Fortify static code Late Closed
analyser (Micro Focus, 2018)
WhiteHat Security Sentinel source Late Closed
(WhiteHat Security, 2018)
Rogue Wave Software Rogue wave Early Closed
(Rogue Wave Software, 2018)
Synopsys SecureAssist Early Closed
(Synopsys, Inc., 2018)
The Code Master Early security vulnerability detector Early Closed
(Sampaio, 2015)
Towson University Static security vulnerability analyser Early Closed
(Dehlinger et al., 2012)
Contrast Security Contrast for Eclipse Late Closed
(Contrast Security, 2018)
Sonar Source SonarLint Early Open
(SonarSource S.A., 2018)
Checkmarx CxSAST Late Closed
(Checkmarx, Ltd., 2018)
Red Lizard Software Goanna studio Early Closed
(Red Lizard Software, 2015)
University of Maryland FindBugs Late Open
(University of Maryland, 2018)
University of North Carolina ASIDE Early Open

(Xie et al., 2011)

Even though several of the tools available provide an early-detection mechanism, most
of them are closed-source and only one, Goanna Studio by Red Lizard Software (2015),
mentions validation against the CERT secure coding rules. Goanna Studio also only
provides support for the C and C++ programming languages whereas the Secure Coding
Assistant currently supports Java but extensible to others. In addition, even though Goanna
Studio lists CERT as being one of the sources for secure coding rules, it also lists several
others and it does not indicate specifically which rule is violated and the rule source when a
violation is detected. There are other tools such as the early security vulnerability detector
(ESVD) and static security vulnerability analyser, available at Dehlinger et al. (2012) and
Sampaio (2015). These tools were developed by graduate students and share many of
the same goals as the secure coding assistant. Neither of them are open-source, and it
is uncertain whether they will be maintained since the graduate research is completed.
One tool that is open source, FindBugs, focuses on byte code and does not alert the
developer when they write their source code. A notable and similar tool available is the
ASIDE tool developed by the University of North Carolina (Xie et al., 2011). This is
a well-developed and advanced detection tool that focuses on OWASP rules and web
development whereas the secure coding assistant focuses on CERT rules and any type of
Java development. Another similar tool is SonarLint by SonarSource S.A. (2018), but the

An early detection tool in Eclipse to support secure coding practices 289

focus of'this tool is on software quality and bug detection rather than vulnerability detection.
At this time there does not exist an open-source tool that detects vulnerabilities in source
code that the development community can build upon and optimise as new vulnerabilities
are documented and new detection methods are discovered.

The secure coding assistant has also been expanded to include enforcement of the design
by contract methodology as presented in Li et al. (2017). Additionally, in a new effort
reported in Aldausari et al. (2018), the design by contract methodology is combined with
inference rules of programming logic to assist in locating coding errors in Java applications.
This combination can be included in the secure coding assistant. There is also further work
in progress to expand the functionality of the secure coding assistant to the C programming
language (Melnik, 2018). These exciting and ongoing expansions on the secure coding
assistant make the tool much more versatile than before.

3 Methodology

In addition to being an open-source development tool that evolves with public contribution,
thesecure coding assistant has two goals. The first is to provide software developers with
instant feedback as they write their source code. Similar to the way a word processor
would alert a writer when they have a grammar or spelling mistake, the secure coding
assistant provides messages to the developer that are easy to understand and integrate
well into their workflow. The second is to educate on the CERT secure coding practices.
Initially the C# programming language was considered but the lack of well-documented
secure programming rules for C# was the driving force behind developing a tool that
focuses on the CERT secure coding rules for Java Shrum (2015). A decision was also
made regarding which development environment to initially support. Currently NetBeans
and Eclipse are both very popular development environments for the Java programming
language. They both provide plugin development tools and support multiple programming
languages. Eclipse, however, is widely used by the student body at California State
University Sacramento and since the goal was to develop a tool that could be used by the
students, the decision was made to develop a plugin for Eclipse.

Some of the static analysis tools described earlier are categorised as ‘early’ detection
tools. This means that they provide feedback to the programmers as they are typing their
code. The other tools require the developer to complete a section of code, send it to the
tool and then receive feedback. The secure coding assistant follows the early detection
methodology and provides live feedback as the source code is being typed. This type of
feedback is already quite common in a development environment. Modern development
environments provide live syntax checking and type compatibility checking that validates
that the code adheres the rules of the programming language. For instance, a rule in many
programming languages is that the addition operator requires two operands on either side
that are numerical expressions. For example, trying to add the number 1 to the text string
‘hello’ would result in an error under these rules as would putting the addition operator at
the beginning of the operands rather than in-between. This type of instant feedback saves
the developer time and helps them write syntactically correct and type-compatible program
code before compilation rather than waiting and having to fix those problems later. This
is exactly why the secure coding assistant needs to be designed similarly. The types of
mistakes that lead to insecure program code are best identified and corrected early, while

290 B. White et al.

the developer is writing their code which reduces time and cost of remediation later in the
development process.

The second goal of the secure coding assistant, education, is made possible through the
CERT website and their thorough documentation of the Java secure coding rules (Shrum,
2015). The alerts that the programmers receive must provide a comprehensive message
that clearly indicates what rule was violated and what measures they can take towards
remediation. The CERT website provides this information along with various examples of
secure code violations and proposed fixes. They are incorporated into the secure coding
assistant alert messages. This creates a natural learning environment for secure coding
practices during the development process.

4 Design

The secure coding assistant continuously runs in the background of the development
environment and looks for violations to secure coding rules. The high-level flow is outlined
in Figure 2. The workflow assumes that a syntax tree of the code segment being analysed
has been built. A syntax tree is a representation of the source code that is easily traversed
by a tool like the secure coding assistant or any other tool that participates in parsing code
in a programming language and is used extensively in the implementation. Changes to the
syntax tree initiate the code analysis process. Once the process begins, any existing secure
coding violations tied to the tree are cleared before the tree is traversed. Each node of the
tree is analysed and if the node contains a rule violation then a new marker is created in
the source code where the rule violation is detected. The rule violation logic is the only
component that is language-specific. Markers alert the programmer that a violation has
occurred and contain the name of the rule, a description from the CERT website (Shrum,
2015) and the recommendation from CERT to fix the violation. After the syntax tree
traversal is completed the application returns to the initial start state and waits to run again.
The markers that remain in the source code display in a tooltip fashion. As the programmer
makes changes to the source code the tool runs again in the background, removes all existing
markers and only adds new ones if violations exist. In this manner, rule violations that have
been fixed will no longer show.

Since Eclipse supports multiple programming languages, the design allows for future
support of any programming language supported by Eclipse. To accomplish this, the
only portion of the workflow that is language-specific is the rule violation detection.
This component of the workflow is outlined in bold in Figure 2. An example of a
Java-specific rule is IDS00-J which is ‘prevent SQL injection’ and shows how the Java
PreparedStatement.setString() method is the most effective way to sanitise data
being passed to a SQL query string (Mohindra, 2015a). In Figure 3 this Java secure
coding rule is translated into a workflow to detect violations. The logic used for the
rule violation assumes that if a SQL query is being run then there must be at least
one parameter that is obtained from the user so there must be at least one call to
PreparedStatement.setString(). There is a possibility of a false positive when the
query string does not require any parameters and a false negative when the programmer
uses the setString () method once but not for subsequent parameters, but the emphasis
is on the general case since capturing the number of user parameters required would not be
feasible.

An early detection tool in Eclipse to support secure coding practices

Figure 2 High-level flow of secure coding assistant
Start
A 4

Compare new

Create marker in
source code with
Yes» rule violation and

Does node

violate rule? .
syntax tree to remediation
prior information
Go to next
—No Changed? —
node
Yes
2 Yes
Clear all existing
markers and visit first—
node in syntax tree
Figure 3 Sample flow of SQL injection violation detection
Isnode an
invocation of a No——
method?
Yes
method execute No———
Yes
h 4

Return TRUE, rule
was violated

Return FALSE, rule

le—N X
was not violated

Yes™P

291

292 B. White et al.

Additional secure programming rules are all crafted in a similar fashion using logic that
looks for a node which is a call to a method, instantiation of an object, inheritance from a
base class or some other structure identified in the CERT rule. Once identified, the context
in which that node is executed is evaluated programmatically. For instance, many of the data
sanitisation rules require that strings be normalised before they are processed. Detecting a
rule violation of this type reduces to finding a call to the method that processes the data
then checking to see if a call to a normalise method occurred prior and in the same scope.

5 Implementation

5.1 Rule selection

The CERT website references 185 secure coding rules for the Java programming language
(Shrum, 2015). Before selecting which rules to include in the tool, each rule was reviewed
and classified as to whether or not automation would be possible. Some rules cannot be
automated since they require knowledge of the problem domain. NUMO3-J, for instance,
states that integer types in Java cannot be used to represent unsigned data (Mohindra,
2015b). Java programs that need to interoperate with languages like C and C++ must use
integer types that can represent the range of unsigned data. This type of rule is very difficult
to detect using an automated tool. The tool would need to know that the application is
going to be used with components that use unsigned data. The only feasible way to detect
this type of vulnerability is to have knowledge of the intended use of the code segment
which is not practical for an automated tool. Furthermore, there are entire categories that
require some type of metadata for an automated tool to function. An example of this is the
‘thread-safety’ category. Without knowledge that a code segment is intended to be run in
a multi-threaded environment the tool cannot adequately detect rule violations. Rules like
these are infeasible to implement using a tool like the secure coding assistant.

Many of the rules on the CERT website clearly state if they are automatable or not
(Shrum, 2015). Others do not say. Out of the total 185 rules available there are 85 that
either state explicitly that they may be automated or appear to be automatable. Also,
the CERT website divides the secure coding rules into 20 categories. Three out of the
20 categories do not contain any rules that can be automated leaving 17 categories with
eligible rules to automate. Rules were chosen from these categories based on the severity of
the potential vulnerability and an effort was made to sample from as many rule categories
as possible. A total of 21 rules were chosen covering 15 categories which represents 88%
of the eligible categories and 25% of the total eligible rules. As with similar static analysis
tools, the secure coding assistant cannot be a solution to catch every potential secure
coding violation. Instead, the goal must be to capture potential vulnerabilities whenever
and wherever possible and direct the developer to resources that may educate them further.

5.2 Plugin implementation details

Eclipse provides a plugin development environment (PDE) that gives plugin developers
the ability to extend and customise the development environment. The plugin structure
itself is defined using a markup language that contains information on what attributes
of the environment are being customised. For instance, a plugin that adds a custom
command to one of the menus would extend org.eclipse.ui.menus as well as

An early detection tool in Eclipse to support secure coding practices 293

org.eclipse.ui.commands. Along with the extension points there are usually other
attributes that are defined as well such as the menu name or the name of the class that
contains an execution path when the command is invoked. The secure coding assistant
extends two points. The first is org.eclipse.jdt.core.compilationParticipant
and the second is org.eclipse.core.resources.problemmarker. These extension
points allow the plugin to participate in the compilation process and create markers that
will alert the user a potential vulnerability exists.

The first extension point, compilationParticipant, allows the plugin to participate in
the compilation process. Part of this extension point also requires a class definition that
extends a super class, called CompilationParticipant, which receives notifications at various
stages of the compilation process. The second extension point, problemmarker, allows for
the creation of custom markers. A marker in Eclipse is a warning, alert, task, or error that
developers use to track issues in their code or leave reminders to revisit sections of the
source code. The secure coding assistant used generic ‘warning’ markers in early stages of
development but the need to track the various severity levels of the CERT secure coding
rules necessitated the change to a customised marker. With a customised marker the base
marker type can be extended to have additional fields of any types. The secure coding
rule violation markers have an additional enumerated field for severity to capture the three
severity levels reflected on the CERT website (Shrum, 2015).

Figure 4 Secure coding assistant update site (see online version for colours)

£ Install [m] x
Available Software
Check the items that you wish to install.)._-—
Work with: | SCA Update Site - http://bwprojects.org/SecureCodingPlugin e ‘ Add...
Find more software by working with the "Available Software Sites” preferences.

type filter text

Mame Version

~ []000 Secure Coding

[5+ Secure Coding Assistant 1.0.0.201804271321

In addition to the plugin definition itself, Eclipse provides the ability to package similar
plugins as a ‘feature’ and deploy them on an update site. Deploying plugins through
an update site is beneficial for anyone wishing to install the plugin for two reasons.
First, Eclipse has an ‘install new software’ feature in the Help menu that you can use
to install new plugins using the update site. Since the feature is installed through the
Eclipse update tool, it is equally convenient to uninstall the plugin if it is no longer
needed. Secondly, using the update site lets users quickly check for updates using the
‘check for updates’ feature which is also in the Help menu. The update site is online at
http://bwprojects.org/SecureCodingPlugin and the display of the update tool is shown in
Figure 4. Note that the current version number 1.0.0.201804271321 reflects the date and
time of the build (4/27/2018 at 1:21 PM) which is generated automatically by Eclipse when
releasing a new build of the feature.

294 B. White et al.

5.3 Compilation participants

The compilationParticipant extension point directs compilation events to any custom class
that extends the CompilationParticipant super class. The SecureCompilationParticipant
is such a class and is the top-most component in the design of the secure coding
assistant. The SecureCompilationParticipant’s reconcile() method (inherited from
CompilationParticipant) is called every time a ‘reconcile’ event occurs. This type of event
is triggered by any modification to the application source code. The only parameter to
the reconcile () method is an object that conveys information about the context of the
reconciliation such as the name of the file that was modified, the types of changes that
occurred and a copy of the AST.

The SecureCompilationParticipant uses the following approach to handling
reconciliation events: look for a change to the AST, if there was a change then get
a reference to the new AST, clear existing markers, then traverse the new AST and
create new markers as necessary. In general, compilation participants are not compiling
the source code into an assembly language but only responding to compilation events
which include the dynamic syntax checking that is so common in modern development
environments like Eclipse. This is exactly what the Secure Coding Assistant is doing,
checking the source code, but rather than checking the syntax the emphasis is on the
semantics and how the compiled application would affect the application security. The
SecureCompilationParticipant is the backbone to the Secure Coding Assistant plugin and
is responsible for managing rule detection and marker creation and management.

5.4 The AST

An AST is a common representation of a block of source code. Syntax trees are traversed
depth-first and define the order of operations. A simple example is shown in Figure 5, where
a block of code contains one declaration of a variable x of type integer and one assignment
of the value 5 to x.

The Eclipse development environment provides a Java development tools (JDT) library.
The core components of this library are found in org.eclipse. jdt.core. These tools
contain a Java language compiler and many other helpful compilation tools including
the AST representation of the source code that is being compiled. At the time that the
reconcile () method is called the AST has already been built since it is required by any
compilation participants. Eclipse also provides a mechanism for traversing the syntax tree,
the AST Visitor class. Any application that wishes to traverse the syntax tree and execute
code at any given node in the tree may implement a class that extends AST Visitor and
override one of the many visit () methods. ASTVisitor defines a visit () method for
each type of node (method declaration, assignment, method invocation, etc.) as well as a
preVisit () and postVisit () method which occurs before and after visiting every node.
Note that even though the visit () method is defined for each node type, the preVisit ()
and postVisit () methods are defined once, generically, for any node type. The Secure
Coding Assistant uses the preVisit () method in its SecureNodeAnalyser class which
attaches to the AST from the SecureCompilationParticipant. There is also a second custom
ASTVisitor that is used by the Utility Library that supports the rule detection methods. This
ASTVisitor is called ASTNodeProcessor and defines several visit () methods that are
used to gather data on the context of a node while evaluating whether or not it contains a
CERT rule violation.

An early detection tool in Eclipse to support secure coding practices

Figure 5 The AST representation of a code segment (see online version for colours)

Statement

Declaration

Y

Type Identifier

Statement

Assighment

Identifier Number

5.5 Utility library

295

The rule detection logic for many of the CERT rules can be reduced to several
sub-problems. These problems are shown in Table 2 along with the methods from the
utility library that have been developed to solve the given problem. These methods use the
ASTNodeProcessor to traverse the AST a second time and gather data on the nodes that
occur before and after the node being processed. With this library of reusable code, future

rules may be built much easier.

Table 2 Utility library methods by problem solved

Problem solved Method

Was a call made to method x? calledMethod()

Was method x called prior to method y? calledPrior()

Was a variable x modified after a call to method y? modifiedAfter()

Was class c¢ instantiated with argument a? containsInstanceCreation()
‘What block b encloses node n? getEnclosingNode()

Is argument a in a list of arguments 1? argumentMatch()

Retrieve method declaration d from
a superclass when method m is overriding it.

getSuperClassDeclaration()

296 B. White et al.

The utility library evolved throughout the implementation process. When a rule was chosen
for implementation, the pseudo-code for the high-level rule logic was added as comments to
the source code. If a step in the pseudo code appeared to be common enough to be reusable
in other rules, then it was added to the utility library rather than implemented in the block
of rule logic itself. Even though the utility library operates alongside the rule detection
logic which is language-specific, the parameters of the methods in the library are designed
to be used for multiple programming languages. There were also several instances where
method overloading was helpful. For instance, calledMethod () was implemented three
times. Once to check to see if a method is called from a given class, again to see if it is
called from a base class and lastly to see if it is called with particular arguments.

5.6 Rule logic

Each rule implements the interface IRule and uses the ‘protected’ class modifier so
they cannot be instantiated directly. A call to RuleFactory.getAl1lRules () returns an
ArrayList of references to each rule that has been fully implemented. The IRule interface
provides a level of abstraction that can be used in marker creation and node checking since
all rules share the same fundamental properties. A rule, for instance, may be violated at
a particular node and has several properties like the rule name, level of severity and the
recommendation when a violation is detected. These fundamental properties implemented
by all secure coding rules in the tool are shown in Table 3.

Table 3 The IRule interface

Method signature Description
boolean violated(ASTNode) Checks to see if the rule has been
violated in a given node
String getRuleText() The description of the
rule that was violated
String getRuleName() The name of the rule violated
String getRuleRecommendation() The recommended action

that will satisfy the rule
int securityLevel() The security level of the violatedrule,
values are defined as LOW, MEDIUM,
and HIGH in the Global.Markers class

The IRule.violated() method has one parameter, the node that is being evaluated,
and returns true if a rule violation was detected at the node location and false
otherwise. This level of abstraction makes iterating through a large set of rules very
straightforward as shown in Figure 6. In this code segment a collection of rules, built by
RuleFactory.getAllRules (), each tests a node in the syntax tree. Since this is in the
overridden preVisit method, it is run against each node in the syntax tree in a depth-first
traversal.

Rule violation detection is reduced to implementing the logic for the rule’s violated ()
method. Figure 7 shows the implementation for the IDS00-J rule which states that a
SQL query in Java must use calls to the PreparedStatement.setString() method
to properly sanitise and place query parameters in a query string before sending it
to the database for execution (Mohindra, 2015a). The implementation is simplified

An early detection tool in Eclipse to support secure coding practices 297

by using utility library. First the node is checked to see if it is an invocation of
a method. If it is, then the one of the methods from the Utility Library are used
to check if PreparedStatement.executeQuery() is called and if it is the rule is
violated only if there is not a call to PreparedStatement.setString() prior to
PreparedStatement.executeQuery (). Compare this to the high-level flow in Figure 3.

Figure 6 Iterating through rule collection (see online version for colours)

public void preVisit (ASTNode node) {
// Iterate through rules
for (IRule rule : m_rules)
if(rule.violated (node))
m_insecureCodeSegments.add (new InsecureCodeSegment (node, rule,
m_context)) ;

Figure 7 Implementation of the IDS00-J rule (see online version for colours)

public boolean violated (ASTNode node) {
boolean ruleViolated = false;
MethodInvocation method;

if (node instanceof MethodInvocation) {
method = (MethodInvocation) node;
if (Utility.calledMethod (method,
PreparedStatement .class.getCanonicalName (), "executeQuery"))
ruleViolated = !Utility.calledPrior (method,
PreparedStatement .class.getCanonicalName (), "setString");
else
ruleViolated = Utility.calledMethod (method,
Statement .class.getCanonicalName (), "executeQuery");

}

return ruleViolated;

6 Evaluation

6.1 Accuracy

6.1.1 False positive study

The Stanford SecuriBench (Livshits et al., 2005) was used for the false positive study. It
consists of applications that have various types of documented vulnerabilities. The Stanford
group identified 30 vulnerabilities in 2005 when SecuriBench was first made public. After
running seven of the eight programs through the Secure Coding Assistant several thousand
potential CERT violations were detected.

The secure coding assistant generated 4,172 secure coding alerts, but the overall
distribution shown in Table 4 is quite interesting. Only eight out of the 21 implemented
rules detected violations. Of those eight rules, 77% of the violations detected were all in
one rule, EXP00-J, which states that a programmer should never ignore a value returned
by a method (Mohindra, 2015¢). The reason for this is that method return values are often
indicators of whether or not the call was successful or they contain some other output that is
beneficial to the caller of the method. According to CERT, “Ignoring method return values

298 B. White et al.

can lead to unexpected behavior” (Mohindra, 2015c). Upon further investigation, it is not
always clear what is to be done with the return value. For instance, a large number of alerts
were generated on calls to the StringBuffer.append () method. This method returns a
reference to the modified buffer but the buffer that calls it is also modified. It is not clear
in the Java documentation the reason for the return value but it mentions that developers
should be using the StringBuilder class now instead. There were other circumstances
where ignoring the return value seemed appropriate. The Properties.setProperty ()
method returns a reference to the previous value before it overwrites it. Though there
are many cases where capturing the previous value is useful, ignoring it is certainly not
always a security risk. The high count of EXP00-J violations, even though they are correctly
categorised according to CERT, are very likely due to the CERT rule itself needing some
additional restrictions. Many other CERT rules have exceptions and this one would benefit
from excluding methods that return a reference to the calling object or certain types of
return values that are for convenience for the programmer like capturing a value before
overwriting it.

The next highest rule violation detected was ERROS-J which cautions developers
against catching a Nul1lPointerException or any of its ancestors (Svoboda and Hicken,
2015). This type of exception is thrown when an application is running and attempts to
dereference a pointer that has not been initialised to a value. According to CERT, when
this type of runtime error is ignored the application becomes unstable. Rather than catching
the exceptions, CERT advises that the application terminate immediately. The rule also
states that the ancestors RuntimeException, Exception and Throwable should never
be caught since catching one of these could implicitly catch the Nul1lPointerException.
The secure coding assistant identified 740 violations of this rule which accounted for
17.7% of the rule violations detected, but a majority of those were an ancestor and not
the NullPointerException. Quite frequently developers will catch an exception as a
generic Exception rather than the more specific type of exception that is being thrown
(e.g., I0Exception). Unfortunately, this means that the tool cannot accurately detect this
violation when developers catch generic exceptions. Of the remaining rules, 1.2% fell into
the IDS category which accounts for data sanitisation and helps prevent SQL injection
attacks and 4.1% were in other categories.

To identify the false positive results, each secure coding alert was visually inspected and
only categorised as a ‘true positive’ if the code segment was a true reflection of the secure
coding rule outlined by CERT; all others are classified as a ‘false positive’. The results of
this study in Table 5 reflect an overall false positive rate of 0.5%.

The largest false positive result was 57.1% and found in detecting the MSC02-J rule
(Katsis, 2016). This rule states that a cryptographically secure random number generator
should always be used in applications where security is important. The false positive results
logged were instances where the random number was being used for purposes besides
encryption or security. Visual inspection showed the numbers were used for a randomly
sorted list which is not related to application security so they could not be counted as a
true positive result. Fixing this issue with MSCO02-J would be difficult since it requires
knowledge of how the random number is used. The standard Java development kit does not
provide any standard methods to support cryptography, but there is a Java cryptography
extension (JCE) that does. The tool should not assume, however, that a developer is using
JCE when needing a secure random number. This fact was shown in the false positive
analysis when pseudo-random numbers were used for key generation. In general, secure
random numbers may always be used even when not necessary. For this reason, advising

An early detection tool in Eclipse to support secure coding practices 299

the developer to never use a pseudo-random number in all cases may increase false positives
but will also urge the developer to shy away from pseudo-random number generators
completely. Another solution to the MSC02-J false positives is to add a set of meta tags to
the tool to allow programmers to disable security warnings for a line of code. For example,
putting @SuppressSecurity:MSC02 before the line that generates the alert would cause
that rule to be ignored when evaluating the following line for potential vulnerabilities.

The next highest false positive rate is seen in the IDS00-J rule detection which checks
for correct usage of the PreparedStatement.setString() method. All of the false
positive results stemmed from query strings that did not require user input. In these cases,
the value being inserted into the query string was a constant value. Additional analysis on
how the query string is built would be required to reduce the false positive rate for IDS00-J.
This would include parsing the expression into subcomponents and tracing their origin in
the source code. In cases where the input is coming from other services or modules this
type of a trace would not be feasible.

The last notable result was the 28.6% false positive rate on the IDS11-J rule which
recommends to ‘Perform any string modifications before validation’ (Mohindra, 2016). The
method of detection for IDS11-J is to look for strings that are modified after they have been
validated [using the Pattern.matcher () method], but in two instances in SecuriBench
the strings were validated a second time after modification thus fixing the potential security
vulnerability. A modification to the rule implementation that looks for additional validation
after a string is modified would eliminate the IDS11-J false positives in SecuriBench.

6.1.2 False negative study

A false negative analysis of the secure coding assistant requires segments of Java source
code with known vulnerabilities. The SecuriBench programs have a large number of
known vulnerabilities but a detailed listing of where they are in the source code does not
exist. For this reason, a limited false negative analysis of the secure coding assistant was
performed by looking for examples of insecure Java code from organisations that document
vulnerabilities like the open web application security project (OWASP) and common
weakness enumeration (CWE). The first test is the example shown on the OWASP website
(OWASP Foundation, 2016) for preventing SQL injection attacks in Java in Figure 8. The
structure of the code is almost identical to that of the CERT examples so it was not a surprise
that the tool detected the vulnerability without an issue, as shown in Figure 9.

Figure 8 SQL injection example from OWASP website (see online version for colours)

String query = "SELECT account_balance FROM user_data WHERE user_name

+ request.getParameter ("customerName") ;

try {
Statement statement = connection.createStatement (a%|);
ResultSet results = statement.executeQuery (query);

}

Source: OWASP Foundation (2016)

300 B. White et al.

Table 4 SecuriBench test results

Level Full name Total Percent
L2 EXPO00-J. Do not ignore values 3,211 77.0%
returned by methods
L1 ERRO08-J. Do not catch NullPointerException 740 17.7%
or any of its ancestors
L2 METO04-J. Do not increase the accessibility 138 3.3%
of overridden or hidden methods
L1 IDS00-J. Prevent SQL injection 42 1.0%
L1 METO06-J. Do not invoke overridable 25 0.6%
methods in clone()
L1 IDS11-J. Perform any string 7 0.2%
modifications before validation
L1 MSCO02-J. Generate strong random numbers 7 0.2%
L1 IDS07-J. Sanitise untrusted data 2 0.0%
passed to the Runtime.exec() method
L1 IDSO01-J. Normalise strings before validating them 0 0.0%
L1 FI008-J. Distinguish between characters or 0 0.0%
bytes read from a stream and —1
L1 SECO07-J. Call the superclass’s getPermissions() 0 0.0%
method when writing a custom class loader
L1 SERO1-J. Do not deviate from the proper 0 0.0%
signatures of serialisation methods
L1 STROO0-J. Do not form strings containing partial 0 0.0%
characters from variable-width encodings
L2 ENVO02-J. Do not trust the values 0 0.0%
of environment variables
L2 EXP02-J. Do not use the Object.equals() 0 0.0%
method to compare two arrays
L2 NUMO09-J. Do not use floating-point 0 0.0%
variables as loop counters
L2 OBJ09-]J. Compare classes and 0 0.0%
not class names
L3 DCLO02-J. Do not modify the collection’s elements 0 0.0%
during an enhanced for statement
L3 LCKO09-J. Do not perform operations that can 0 0.0%
block while holding a lock
L3 NUMO7-J. Do not attempt 0 0.0%
comparisons with NaN
L3 THIO05-J. Do not use Thread.stop() 0 0.0%
to terminate threads
Total 4,172

Next, the CWE library was searched for code that would relate to the IDSO1-J rule to
normalise strings before validation (Mohindra, 2014). Figure 10 from the CWE dictionary
(The Mitre Corporation, 2015b) is in the ‘validate before canonicalise’ section but is similar
to the IDSO01-J rule to validate before normalising a string. In this example the path variable

An early detection tool in Eclipse to support secure coding practices 301

is being tested to see if it begins with /save_dir/ but there is no guarantee that the path
name is in canonical form. To correct this code, the path string needs to be converted to
canonical form before the comparison. Unfortunately, the violation went undetected by the
Secure Coding Assistant. The key difference between the IDS01-J rule on the CERT website
and the CWE example is that the CWE example includes canonicalisation in the category
of normalisation but the CERT rule only gives the example of the normalise method. With
a small modification to the rule detection logic canonicalisation could be detected as well.

Figure 9 Output of SQL injection detection (see online version for colours)

String query = "SELECT account balance FROM user data WHERE user name = "
4+ request.getParameter ("customerHame™) ;
try {
Statement statement = connection.createStatement(..)7
BesultSet results = statement.executefuerv(guery);

A €3 Rule violated: IDS0D0-J. Prevent SOL injection
Severity: High

Figure 10 Validate before canonicalise example from CWE (see online version for colours)

String path = getInputPath () ;
if (path.startsWith ("/safe_dir/"))
{

File f = new File (path);

return f.getCanonicalPath ();

}

Source: The Mitre Corporation (2015b)

Figure 11 Comparison of classes by name from CWE (see online version for colours)

public class TrustedClass {
@Override
public boolean equals (Object obj) {

boolean isEquals = false;

// first check to see if the object is of the same class

if (obj.getClass () .getName () .equals(this.getClass () .getName ())) {
// then compare object fields
if (...) { isEquals = true; }

}

return isEquals;

Source:The Mitre Corporation (2015b)

Another code segment from CWE is shown in Figure 11 which illustrates a vulnerability
that should be detected under the CERT OBJ09-J rule (Gale, 2016). OBJ09-J states that
class comparison should be done using the == operator on the class objects themselves
and not the class names. In the example given, changing the comparison line to
obj.getClass() == this.getClass () would rectify the problem. In this example the
secure coding assistant successfully detected the vulnerability.

302 B. White et al.

6.2 Validation

6.2.1 CERT

The CERT website lists several code samples for each secure coding rule along with the
rule definition (Shrum, 2015). The samples are presented in pairs, first is an example of a
violation of the rule and next is the corrected code segment. Figure 12 shows the secure
coding assistant detecting an IDS00-J violation in a code segment taken from the CERT
website (Mohindra, 2015a). In this example the query string is built using parameters
supplied by the user. The alert window cites CERT’s solution to use a PreparedStatement
instead. Rule logic was not considered to be complete until all secure coding violation
examples shown on the CERT website for that particular rule could be detected by the tool.

Figure 12 IDS00-J violation from CERT detected with secure coding assistant (see online version
for colours)

// Remove the + username from the declaration to make the rs3 alert go away CJ
String queryString = "SELECT * FROM tbl WHERE usr = " + username;

// Uncomment rs2 or comment psimt to test rule

Resultset rs = pStmi.executeQuery(“testing”);

ResultSet rs2 = stmi.executeQuery(“testing2");

ResultSet rs3 = simt.exscuteQuery(querushningli

3 Rule violated: IDS00-J. Prevent SQL injection
Severity: High

// Test IDS@13]

String = = "\UFEB4" 4 MNOTE: The text and/or code below is from the CERT website

https:/fwww.secureceding.cert.org/confluence/display/java/IDS00-J.+ Prevent+ 50L+injection

|/ validate Rule description: CERT Website-50L injection vulnerabilities arise in applications where elements of a 5QL

ttern =
Pattern pattern = Pat query originate from an untrusted source. Without precautions, the untrusted data may maliciously alter the
Matcher matcher = pail S X o . L
query, resulting in information leaks or data medification. The primary means of preventing S0L injection are
sanitization and validation, which are typically implemented as parareterized queries and stored procedures,
s 52 Rule Solution: Do not execute SOL queries with parameters directly, use a PreparedStatemnent and the
Press 'F2' for focus|
wminm M nthare —

6.2.2 Fortify static code analyser

The Fortify static code analyser by Micro Focus (2018), formerly a software division of
Hewlett Packard Enterprise, is a widely used and well-maintained tool which has similar
features as the secure coding assistant. This is a sophisticated commercial product that
assists with secure software development in many ways. Fortify is bundled with seven
reports, a centralised workspace for developers to assign and collaborate tasks from static
scan results, and very detailed analysis of code alerts. A screen shot of the Fortify audit
workbench is included to illustrate the features that are included as Figure 13.

To compare the secure coding assistant to fortify, the Stanford SecuriBench (Livshits
et al., 2005) was used. This project has seven applications written in Java that are known to
have vulnerabilities. Using the OWASP top 10 (OWASP Foundation, 2018) vulnerabilities
categories was necessary to compare the results of Fortifu to the secure coding assistant.
Fortify already has a grouping for OWASP top 10, but the secure coding assistant alerts
needed to be categorised first. In Section 6.1.1, a false positive study of the secure coding
assistant is done using SecuriBench. The CERT rules (Shrum, 2015) that have at least one
alert from this study, see Table 4, have been classified according to the OWASP Top 10 in
Table 6.

An early detection tool in Eclipse to support secure coding practices 303

Rules IDS00-J, IDS11-J and IDS07-J (Shrum, 2015) are in the ‘A1 - injection’ category
as they all pertain to sanitisation of data which help to prevent injection attacks. ERR0S8-J,
MET04-J, MET06-J and MSC02-J (Shrum, 2015) are in the ‘A3 - sensitive data exposure’
category since violating any of these rules could potentially expose sensitive data to an
adversary. One of the rules, EXP00-J (Mohindra, 2015c), could not be categorised and has
been listed with an ‘NA’ reference. There are some rules that Fortify has put in this category
as well.

Figure 13 The Fortify results of blueblog scan viewed through their audit workbench (see online
version for colours)

€9 *blueblog - Audit Workbenc] —
blueblog - Audit Workbench o x
File Edit Tools Options Help
summary | AuditGuide | Scan | Reports AUDIT WORKBENCH O
Filter Set: | Quick View v My lssues | Project Summary FSBlogjava & = O || E Functions &2 = 0o
W2[Es[00[00 @ o] String filename = blogData.getSugges show 1 b
File categoryDirectory = category.ge Group by: | packag ~| Legend..
File file = mew File(categoryDirecto: L
Group By: | Fortity Pricrity Order if(file.exiscs()) { nclude API:
T » g E—— AEsternal Finternal []Super
«] Criticsl - [0/
1 BBServletjava:170 (Open Redirect] String filenameBase = filename.l: Default Package
il BBServletjava:184 (Open Redirect) . Top-level functions
© (] High- [0/8] S e # com.opensymphony.m!
< filensme = filenameBase + i + fi oo
& FSBlogjava:114 (Path Manipulation) SRR e -
! FSBlogjava:121 (Path Manipulation) i Fiecesisiat b It :
) FSBlogjava:125 (Path Manipulation) o v javalang
il FSCategoryjava:101 (Path Manipulation) < > £ java.net
1ot
i/ FSCategoryjava:131 (Path Manipulation) s =P BrlB B Es B lBw.] = 5 gJM =
! FSCategory java:349 (Path Manipulation) java.uti
1 FSRepositoryjava:105 (Path Manipulation) Issue: F5Elogjavail14 (Path Manipulation) & ¥ 8 java.utilregec
64 (Path Path Manipulation B jave.utilzip
o User (Input Validation B javaxserviet
S > s . servlet. hity
. Representation, 8 javaxservieshitp
P M || & Data Flow) 1 javaxxmlparsers
o # org.spache.commons.i
£ Analysis Evidence 3 S s ﬁttatcki:har;ablitc # org.spachexvelocity.con|
control the file
<> - blucblog URL~ /bbr" o SHesh org.apachenvelocity.sen
,,,,,,,,,,,,,,,,,,,,, srqumentto File() at & orgwic.dom
i bluefish.bluebl
() BBServlet java:120 - getParameter(return) aline & seblufish.blucblog
o S ¥ which allows them # sebluefishblueblog.blg
R e e ! to access o modify sebluefish.blueblogfile
3() BBServiet javariE2 - BlogData(0: this.suggestedid othenvise protected e
= BBServietjava:182 - Assignment to bd files. g g g
() BBServlet java:183 - addNewBlog(0.suggestedid) Click to append comment & sebluefish.blueblog.me
() FSCatec 121 (Ctrl+Enter to save) 3 sebluefish.blueblog.rep)
gory javai121 - createNenBlog(T.suggestec
20) EStlogjavsi12 # sebluefishblueblog.ser
g.javar112 - getSuggestedidithis suggestedic
i mesCusmmsctanis
>
35 006838 - a More £ 2
Taint Flags: PRIV x search: [|
Mirart Foencdinm Call o, ;
Table 5 False positive analysis
0, 0,
Rule Total count True pos. count True pos. % False pos. count False pos. %

EXPO00-J 3,211 3,211 100.0% 0 0.0%
ERRO08-J 740 740 100.0 % 0 0.0%
MET04-J 138 138 100.0% 0.0%
IDS00-J 42 29 69.0% 31.0%
METO06-J 25 25 100.0% 0.0%
IDS11-J 7 5 71.4% 28.6%
MSCO02-J 7 3 42.9% 57.1%
IDS07-J 2 2 100.0% 0.0%
Total 4,172 4,153 99.5% 19 0.5%

—
w &

S DO

The Fortify static code analyser has three primary run modes: ‘show me all issues that
may have security implications’, ‘show me likely problems’, and ‘show me only remotely
exploitable issues’. In the analysis results these three modes have been labeled ‘A’, ‘B’, and
‘C’, respectively. The purpose of the multiple run modes is to allow the developer or security

304 B. White et al.

auditor to tailor the types of alerts to the type of environment in which the application is
running. If, for instance, the application is running on a highly secure network then options
‘B’ or ‘C’ may be more appropriate. If, on the other hand, the application is running on
the internet in an unsecured environment then option ‘A’ which produces the most scan
results would be most appropriate. The secure coding assistant only has one run mode and
is labeled as ‘SCA’ in the analysis results.

Table 6 OWASP Top Ten 2017 descriptions (OWASP Foundation, 2018) and secure coding
assistant alert mappings

Category Description SCA mapping

Al Injection IDS00-J, IDS11-J and IDS07-J

A2 Broken authentication

A3 Sensitive data exposure ERRO08-J, MET04-]J, MET06-J
and MSCO02-J

A4 XML external entities (XXE)

AS Broken access control

A6 Security misconfiguration

A7 Cross-site scripting (XSS)

A8 Insecure deserialisation

A9 Using components with known vulnerabilities

Al0 Insufficient logging and monitoring

NA Could not categorise EXP-00

In Table 7, the scan results are categorised using relative severity. With the Fortify tool,
all results from SecuriBench were either in a ‘critical’ or ‘high’ category. The CERT rules
have a similar ranking but with levels 1 through 3 (Shrum, 2015). The alerts from the secure
coding assistant were all in the level 1 ‘L1’ or level 2 ‘L2’ categories. Relative to Fortify,
the secure coding assistant identified many more potential rule violations in the ‘high/L2’
category than the ‘critical/L1’ category. The comparison using OWASP top 10 (OWASP
Foundation, 2018) is shown in Table 8. The Fortify tool was able to identify potential
violations in seven categories and the secure coding assistant was able to identify violations
in two categories. Though it is evident through this analysis that the secure coding assistant
does not perform as well as a commercially available product, the intention is not to compete
commercially. Rather, the goal is to provide a free and open source tool to the community
with an emphasis educating software developers in secure coding practices. Additionally,
for those rules that mapped to the OWASP categories the secure coding assistant had close
to the same number of alerts as Fortify. The results of this analysis will be used to identify
CERT rules that can be implemented in a subsequent release.

Table 7 Fortify priority and CERT level comparison table

Fortify priority/CERT level Fortify A Fortify B Foritfy C SCA
Crtical/L1 1,184 1,153 551 823
High/L2 447 435 369 3,349

Total 1,631 1,588 920 4,172

An early detection tool in Eclipse to support secure coding practices 305

Table 8 OWASP Top Ten 2017 comparison table

OWASP top ten 2017 Fortify A Fortify B Foritfy C N
Al 224 214 145 51
A2 1 1 1 0
A3 423 423 422 910
A4 1 1 1 0
AS 165 138 119 0
A6 6 6 6 0
A7 772 772 199 0
A8 0 0 0 0
A9 0 0 0 0
A10 0 0 0 0
NA 39 33 27 3,211
Total 1,631 1,588 920 4,172

6.3 Efficiency

The Eclipse development environment has a responsiveness monitoring tool that will log
delays over a certain threshold. The efficiency analysis for the secure coding assistant was
done by setting the monitor threshold to 10 milliseconds then loading five SecuriBench
source code files three times with the plugin enabled and three times with the plugin
disabled. When testing with the plugin enabled the alert list was cleared after each test.
After each load, the total delay was recorded and then the total delay for all three loads were
averaged together. The difference between the average load time without the plugin and the
average load time with the plugin was recorded as the increase in load. The results of the
study in Table 9 show that the plugin added an additional 0.03 to 0.20 seconds to the load
time for each source file. The additional processing is in a separate thread so the impact
to the user is minimal. While the plugin is processing the source file the alert window is
filling with secure coding alerts which does not interfere with the user’s ability to scroll
through the file and make edits. There appeared to be a correlation between the amount of
additional processing time and the number of detected alerts. The last column in the table
shows the additional time per alert and ranges from 2 to 4.5 milliseconds.

Table 9 Plugin efficiency analysis

Application Source file Alerts Increase (sec.) Time per alert (ms)
pebble SimpleBlog.java 46 0.2037 4.428
roller WebLogEntryFormAction.java 16 0.0713 4.458
webgoat CreateDB.java 49 0.1923 3.925
snipsnap ConfigurationMap.java 23 0.0270 1.174
snipsnap ConfigurationProxy.java 19 0.0380 2.000

The additional time per alert is at most less than 5 milliseconds which would not be noticable
unless there were several hundred alerts in a single source code document. Additionally,
while coding with and without the plugin enabled there is no noticeable difference in
performance. No lag time could be observed while coding with the plugin enabled.

306 B. White et al.

7 Limitations, conclusions and future works

The secure coding assistant has demonstrated practical, efficient and accurate applications
for education in computer science. Future development work will focus on fine-tuning the
existing rule detection logic, building logic for additional rule detection, expanding the
tool to support additional programming languages and adding additional features. Future
plans also include incorporating the tool in the computer science course curriculum to test
effectiveness. Specifically, the students in the introductory Java programming courses will
benefit from this tool the most.

The SecuriBench testing showed that some rules like EXP00-J need additional
documentation on exception cases. The secure coding assistant can help detect such cases
and aid in fine-tuning the CERT rule library. The false positive and false negative study
showed that there are several little adjustments that could be made to the rule logic to
improve performance. There are also several rules that cannot be automated because
the rule itself is context-specific. For instance, whether or not an application is running
in a multi-threaded environment and requires thread safety or whether or not the Java
application is interoperating with programs developed in other programming languages.
These types of things cannot be identified through code inspection but a system of meta
tags could be developed to indicate whether or not a block of code requires a certain type
of specialised security. There are still several more rules that can be implemented though
and the data obtained in Section 6.2.2 will be used as a guide for identifying which rules to
add to the tool.

The tool could also benefit from a few small improvements to the functional design.
The markers, for instance, contain information from the CERT website (Shrum, 2015) but
they do not have a hyperlink back to the website itself. A precursory review of the marker
structure found that customising the marker text to have hyperlinks would be possible but
requires a fair amount of additional design and implementation work. Also some additional
controls to the user interface to control the scanning of the source code files would be
useful. For instance, the plugin is always scanning the open file in the background and
a programmer may want to scan an entire workspace at once, pause it and monitor the
status. Lastly, there are instances where a programmer may see an alert and not agree that
it is a security concern as was the case in the many EXP00-J and MSCO02-J alerts in the
SecuriBench test. In these cases, it would be very helpful for the programmer to have a way
to indicate that they would like to ignore a particular rule in a block of code.

There are many static analysis tools that are available to the programming community.
Several of these are Eclipse plugins, a few of them provide early-detection techniques
but none of them are open-source learning tools for the CERT secure coding rules. The
secure coding assistant provides the development community with an educational tool in
secure coding practices. It is open source, extensible and will continue to be maintained.
For more detailed information, including a tool demo, please visit the project website at
http://benw408701.github.io/SecureCodingAssistant/.

Acknowledgements

This publication incorporates portions of the “SEI CERT Oracle Coding Standard for Java”
(©2017 Carnegie Mellon University with special permission from its Software Engineering
Institute.

An early detection tool in Eclipse to support secure coding practices 307

Any material of Carnegie Mellon University and/or its software engineering institute
contained herein is furnished on an ‘as-is’ basis. Carnegie Mellon University makes no
warranties of any kind, either expressed or implied, as to any matter including, but not
limited to, warranty of fitness for purpose or marchantability, exclusivity, or results obtained
from use of the material. Carnegie Mellon University does not make any warranty of any
kind with respect to freedom from patent, trademark, or copyright infringement.

This publication has not been reviewed nor is it endorsed by Carnegie Mellon University
or its Software Engineering Institute.

CERT and CERT Coordination Center are registered trademarks of Carnegie Mellon
University. Java is a registered trademark of Oracle, Inc.

References

Aldausari, N., Zhang, C. and Dai, J. (2018) ‘Combining design by contract and inference rules
of programming logic towards software reliability’, in Proceedings of the 15th International
Conference on Security and Cryptography (SECRYPT 2018) (to appear, accepted), July.

Checkmarx, Ltd. (2018) Static Application Security Testing [online] https://www.checkmarx.com/
products/static-application-security-testing/ (accessed 4 May 2018).

Contrast Security (2018) Contrast for Eclipse [online] https://marketplace.eclipse.org/content/
contrast-eclipse (accessed 4 May 2018).

Diaz, G. and Bermejo, J.R. (2013) ‘Static analysis of source code security: assessment of tools against
SAMATE tests’, Information and Software Technology, Vol. 55, No. 8, pp.1462—1476.

Dehlinger, J., Feng, Q., Oestrich, E. and Smith, M. (2012) SSV Checker — An Eclipse Plug-in Interface
Static Security Vulnerability Checker, 26 August [online] http://ssvchecker.sourceforge.net/
(accessed 15 November 2015).

Elgin, B., Riley, M. and Lawrence, D. (2014) ‘Hacked wide open.(home depot fails to improve
security)’, Bloomberg Businessweek, 22 September, pp.39—40.

Fisher, D. (2003) ‘Appscan tests for vulnerabilities during the development cycle’, eWeek, Vol. 20,
No. 7, p.23.

Frates, C. and Devine, C. (2014) Government Hacks and Security Breaches Skyrocket, CNN Wire,
19 December.

Gale, A. (2016) OBJ09-J. Compare Classes and not Class Names, 24 May [online] https:
/Iwww.securecoding.cert.org/confluence/display/java/OBJ09-J.+Compare+classes+and+not-+
classtnames (accessed 12 July 2016).

Gelsomini, J.J. and Garcia, K.H. (2015) ‘Anthem’s data breach impacts many anthem and non-anthem
plans: necessary employer actions now’, Employee Benefit Plan Review, Vol. 69, No. 11, pp.5-7.

HT Media Ltd. (2014) ‘Fewer than 1% of engineering students skilled in secure programming’, Mint,
February.

Katsis, G. (2016) MSC02-J. Generate Strong Random Numbers, 13 May [online] https:/www.
securecoding.cert.org/confluence/display/java/MSC02-J.+Generate+strong+random+numbers
(accessed 12 July 2016).

Li, C., White, B., Dai, J. and Zhang, C. (2017) ‘Enhancing secure coding assistant with error
correction and contract programming’, in Proceedings of the National Cyber Summit, June.

Lindeman, T.F. (2013) ‘Target acknowledges security breach; 40 million accounts compromised’,
McClatchy — Tribune Business News, 20 December.

Livshits, B., Martin, M., Lam, M., Whaley, J., Avots, D., Carbin, M. and Unkel, C. (2005) Stanford
SecuriBench, 21 December 2005 [online] http://suif.stanford.edu/~livshits/securibench/intro.
html (accessed 23 December 2015).

308 B. White et al.

Melnik, V. (2018) Enforcing Secure Coding Rules for the C Programming ILanguage using the
Eclipse Development Environment, in Master Project, California State University Sacramento.

Micro Focus (2018) Static Analysis, Static Application Security Testing, https://software.microfocus.
com/en-us/products/static-code-analysis-sast/overview (accessed 27 April 2018).

Mohindra, D. (2014)IDS01-J. Normalize Strings Before Validating Them, 27 November [online]
https://www.securecoding.cert.org/confluence/display/java/IDS01-J.+Normalize+strings+
before+validating+them (accessed 12 July 2016).

Mohindra, D. (2015a) IDS00-J. Prevent SQL Injection, 3 November [online] https://www.
securecoding.cert.org/confluence/display/java/IDS00-J.+Prevent+SQL+injection (accessed
22 December 2015).

Mohindra, D. (2015b) NUMO03-J. Use Integer Types that can Fully Represent the Possible Range
of Unsigned Data, 3 June [online] https://www.securecoding.cert.org/confluence/display/
java/NUMO3-J.+Use+integer+types-+that+cantfully+represent+the+possible+range+of+
+unsigned-+data (accessed 1 November 2015).

Mohindra, D. (2015¢c) EXPOO-J. Do not Ignore Values Returned by Methods, 3 November [online]
https://www.securecoding.cert.org/confluence/display/java/EXP00-J.+Do+not+ignore+
values+returned-+by+methods (accessed 23 December 2015).

Mohindra, D. (2016) IDS11-J. Perform any String Modifications Before Validation, 2 March [online]
https://www.securecoding.cert.org/confluence/display/java/[DS11-J.+Perform+any+string+
modifications+before+validation (accessed 12 July 2016).

OWASP Foundation (2016) Preventing SQL Injection in Java, 25 May [online] https://www.owasp.
org/index.php/Preventing\ SQL\ Injection\ in\ Java (accessed 26 June 2016).

OWASP Foundation (2018) Top 10-2017 Top 10, 27 March [online] https://www.owasp.org/index.
php/Top\ 10-2017\ Top\ 10 (accessed 8 April 2018).

Pandit, M.K. (2013) ‘Developing secure software using aspect oriented programming’, JOSR Journal
of Computer Engineering, Vol. 10, No. 2, pp.28-34.

Red Lizard Software (2015) Red Lizard Software — Goanna C/C++ Static Analysis [online] http:
//redlizards.com/ (accessed 15 November 2015).

Rogue Wave Software (2018) Introducing Static Code Analysis with Continuous Integration [online]
https://www.roguewave.com/programs/ppc/static-analysis-code (accessed 4 May 2018).

Sampaio, L. (2015) The Code Master, 17 June [online] http://thecodemaster.net/ (accessed
15 November 2015).

Shrum, S. (2015) 2 - Rules - CERT Oracle Coding Standards for Java, 7 April [online] https://www.
securecoding.cert.org/confluence/display/java/2+Rules (accessed 14 November 2015).

SonarSource S.A. (2018) SonarLint [online] https://www.sonarlint.org/ (accessed 4 May 2018).

Svoboda, D. and Hicken, A. (2015) ERROS-J. Do not Catch NullPointerException or Any of
its Ancestors, 3 November [online] https://www.securecoding.cert.org/confluence/display/
java/ERRO8-J.+Do+not+catch+NullPointerExceptiont+or+any-+oftits+ancestors (accessed
23 December 2015).

Synopsys, Inc. (2018) SecureAssist Overview and Datasheet [online] https://www.synopsys.com/
software-integrity/resources/datasheets/secureassist.html (accessed 4 May 2018).

The Mitre Corporation (2015a) CVE - download CVE, 13 November [online] https://cve.mitre.org/
cve/cve.html (accessed 15 November 2015).

The Mitre Corporation (2015b) CWE-2000: Comprehensive CWE Dictionary, 8 December [online]
http://cwe.mitre.org/data/slices/2000.html (accessed 6 February 2016).

University of Maryland (2018) FindBugs — Find Bugs in Java Programs [online] http://findbugs.
sourceforge.net/ (accessed 4 May 2018).

Vamialis, A. (2013) ‘Online service providers and liability for data security breaches’, Journal of
Internet Law, Vol. 16, No. 11, pp.23-33.

An early detection tool in Eclipse to support secure coding practices 309

Veracode (2018) Static Analysis (SAST), 2017 [online] https://www.veracode.com/products/
binary-static-analysis-sast (accessed 4 May 2018).

White, B., Dai, J. and Zhang, C. (2016) ‘Secure coding assistant: enforcing secure coding practices
using the eclipse development environment’, in Proceedings of the National Cyber Summit,
June.

White, B. (2016) Secure Coding Assistant: Enforcing Secure Coding Practices using the Eclipse
Development Environment, in Master Project, California State University Sacramento.

WhiteHat Security (2018) Static Application Security Testing (SAST) [online] https://www.
whitehatsec.com/products/static-application-security-testing/ (accessed 4 May 2018).

Xie, J., Chu, B., Lipford, H.R. and Melton, J.T. (2011) ‘ASIDE: IDE support for web application
security’, ACSAC 2011, December.

Zhu, J., Xie, J., Lipford, H.R. and Chu, B. (2014) ‘Supporting secure programming in web
applications through interactive static analysis’, Journal of Advanced Research, Vol. 5, No. 4,
pp.449-462.

Notes

1 Certain acknowledgements and attributions have been made to Carnegie Mellon University
and its Software Engineering Institute in the ‘Acknowledgements’ section of this paper. This
is an extended version of a paper published in the National Cyber Summit conference
proceedings (White et al., 2016) as well as a result of a master’s project (White, 2016), for more
information see White (2016).

