
Research Article

HuntFUZZ: Enhancing error handling
testing through clustering based fuzzing

Journal of Computer Security
2025, Vol. 33(5) 334–359

© The Author(s) 2025
Article reuse guidelines:

sagepub.com/journals-permissions
DOI: 10.1177/0926227X251343867

journals.sagepub.com/home/jcu

Jin Wei1,2, Ping Chen2,3 , Jun Dai4, Xiaoyan Sun4,
Zhihao Zhang4, Chang Xu1 and Yi Wang2

Abstract
Testing a program’s capability to effectively handle errors is a significant challenge, given that program errors are relatively
uncommon. To address this, software fault injection (SFI)-based fuzzing combines SFI with traditional fuzzing to inject
faults and trigger errors, enabling the testing of (error handling) code. However, current SFI-based fuzzing approaches
have overlooked the correlation between paths housing error points. In fact, the execution paths of error points often
share common paths. As a result, fuzzers usually generate test cases repeatedly to explore these common paths. This
practice can compromise the efficiency of the fuzzer(s). To address this issue, this paper introduces HuntFUZZ, a
novel SFI-based fuzzing framework designed to minimize redundant exploration of error points with correlated paths.
HuntFUZZ achieves this by clustering these correlated error points and using concolic execution to resolve the path
constraints necessary for approaching or reaching these clusters. This approach provides the fuzzer with optimized
test cases, allowing it to efficiently explore error points within the cluster while minimizing redundancy. We evaluate
HuntFUZZ on a diverse set of 42 applications, and HuntFUZZ successfully reveals 162 known bugs, with 62 of them
being related to error handling. Additionally, due to its efficient error point detection method, HuntFUZZ discovers
seven unique zero-day bugs, which are all missed by existing fuzzers. Furthermore, we compare HuntFUZZ with four
existing fuzzing approaches, including AFL, AFL++, AFLGo, and EH-FUZZ. Our evaluation confirms that HuntFUZZ can
cover a broader range of error points, and it exhibits better performance in terms of bug-finding speed.

Keywords
Error handling, software fault injection, fuzzing, concolic execution, hybrid fuzzing

Received: 15 April 2024; accepted: 22 April 2025

1 Introduction
Real-world programs require robust error handling to manage various potential issues that may arise during execution.
Exceptional situations, such as invalid inputs, memory shortages, integer overflows, and network connection failures,
can occur due to specific conditions. These situations are generally referred to as errors, and the code responsible for
managing them is known as error handling code. However, error handling in programs is often flawed or even missing
altogether. Testing whether a program can handle errors properly is quite challenging because error handling code is rarely
executed in typical program workflows, simply due to the infrequency of errors occurring in practice.1–3 Additionally,
testing for error handling may be inadequate because it is inherently difficult to trigger these rare error conditions and
reach the corresponding error handling points during standard testing processes.1–8 Insufficient error handling can lead to
severe security consequences.9–12 Examples of such vulnerabilities include CVE-2019-7846, which leads to information

1School of Computer Science, Fudan University, Shanghai, China
2Institute of BigsData, Fudan University, Shanghai, China
3Purple Mountain Laboratories, Nanjing, China
4Worcester Polytechnic Institute, Massachusetts, USA

Corresponding author:
Ping Chen, Institute of BigData, Fudan University, Shanghai, China; Purple Mountain Laboratories, Nanjing, China.
Email: pchen@fudan.edu.cn

https://uk.sagepub.com/en-gb/eur/journals-permissions
https://doi.org/10.1177/0926227X251343867
https://journals.sagepub.com/home/jcu
https://orcid.org/0000-0002-8517-0580
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0926227X251343867&domain=pdf&date_stamp=2025-09-01

Wei et al. 335

disclosure13; CVE-2019-2240, which causes abnormal program functionality14; and CVE-2019-1750 and CVE-2019-
1785, both of which can result in denial of service.15,16 Therefore, testing whether a program can effectively handle errors
is crucial for mitigating potential security risks.

To enhance the testing of error handling, recent approaches involve the utilization of software fault injection (SFI)-based
fuzzing approaches.17–21 These methods combine SFI22 and fuzzing technologies.23–39 Specifically, SFI involves injecting
faults or errors into the tested program, so that the program can be executed to test whether it can effectively handle the
injected faults or errors.19 The code locations where errors are injected are referred to as error points. Fuzzing is then
employed to generate program inputs as test cases to cover these error points. Thus, SFI-based fuzzing approaches require
both the generation of error sequences (which are ordered sets of error points, represented by 0 or 1) to indicate where to
insert errors at potential sites21 and the generation of program inputs to reach the error points. Existing SFI-based fuzzing
approaches primarily focus on optimizing the generation of error sequences. For instance, FIFUZZ19 employs context-
sensitive SFI to cover error points in different calling contexts. iFIZZ20 adopts a state-aware SFI approach, defining state
as the runtime context of an error site, to reduce redundant fault scenarios. EH-FUZZ21 utilizes error coverage—a metric
of a fuzzer’s capability to test the number of injection scenarios for error points, which will be explained in detail in
Section 5.2.2—to direct error injection. This helps avoid exploration of duplicate error scenarios and attempts to detect
more diverse error circumstances.

1 // Patch for function memalign
2 --- a/malloc/malloc.c
3 +++ b/malloc/malloc.c
4 @@ -3015,6 +3015 ,13 @@
5 __libc_memalign (size_t alignment , size_t bytes)
6 { ...
7 if (alignment < MINSIZE) alignment = MINSIZE;
8

9 + /* Check for overflow. */
10 + if (bytes > SIZE_MAX - alignment - MINSIZE)
11 + {
12 + __set_errno (ENOMEM);
13 + return 0;
14 + }
15 arena_get(ar_ptr , bytes + alignment + MINSIZE);
16 if(! ar_ptr)
17 return 0;
18 }

Code 1 Patch for function memalign in malloc.c from GNU C Library 2.18 or earlier.

Despite substantial efforts dedicated to generating error sequences, we find some insights that have not been considered
in existing research on generating program inputs. Specifically, we observe that many error points exhibit significant
correlation because they share (longest) common paths. However, existing fuzzers do not take this factor into account
when generating program inputs, resulting in fuzzers repeatedly generating program inputs to cover these common paths.
For example, the CVE-2013-4332 vulnerability40 indicates multiple integer overflows in malloc.c in GNU C Library
version 2.18 and earlier. These vulnerabilities allow an attacker to cause integer overflow by manipulating the variable
bytes in function memalign, valloc, and pvalloc, leading to a denial of service (heap corruption). The vulnerability arises
due to the lack of checks on the variable bytes in the program and the absence of capability of error handling when the
value of bytes exceeds a certain range. As shown in Code 1, lines 9–14 demonstrate the patch addressing the overflow
vulnerability in the memalign function. Specifically, a check is introduced in this patch to examine the variable bytes. If
the value of this variable exceeds SIZE_MAX - alignment - MINSIZE, an error message is thrown. Without this necessary
check, integer overflow may happen. Similar overflow vulnerabilities also exist in the functions valloc and pvalloc, all
due to the lack of checks on the variable bytes. Furthermore, memalign, valloc, and pvalloc reside within the same switch
case structure and share a common execution path, specifically ⋯ → allocate_thread → allocate → allocate_1 → switch
case (as shown in Code 2). This suggests that if a fuzzer separately solves the error points for functions memalign, valloc,
and pvalloc, it may redundantly solve the common execution path, thereby diminishing the efficiency of the fuzzer. We
elaborate on this aspect in Section 2.2.

To enhance the capability of the SFI-based fuzzer in exploring error points, this paper proposes an optimization strategy
that incorporates concolic execution to expedite the process of reaching related error points that share common paths. To
implement this strategy, our approach begins by clustering error points that exhibit common paths, ensuring that within
each cluster, the distance between all error points and their common parent node is less than a specified threshold. Next, we
evaluate the significance of each cluster by calculating its weight, which is determined by both the number of injected error

336 Journal of Computer Security 33(5)

points within the cluster and the distance of the cluster from the current path. This evaluation allows us to prioritize which
cluster’s error points to explore, focusing on those most likely to lead to important and diverse findings. Subsequently, we
derive constraints for the paths that enable approaching or reaching the prioritized cluster. By providing the fuzzer with
test cases that meet these constraints, it can efficiently explore related error points with minimal redundancy.

These strategies are integrated into a fuzzing framework named HuntFUZZ. We conducted a thorough experimental
evaluation to validate its effectiveness and performance. The experimental results demonstrated that HuntFUZZ identified
known error-handling bugs, and it also discovered seven zero-day bugs. Additionally, we compared HuntFUZZ with
several state-of-the-art fuzzing methods, showing that it exhibits stronger error point testing capabilities and broader error
point coverage.

In conclusion, this paper makes the following contributions:

• We present HuntFUZZ, a novel SFI-based fuzzing framework designed to improve the efficiency of error point
detection through clustering techniques. Additionally, we propose an optimization algorithm that incorporates con-
colic execution to effectively resolve input constraints for error points within each cluster. This approach facilitates
more targeted testing by guiding the fuzzer toward specific clusters of error points, while avoiding redundant
exploration of error points that share common paths. As a result, HuntFUZZ significantly enhances the fuzzer’s
effectiveness in error point testing. Our findings also demonstrate HuntFUZZ’s capability in effectively exploring
deep-state error points—defined in this paper as error points with a depth exceeding 500 in the control flow graph
(CFG), as discussed in Section 5.2.1. This is attributed to the integration of concolic execution, which aids in testing
some deep-state error points dependent on very intricate and specific constraints.

• We evaluate HuntFUZZ across a diverse spectrum of 42 applications, including two datasets (Unibench41 and
programs previously tested by EH-FUZZ21) as well as nine additional non-benchmark programs. HuntFUZZ
successfully discovered a total of 162 known bugs, including 62 error-handling bugs. Additionally, HuntFUZZ
uncovered seven zero-day bugs. We compare it with four established fuzzing approaches (AFL34, AFL++42,
AFLGo43, and EH-FUZZ21). The results affirm that HuntFUZZ can discover more error-handling bugs and achieve
accelerated and superior coverage of error points. Notably, compared to the contemporary SFI-based fuzzing method
(i.e. EH-FUZZ), HuntFUZZ exhibits a remarkable 38.9% increase in error coverage.

• We have made HuntFUZZ available, and the source code can be accessed at https://github.com/weijinjinnihao/
HuntFUZZ.

2 Background and key insights

2.1 Background
2.1.1 SFI-based fuzzing for error-handing test. Although errors in the program are not frequent, failure to handle errors
properly can lead to serious security vulnerabilities, posing a significant threat to the normal operation of the system.
Examples of such threats include denial of service, information disclosure, local privilege escalation, and other critical
impacts.21 While some traditional fuzzers23,39 are adept at discovering some errors by rapidly generating program inputs,
these input-driven fuzzing approaches often fall short in detecting input-independent errors, because these types of errors
typically stem from exceptional events that sporadically occur, such as insufficient memory or network connection failures.
Thus, traditional fuzzers prove ineffective in handling errors.

To overcome the limitations of traditional fuzzers, researchers introduce SFI8,22,44–8 into traditional fuzzing to trigger
input-independent errors and force the execution of error paths. Specifically, SFI introduces faults or errors into the tested
program and then runs the program to test whether it can effectively handle the injected faults or errors.19 The code
locations where errors are injected are referred to as error points. SFI-based fuzzing typically begins by conducting a
static analysis of the source code of the tested program to identify error points. Subsequently, the fuzzer mutates error
sequences, indicating whether the error points can execute normally or fail, based on the calling context of error points.21

Then, SFI-based fuzzing approaches follow the traditional fuzzing procedure to generate and mutate program inputs based
on code coverage. This fusion of SFI testing with fuzzing testing is known as SFI-based fuzzing.17–21 Different SFI-based
fuzzing approaches have been developed. Among them, POTUS17 and FIZZER18 focus on testing kernel-level drivers but
overlook the execution contexts of injected faults and lack input mutation capabilities. iFIZZ20 targets internet of things
(IoT) firmware applications, taking into account the execution contexts of injected faults, but lacking input mutation.
FIFUZZ19, designed for testing user-level applications, considers the execution contexts of injected faults and supporting
input mutation. As the contemporary SFI-based fuzzing approach, EH-FUZZ21 can test both user-level applications and
kernel-level modules, and it proposes using error coverage to guide the generation of error sequences.

https://github.com/weijinjinnihao/HuntFUZZ

Wei et al. 337

2.1.2 Concolic execution and hybrid fuzzing. Concolic execution38,51–55 is a software verification technique that combines
concrete execution with symbolic execution. In this approach, concrete inputs to the program are initially marked as
symbolic variables. Then, a concolic executor runs the target program according to a specific program input, collects con-
straints encountered during the execution path, and subsequently creates new program inputs by negating these constraints.
The newly generated inputs are typically fed back into the system to explore various execution paths.

While traditional fuzzing is effective at rapidly generating inputs, it generally produces only inputs that lead to execution
paths with relatively loose branch conditions.56 In contrast, concolic execution excels at discovering inputs that lead to
execution paths with complex branch conditions.38 To leverage the strengths of both traditional fuzzing and concolic
execution, a hybrid approach—known as hybrid fuzzing38,52,56–58—has been developed. In hybrid fuzzing, the concolic
executor takes inputs from the fuzzer, generates new program inputs, and feeds them back to the fuzzer. This process
enables the exploration of new execution paths, assisting the fuzzer in uncovering paths governed by intricate branch
conditions.

2.2 Key insights
By analyzing the locations of error points, we observe a notable correlation among the paths to error points. In particular,
many error points share common paths from the program’s entry point to the occurrence of the error. This suggests
that when the fuzzer separately addresses these error points, it may redundantly explore or solve the common execution
paths, potentially diminishing the efficiency of the fuzzer. However, this issue is largely overlooked in existing SFI-based
fuzzing methods. For example, in Section 1, we discussed the vulnerability CVE-2013-4332 in the GNU C Library, which
leads to integer overflows in the functions memalign, valloc, and pvalloc. The vulnerability in each function arises from
manipulating the variable bytes in a way that causes it to exceed the maximum representable value for the integer data
type. Hence, we consider each manipulation of the variable bytes in these functions memalign, valloc, and pvalloc as an
exploitable error point. Next, let us consider the path relationship of the functions memalign, valloc, and pvalloc. As shown
in Code 2, these three functions are within the same switch case structure. This switch case structure is invoked by the
function allocate_1, and based on the value of the variable allocation_function, it selects one of the functions memalign,
valloc, or pvalloc to execute. Therefore, within this switch case structure, there are three error points that need to be tested,
occurring at line 8, line 13, and line 18. Additionally, the calling path for these three error points is common, traversing
through … → allocatethread → allocate → allocate_1 → switch case. If a fuzzer is used to individually explore these
three error points, it would require generating test cases repeatedly to explore each path. In this paper, we aim to minimize
the redundancy in exploring these paths. We strategically cluster these error points and leverage concolic execution to
solve the constraints of paths that enable approaching or reaching the cluster. Subsequently, the fuzzer only needs to vary
values in the program input minimally to reach different error points. For instance, in Code 2, altering the value of the
variable allocation_function would be sufficient.

1 // ... -> allocate_thread -> allocate -> allocate_1 -> switch case
2 allocate_1 (void)
3 {
4 switch (allocation_function)
5 {
6 case with_memalign :
7 {
8 void *p = memalign (alignment , allocation_size); // error point 1
9 return (struct allocate_result) {p, alignment };

10 }
11 case with_valloc:
12 {
13 void *p = valloc (allocation_size); // error point 2
14 return (struct allocate_result) {p, page_size };
15 }
16 case with_pvalloc:
17 {
18 void *p = pvalloc (allocation_size); // error point 3
19 return (struct allocate_result) {p, page_size };
20 }
21 }
22 }

Code 2 memalign, valloc and pvalloc reside within the same switch case structure.

338 Journal of Computer Security 33(5)

Figure 1. Overall architecture of HuntFUZZ.

Through this clustering strategy, several benefits are achieved:

• Improved effectiveness in testing error points for SFI-based fuzzing methods. By reducing the redundant explo-
ration of common paths among error points, HuntFUZZ can test more error sequences within the same timeframe
compared to existing SFI-based fuzzing methods. This conclusion is validated in Section 5.2.2. Furthermore, to
assess the impact of clustering, we compare the number of error sequences tested with versus without clustering in
Section 5.3.1, demonstrating that the clustering method indeed helps in effectively testing more error sequences.

• Enhanced detection of deep-state error points. Existing SFI-based fuzzing methods typically rely on traditional
fuzzing methods to generate program inputs, which may struggle to test some deep-state error points that depend
on highly intricate and specific constraints38, as discussed in Section 2.1.2. However, HuntFUZZ utilizes concolic
execution to strategically solve input constraints within a cluster, which may include deep-state error points. This
systematic approach enables the fuzzer to cover such deep-state error points more comprehensively. This is validated
in Section 5.2.1.

3 Design of HuntFUZZ
In this section, we explain our design of HuntFUZZ. The overall architecture is illustrated in Figure 1. Firstly, Hunt-
FUZZ statically analyzes the tested program to extract error points using the error point extractor. Like existing SFI-based
fuzzers21, the fuzzer’s test case generator then produces program inputs for executing the target program, following a
traditional fuzzing approach. The fuzzer gathers the execution status of error points, and the error sequence generator then
produces error sequences that indicate if the error points should execute normally (represented as 0) or fail (represented
as 1) due to an injected fault, depending on the execution status of the error points. Meanwhile, the fuzzer also gathers
runtime information and detects bugs.

In addition to the general flow described above, this paper innovatively introduces the following extra modules:

• Error points clustering: This process involves clustering all error points based on the CFG of the tested program
and the error point list (generated by the error point extractor). Error points grouped into the same cluster typically
share a common path. Moreover, error points within the same cluster tend to have distances from their nearest
common parent node that fall within a specific range. We will elaborate on this aspect in Section 3.1.

• Cluster weight calculation: In this process, HuntFUZZ chooses a test case generated by the fuzzer and calculates
the weight of each cluster based on the number of injected error points in each cluster and the distance from the
current path which is determined by this test case. The cluster with the highest weight is then selected as the cluster
that the fuzzer aims to reach. We will elaborate on this process in Section 3.2.

• Constraint solving: To avoid redundant exploration of error points within a cluster, we provide the fuzzer with
optimized test cases. Specifically, based on the cluster with the highest weight obtained from the previous step, the
concolic executor then outputs the test cases designed to approach or reach the common parent node of a cluster
with the highest weight. We will provide a detailed explanation of this process in Section 3.3.

• Fuzzing-based iterative constraint solving: After the concolic executor provides test cases capable of approach-
ing or reaching the current cluster with the highest weight, this iteration continues until either the fuzzer generates

Wei et al. 339

Figure 2. A control flow graph (CFG) of a tested program along with error points that need testing.

test cases that cover all injected error points in the cluster or the number of generated test cases reaches a predefined
threshold (indicating that reaching some error points might be difficult). During this iteration, the fuzzer continu-
ously generates inputs. Once the iteration is complete, the concolic executor outputs test cases that can approach or
reach the next cluster. We will discuss this process in detail in Section 3.4.

Technical challenges. We pinpoint three challenges in implementing our approach: 1) How to design a clustering
method for error points? 2) How to calculate the weight for each cluster? 3) How to design an optimization algorithm to
efficiently obtain test cases that approach or reach the cluster?

To illustrate our idea, we provide an example as shown in Figure 2. We schematically illustrate a partial CFG of a tested
program along with error points that need testing. Nodes in the CFG represent the basic blocks of the program, so nodes
EP1 to EP4 represent the basic blocks where the four tested error points reside. Edges in the CFG represent condition
constraints to reach that node. The program’s entry point is the main function, which takes program input and executes
specific program paths. Suppose a certain program input leads to the program following the path: main → A → D → E,
and we want the fuzzer to test error points along other paths. For instance, intuitively, error points EP1, EP2, and EP3,
which are closely located and share a common path: main → A → B. To effectively reach these three error points, we
want the concolic executor to output test cases approaching or reaching the common parent node B, allowing the fuzzer to
mutate these output test cases to generate new test cases. Given their closeness in distance to node B, we expect the fuzzer
can easily reach the three error points. In addition to guiding the fuzzer to reach these three error points, this approach also
offers the advantage of efficiency, as it reduces redundancy in exploring the common path repetitively for each error point.

3.1 Error points clustering
To identify error points with common paths, in this module, we propose a clustering algorithm for error points. For a given
k value, this algorithm ensures that the error points grouped together have a distance from their nearest common parent
node that is less than or equal to k. Therefore, k represents the maximum distance between all error points in a cluster

340 Journal of Computer Security 33(5)

and their (nearest) common parent node. Theoretically, the value of k can be defined as a fixed integer within the range
(0, maxDepthEP) (line 4 in Algorithm 1), where maxDepthEP denotes the maximum depth of the error points. However,
in our experiments on several real-world programs (discussed in Section 5.3.1), we evaluated cases with different values
of k, starting at 1 and incremental increasing by 1. The experimental results indicate error coverage improves from 1 to 2,
and then decreases as k increases further (e.g. k = 3, 4, 5 as we tested). Based on these observations, we have selected
k=2 as the default value for testing real-world programs in Section 5.

Algorithm 1. Error points clustering
Input: error point list E, control flow graph G
Output: error point cluster EPC
procedure getErrorPointCluster (E,G)
1: EPC ← []
2: S ← [] // indicating whether an error point is visited
3: bbkSet ← []
4: k ← fixed_k_value // define fixed_k_value in the range (0, maxDepthEP)
5: for i ← 0 to length(E) do
6: bbk ← getFatherList(E[i], G, k)
7: bbkSet[i] ← bbk
8: S[i] ← false
9: end for

10: while existUnvisited(S) do
11: CEI ← getRandomEP(E, S)
12: S[CEI] ← true
13: P ← []
14: for i ← 0 to length(bbkSet) do
15: if isSamePATH(S[CEI], S[i]) then
16: P.add(E[i])
17: S[i] ← true
18: else
19: if hasCommon(bbkSet[CEI], bbkSet[i]) then
20: P.add(E[i])
21: S[i] ← true
22: end if
23: end if
24: end for
25: EPC.add(P)
26: end while
27: return EPC
end procedure

As illustrated in Algorithm 1 (for algorithms presented in this paper, the for statements follow the convention of using
a half-open interval, similar to Python59, rather than a closed interval), firstly (lines 5–9), for each error point, we traverse
upward for k iterations to get a set of parent nodes. This set is referred to as bbkSet. This functionality is primarily
implemented by the function getFatherList, which takes three parameters: E[i], G, and k. E[i] represents an error point;
G is the program’s CFG where each node corresponds to a basic block; and k is the traversal depth. Thus, the function
getFatherList traverses upwards from the basic block containing E[i] in the CFG for up to k levels, recording all traversed
basic blocks in bbk. Then, in lines 10–26, we compare the bbkSets of error points. If there are n (n≥ 2) error points sharing
a common node within their respective bbkSets, it signifies that the common ancestor’s distance from these n error points
is less than or equal to k. Consequently, these n error points are clustered together. If this condition is not met, clustering
cannot be performed. For instance, in Figure 2, for the error points EP1, EP2, EP3 and EP4, when k= 2, the bbkSets for
these four error points are, respectively, B, A, EP1, B, B, A, and D, A. It can be observed that EP1, EP2, and EP3 share
a common parent node B, and the distance of these three error points to B is less than or equal to 2. Therefore, we can
cluster EP1, EP2, and EP3 into one group. It is worth noting that EP1, EP3, and EP4 also have a common parent node A.
However, our algorithm chooses to prioritize clustering EP1 and EP2, which belong to the same path (as shown in lines
15–17 of Algorithm 1), because such error points often share longer common paths. For instance, the common path for
EP1, EP2, EP3 is main → A → B, while EP1, EP3, EP4 shares the common path main → A. Clearly, the first clustering
method results in error points with longer common paths. Besides, reducing the redundant exploration of longer common

Wei et al. 341

paths implies a greater improvement in the efficiency of the fuzzer. As a result, the final clustering result for these four
error points is set1: EP1, EP2, EP3, set2: EP4.

3.2 Cluster weight calculation
Initially, the concolic executor follows the path based on a test case generated by the fuzzer, but this path may not approach
or reach the targeted error points. And we need the concolic executor to guide the fuzzer in covering error points within a
specific cluster. To determine which cluster to cover, we propose a strategy that prioritizes covering clusters with a higher
number of injected error points and clusters that are closer to the current path. The reasons for considering these two
characteristics of the cluster are based on the following insights:

• Clusters with a higher number of injected error points represent areas of the program with more frequent or severe
issues. By prioritizing these clusters, we focus on the regions of the code most likely to contain critical bugs.

• Prioritizing clusters that are closer to the current path is related to the requirements of the concolic executor. The
concolic executor needs to solve constraints to reach a specific cluster. This solving process involves collecting
constraints from the current path and deriving the path constraints to the cluster through methods such as negating
the constraint (detailed in Algorithm 3 and Section 3.3). Choosing clusters that are closer to the current path facili-
tates this process, as the concolic executor can more easily collect the constraints needed to reach a nearby cluster
compared to a distant one.

Thus, as shown in Algorithm 2, it first retrieves the complete execution path corresponding to a test case (FI) using
the getCompletePath function (line 2). Then, for each cluster, it determines the number of injected error points within
the cluster and identifies the common parent node (lines 4 and 5). Then, for each node in the complete execution path,
it computes the distance from that node to the common parent node of the cluster and accumulates these distances to
determine the cluster distance (lines 7–9). In lines 10–16, the algorithm performs a weighted sum of the number of
injected error points in the cluster and the inverse of the distance of the cluster, ultimately identifying the cluster with the
highest weight (cluster_max).

Algorithm 2. Get cluster with max weight
Input: error point clusters EPC, error sequence ES, test case generated by fuzzer FI
Output: cluster with maximum weight clusterWeight
procedure getMaxCluster (EPC, ES, FI)
1: maxCw ← 0
2: completePath ← getCompletePath(FI)
3: for i ← 0 to length(EPC) do
4: EPNum ← getEPNum(EPC[i], ES)
5: parentNode ← findCommonParentNode(EPC[i])
6: clusterDistance ← 0
7: for node in completePath do
8: clusterDistance ← clusterDistance + distance(node to parentNode)
9: end for

10: clusterWeight ← w1 × EPNum + w2 × clusterDistance−1

11: if clusterWeight > maxCw then
12: maxCw ← clusterWeight
13: clustermax ← EPC[i]
14: end if
15: end for
16: return clustermax
end procedure

3.3 Constraint solving
In this section, we discuss how the concolic executor generates test cases capable of approaching or reaching a cluster_max
(or its common parent node). Specifically, while executing the current path based on the test case generated by the fuzzer,
the concolic executor collects constraints for this path. However, the current path might not reach the target common
parent node. Then, the concolic executor negates the constraints of the specific conditional branch executed by the current

342 Journal of Computer Security 33(5)

Algorithm 3. Constraint solving
Input: test case generated by fuzzer FI, clustermax
Output: testcases generated by concolic executor
procedure constraintSolving (FI, clustermax)
1: parentNode ← findCommonParentNode(clustermax)
2: currentPath ← getCurrentPath(FI)
3: testcases ← []
4: while FI.unDone() do
5: if currentPath.reached(parentNode) then
6: break
7: end if
8: curInst = currentPath.curInst()
9: if curInst.isConditionalJmp() then

10: originDistanceToClustermax ← getDistanceToClusterMax(curInst.getNext(),parentNode)
11: negateDistanceToClustermax ← getDistanceToClusterMax(curInst.getNegate(),parentNode)
12: if originDistanceToClustermax > negateDistanceToClustermax then
13: curInstConstraint = curInst.getConstraint()
14: negatedPathConstraint = currentPath.getConstraint().add(negate(curInstConstraint))
15: if isSatisfiable(negatedPathConstraint) then
16: testcases.add(exploreNewPath(negatedPathConstraint))
17: else
18: if isSatisfiable(negatedPathConstraint) then
19: testcases.add(exploreNewPath(negatedPathConstraint))
20: end if
21: end if
22: end if
23: end if
24: FI.goOn()
25: end while
26: return testcases
end procedure

instruction and explores new paths to approach or reach the target common parent node. It is worth noting that exploring
new paths by negating constraints and constraint solving is a common strategy in concolic execution.38 Our innovation
lies in applying this strategy to explore clusters of error points.

In detail, as shown in Algorithm 3, this process begins by identifying the common parent node (parentNode) of the
target cluster cluster_max, getting the current execution path (currentPath) of FI, and an empty list is initialized to store
test cases generated by the concolic executor (lines 1–3). The algorithm processes the execution of the fuzzer-generated
test case FI, examining each instruction. If the current execution path reaches the common parent node (parentNode),
the iteration concludes (lines 5–7). For conditional jump instructions, the algorithm uses curInst.getNext() to retrieve the
original next instruction (the non-negated path) and compute its distance to the target parentNode, storing the result
as originDistanceToCluster_max (line 10). Here, the distance is calculated as the distance between the basic block
containing the next instruction (curInst.getNext()) and the basic block containing parentNode. Similarly, the algorithm
uses curInst.getNegate() to retrieve the instruction executed after the negated conditional jump instruction (the negated
path) and computes its distance to the target parentNode, storing the result as negateDistanceToCluster_max (line 11). If
originDistanceToCluster_max is greater than negateDistanceToCluster_max, this indicates that the negated path is closer
to the parentNode, and the condition expression should be negated. Thus, the algorithm adds a negated instruction con-
straint (negate(curInstConstraint)) to the current path constraint (currentPath.getConstraint()) and attempts to solve the
updated constraint (negatedPath-Constraint) using a constraint solver (line 14). It is worth noting that when construct-
ing the negated constraint of conditional jump instructions, the algorithm negates the entire expression of the conditional
jump instruction. For example, if the expression of a conditional jump instruction is p1 ∧ p2, the negated instruction
constraint is constructed as ¬(p1 ∧ p2).

If the negatedPathConstraint is satisfiable, it means test cases can be generated to explore new paths. If the solver fails
to find a solution on the first attempt, the algorithm attempts to solve it again (lines 15–21). The major reason for the
failure in the first attempt is the timeout, which has also been reported in the related work.60 If it still fails, the algorithm
proceeds with executing FI (line 24) until another conditional jump instruction is encountered and meets the criteria for
negation, at which point it will attempt to solve the constraints again. If all the negatedPathConstraint during the execution
of FI cannot be solved, the algorithm will return an empty test case.

Wei et al. 343

3.4 Fuzzing-based iterative constraint solving

Algorithm 4. Fuzzing-based iterative constraint solving
Input: tested program P, all error-points location info EP, error sequence ES, test case generated by fuzzer FI
Output: testcases
1: G ← getCFG(P)
2: E ← getErrorPointList(EP)
3: EPC ← getErrorPointCluster(E, G)
4: TP ← getInjectedErrorPointPath(ES, G, EP)
5: curMutationCount ← 0
6: clustermax ← getMaxCluster(EPC, ES, FI)
7: coverErrorFlag ← []
8: concolic executor generates testcases, testcases ← constraintSolving(FI, clustermax)
9: fuzzer reads testcases

10: while (fuzzer updates FI) do
11: if curMutationCount > mutateThreshold or clusterState == covered then
12: remove currentCluster from EPC
13: concolic executor reads FI
14: nextCluster ← getMaxCluster(EPC, ES, FI)
15: testcases ← constraintSolving(FI, nextCluster)
16: fuzzer reads testcases
17: curMutationCount ← 0
18: continue
19: end if
20: curMutationCount ← curMutationCount + 1
21: for i ← 0 to length(TP) do
22: if (executing FI covers TP[i]) then
23: coverErrorFlag[i] ← true
24: end if
25: end for
26: end while

We define the criteria for determining the completion of a cluster detection iteration as whether the fuzzer is covering
all the injected error points within the cluster or if the number of test cases generated by the fuzzer exceeds a certain
threshold. In the latter case, we may consider that some error points within the cluster are too challenging to be covered.
Once the concolic executor generates test cases capable of approaching or reaching a cluster_max (as shown in Algorithm
3), subsequently, the fuzzer continuously generates inputs until the completion of this cluster detection.

Therefore, the process of an iteration of the constraint solving and fuzzer is depicted in Algorithm 4. For lines 1–9,
it initializes a CFG (G), error point list (E), error point cluster (EPC, based on Algorithm 1), and injected error point
path (TP). Simultaneously, it initializes the count of inputs generated by the fuzzer (curMutationCount), the cluster of
maximum weight (cluster_max, based on Algorithm 2). Then, the concolic executor generates test cases by solving con-
straints (based on Algorithm 3), and the generated test cases are stored as files in a designated directory. The fuzzer reads
the test cases generated by the concolic executor from this directory and performs mutations on these test cases to gen-
erate new ones. Subsequently, lines 10–26 constitute the main loop of fuzzing-based constraint solving. In this process,
the fuzzer continuously generates inputs. Within this flow, lines 11–19 indicate that if all injected error points in a cluster
are covered or if the number of fuzzer-generated inputs reaches mutateThreshold (indicating that generating inputs to
cover some error points is deemed challenging), the concolic executor selects the last tested test case (i.e. updated FI)
from the test case queue, where the FI determines the current execution path, and based on this path, calculates the next
cluster with the highest weight and then generates test cases that approach or reach the cluster. Lines 21–25 signify the
verification of whether the fuzzer-generated input covers the error point. If coverage is achieved, the error point coverage
status is updated. If not, the fuzzer proceeds to generate test cases to cover the uncovered error points within the cluster.

4 Implementation
In this section, we elaborate on the details of implementing HuntFUZZ, covering three main aspects: error points extractor,
static code instrumentation, runtime fuzzing, and concolic executor.

344 Journal of Computer Security 33(5)

4.1 Error points extractor
Our approach extracts function calls as error points, as recent studies19,21,61 indicate that the majority of error points
involve code statements checking error-indicating return values of function calls. We identify candidate error points by
examining functions that return pointers or integers, following the method used in EH-FUZZ.21 Additionally, we employ
nine distinct exception-handling methods to aid in the recognition of error-handling functions. These methods include four
categories implemented through jump branching statements, including return, break, continue, and goto. The other five
categories involve functions that handle exceptional states, such as logging (log), program termination (exit), closing files
or directories (close), deleting files or directories (delete), and freeing memory (free).

4.2 Static code instrumentation
Before initiating the runtime fuzzing and concolic execution phases, it is essential to record program-related information
to the runtime stage. Thus, during the compilation phase, we instrument the following four types of information:

• Basic blocks information: To enable the fuzzer to collect code coverage, we instrument the basic blocks informa-
tion. This instrumentation method assigns a unique ID to each basic block, allowing the program to capture edge
coverage information between two basic blocks when it transitions from one to another during execution.

• Context information: In HuntFUZZ, the fuzzer needs to record the runtime context of each error point, as different
contexts may lead to different error circumstances.21 This context information is represented as the function call
relationships of the error points. To record this information, we insert a monitoring code at the entry and exit points
of each function.

• Error point information: To effectively handle error points, we instrument detailed information about them,
including their precise locations and the mechanisms for fault injection. Fault injection involves skipping the func-
tion call at the error point and assigning its return value to abnormal or error-prone values, such as a null pointer
or a random negative integer. The execution of the fault injection code is controlled by a conditional (if-branch)
statement. Specifically, the program evaluates a flag variable (corresponding to the error sequence) within the con-
ditional. If the flag is set, the original function call is bypassed, and the fault injection code is executed. Otherwise,
the normal execution flow is maintained.

• Cluster information: For each cluster, we assign a unique ID that acts as a prefix for the error points within the
cluster, allowing fuzzer and concolic executor to identify error points and their common parent nodes within the
cluster.

To implement the aforementioned instrumentation, we use LLVM62 to modify the program’s intermediate representa-
tion files, ultimately generating an instrumented binary.

4.3 Runtime fuzzing and concolic executor
To clearly describe the implementation of the runtime fuzzing and concolic executor, we identify and label nine modules
(modules �–�) in Figure 3. First, the instrumented target program (as described in Section 4.2) is provided as input to
both the fuzzer and the concolic executor. Next, we will detail how the fuzzer and concolic executor are deployed.

Fuzzer. In the fuzzer, the test case generator (module �) utilizes AFL’s34 test case generation method to create inputs,
which are then written into the test case queue (module �, a directory). Beyond that, the fuzzer reads output test cases
from the queue that are produced by the concolic executor and have approached or reached the common parent node of
the target cluster. Based on these output test cases, the test case generator mutates them further to create new test cases,
aiming to cover injected error points within the cluster. The error sequence generator (module �) produces error sequences
to determine whether a fault should be injected (same as EH-FUZZ21). The locations and context information (an array that
records the runtime function call stack for each error point) of these error points are recorded in the FaultInjectRecorder
object. The generated error sequences are stored in rawInjectMap, a shared memory variable (module �), which is also
read by the concolic executor to detect fault injection status. Finally, the fuzzer employs bug checkers (module �), such
as ASan63 and MSan64, to analyze runtime memory information and determine if any bugs have been triggered.

Concolic executor. The concolic executor is implemented based on Pin.65 Specifically, the concolic executor reads the
input test cases and error sequence generated by the fuzzer from the test case queue (module �) and shared memory
variable (module �), respectively. It then selects the untested cluster with the highest weight according to Algorithm 2
(module �). Using Pin’s dynamic instrumentation Application Programming Interface, the concolic executor performs
instruction-level dynamic instrumentation on the current execution path (module �). The type of instrumentation applied

Wei et al. 345

Figure 3. Implementation details of runtime fuzzing and concolic executor.

depends on the type of instruction being executed, which determines the corresponding callback function. Specifically, the
analyzeTrace function is used as the callback function for instruction-level instrumentation. This function defines different
callback functions for different instruction types. For instance, if the program reaches a conditional jump instruction, the
analyzeJmp function will be called to instrument the relevant functionality code for constraint collection and solving. As
the current path is executed, the constraints collector (module) gathers and adds the path constraints (implemented in the
getExprFromReg function). The concolic executor monitors whether the distance from the current path to the target cluster
increases. If such an increase is detected, it negates the constraints and explores alternative paths, as outlined in Algorithm
3. Once the path constraints leading to the common parent node of the target cluster are collected, the z3 solver66 (module

) generates test cases that satisfy these constraints. These test cases are then output into the test case queue.

5 Evaluation
In this section, we evaluate the following questions:

• How effective is HuntFUZZ in discovering bugs in real-world applications? Can it discover zero-day bugs?
• How does HuntFUZZ perform compared to other state-of-the-art fuzzing approaches in terms of bug finding, error

coverage, and code coverage?
• How do the parameters associated with the algorithm(s) influence the overarching efficacy of the HuntFUZZ

framework?
• How effective is HuntFUZZ in covering clusters, and what percentage of error points within the clusters are covered?

Based on the test cases output by the concolic executor, what percentage of the test cases generated by the fuzzer
can reach the target cluster_max, and what percentage of the test cases are unable to reach any cluster?

346 Journal of Computer Security 33(5)

Experimental environment and setup. We conducted our experiments on a machine powered by an Intel(R) Xeon(R)
Gold 5118 CPU2.30 GHz with 16 cores. The experiments are performed on an Ubuntu 20.04.5 LTS operating system.
To validate HuntFUZZ, we evaluate it on two datasets (UniBench41 and applications previously tested by EH-FUZZ21),
as well as nine non-benchmark applications. UniBench comprises 20 test applications, while the EH-FUZZ benchmark
consists of 15 test applications. Due to the duplication of two applications across these two datasets, we conducted a total
of 42 application tests. The basic information of these applications is listed in Table 1.

Error point identification. For the tested applications, we first utilize HuntFUZZ to statically analyze their source
code, identifying potential error points. Subsequently, we manually identify realistic error points capable of causing fail-
ures and errors. Table 1 displays the error points recognized by HuntFUZZ. Overall, HuntFUZZ identifies 18,213 error
points. Among them, we manually confirm these error points and ultimately determine 10,684 realistic error points. Indeed,
the manual selection of realistic error points is not challenging, as many error points call the same functions.

5.1 Found bugs
For the error points indicated in Table 1, we utilize HuntFUZZ to conduct testing on them. HuntFUZZ tests each program
using ASan63 and MSan64 to detect bugs, limiting the testing time to 24 h, and repeating the experiment five times. The
results of the bugs we found are shown in Table 1. Overall, HuntFUZZ has discovered 162 known bugs, among which 62
are related to error handling. For bugs leading to program crashes or failures, we manually examine their root causes using
bug reports and source code to determine whether they are known bugs or unique zero-day bugs. Notably, HuntFUZZ
discovered seven zero-day bugs in Jasper, libtiff, OpenSSL, tidy, jqlang, bash, and mksh. We have responsibly reported
these zero-day bugs. The zero-day bug in libtiff has been confirmed by the developers. The zero-day bug in jqlang is also
simultaneously found by OSS-FUZZ76 and this bug has already been fixed. We are awaiting responses regarding the other
bugs.

Here, we provide a detailed overview of the zero-day bugs discovered in Jasper, libtiff, and OpenSSL. The detailed
information about the other zero-day bugs is shown in Appendix A.

Wild free bug in Jasper. In Code 3, the function jas_iccprof_create makes use of jas_malloc (line 5) and
jas_iccattrtab_create (line 9) to check whether the variables prof and prof->attrtab are allocated correctly, with both
jas_malloc and jas_iccattrtab _create encapsulating the malloc function. At this point, upon detecting that prof is
successfully allocated (prof ≠ NULL) while prof->attrtab allocation fails (prof->attrtab = NULL), the program proceeds
to line 14, entering error handling. Consequently, lines 11–12 are not executed, leaving the variable prof->tagtab.ents
uninitialized. However, the error handling code (lines 14–17) invokes jas_iccprof_destroy, and due to the uninitialized
prof->tagtab.ents, when attempting to free prof->tagtab.ents (line 25), a wild free bug occurs.

NULL-pointer dereference bug in libtiff. In Code 4, within the function TIFFReadDirectory, there is an if statement
that checks whether the return value of the function _TIFFMergeFieldInfo is NULL (line 4). The second parameter of
_TIFFMergeFieldInfo is the return value of _TIFFCreateAnonFieldInfo. The function _TIFFCreateAnonFieldInfo uses
_TIFFmal-loc to allocate memory for the variables fld and fld->field_name (lines 24 and 27). When there is a failure
in allocating memory for either of these variables, the return value of _TIFFCreateAnonFieldInfo is NULL. In such a
scenario, calling _TIFFMergeFieldInfo (line 4) leads to a NULL pointer dereference bug.

1 // jas_iccprof_create -> jas_iccprof_destroy -> jas_free
2 static jas_iccprof_t *jas_iccprof_create ()
3 {
4 if (!(prof = jas_malloc(sizeof(jas_iccprof_t))))
5 {
6 goto error;
7 }
8 if (!(prof ->attrtab = jas_iccattrtab_create ()))
9 goto error;

10 prof ->tagtab.numents = 0;
11 prof ->tagtab.ents = 0;
12 return prof;
13 error:
14 if (prof)
15 jas_iccprof_destroy (prof);
16 return 0;
17 }
18 void jas_iccprof_destroy (jas_iccprof_t *prof)
19 {
20 if (prof ->attrtab)

Wei et al. 347
Ta

bl
e

1.
In

fo
rm

at
io

n
ab

ou
t

th
e

ap
pl

ic
at

io
ns

te
st

ed
w

ith
H

un
tF

U
Z

Z
,a

s
w

el
la

s
th

e
id

en
tifi

ed
er

ro
r

po
in

ts
an

d
bu

g
in

fo
rm

at
io

n
fo

un
d

by
H

un
tF

U
Z

Z
.

Te
st

ed
pr

og
ra

m
Ve

rs
io

n
Id

en
tifi

ed
er

ro
r

po
in

ts
R

ea
lis

tic
er

ro
r

po
in

ts
K

no
w

n
bu

gs
Er

ro
r

ha
nd

lin
g

bu
gs

Z
er

o-
da

y
bu

gs

U
ni

be
nc

h41
ex

iv
2

0.
26

13
6

70
3

2
0

gd
k-

pi
xb

uf
-p

ix
da

ta
gd

k-
pi

xb
uf

2.
31

.1
10

7
63

2
0

0
Ja

sp
er

2.
0.

12
+

2.
0.

14
22

7
92

4
2

1
jh

ea
d

3.
00

53
0

35
9

5
3

0
lib

tif
f

3.
9.

7+
4.

5.
1

98
5

69
5

7
3

1
la

m
e

3.
99

.5
83

0
33

2
5

1
0

m
p3

ga
in

1.
5.

2
27

3
19

8
1

0
0

sw
ft

oo
ls

0.
9.

2
67

4
57

1
3

0
0

ffm
pe

g
4.

0.
1

19
8

11
2

13
7

0
flv

m
et

a
1.

2.
1

63
6

25
4

2
0

0
Be

nt
o4

1.
5.

1−
62

8
58

1
34

8
6

2
0

cfl
ow

1.
6
+

1.
7

11
7

88
1

0
0

nc
ur

se
s

6.
1

52
5

21
0

3
0

0
jq

1.
5

61
8

48
5

6
2

0
m

uj
s

1.
0.

2
43

1
27

9
2

0
0

pd
ft

ot
ex

t
4.

00
32

8
16

5
3

1
0

SQ
Li

te
3.

8.
9

15
3

91
5

3
0

bi
nu

til
s

2.
28

36
2

14
4

6
2

0
lib

pc
ap

1.
8.

1
73

1
32

9
4

1
0

tc
pd

um
p

4.
8.

1
91

2
62

6
9

3
0

EH
-F

U
Z

Z
21

vi
m

8.
2.

35
95

33
4

27
0

5
2

0
bi

so
n

3.
8.

1
18

7
12

5
0

0
0

na
sm

2.
15

.0
5

62
26

0
0

0
ca

td
oc

0.
95

10
1

69
5

4
0

cl
am

av
0.

10
4.

1
21

25
12

47
3

1
0

gi
f2

pn
g+

lib
pn

g
2.

5.
14

+
1.

6.
3

12
9

65
0

0
0

O
pe

nS
SL

3.
0.

0
+

3.
0.

9
13

5
10

2
4

3
1

bt
rf

s
Li

nu
x

5.
16

.1
6

92
9

35
1

3
1

0
xf

s
Li

nu
x

5.
16

.1
6

20
1

17
1

1
1

0
jfs

Li
nu

x
5.

16
.1

6
11

4
10

0
2

1
0

ce
ph

fs
Li

nu
x

5.
16

.1
6

46
0

14
0

4
3

0
xh

ci
Li

nu
x

5.
16

.1
6

18
0

10
4

1
1

0
vm

xn
et

3
Li

nu
x

5.
16

.1
6

98
43

3
1

0
N

on
-b

en
ch

m
ar

k
pr

og
ra

m
m

an
-d

b67
2.

12
.0

29
5

15
8

5
2

0
w

of
f2

68
1.

0.
2

16
3

13
9

3
0

0
gz

ip
69

1.
13

39
7

27
2

6
2

0
bz

ip
270

1.
0.

6
43

2
36

5
5

2
0

sa
ss

c71
3.

6.
2

32
1

28
4

3
0

0
tid

y72
5.

9.
20

52
7

38
1

2
0

1
jq

la
ng

73
1.

7
11

8
67

3
1

1
ba

sh
74

5.
2.

21
82

7
35

1
8

3
1

m
ks

h75
m

ks
h-

R
59

c
72

4
34

3
6

2
1

To
ta

l
42

18
,2

13
10

,6
84

16
2

62
7

348 Journal of Computer Security 33(5)

21 jas_iccattrtab_destroy (prof ->attrtab);
22 if (prof ->tagtab.ents)
23 jas_free(prof ->tagtab.ents);
24 jas_free(prof);
25 }
26 void jas_free(void *ptr)
27 {
28 free(ptr);
29 }

Code 3 Wild free bug in Jasper.

1 // TIFFReadDirectory -> _TIFFMergeFieldInfo -> _TIFFCreateAnonFieldInfo -> ...-> _TIFFmalloc
2 TIFFReadDirectory(TIFF* tif)
3 {
4 if (! _TIFFMergeFieldInfo (tif , _TIFFCreateAnonFieldInfo (tif , dp->tdir_tag , (TIFFDataType) dp

->tdir_type) ,1))
5 }
6 int _TIFFMergeFieldInfo (TIFF* tif , const TIFFFieldInfo info[], int n)
7 {
8 for (i = 0; i < n; i++)
9 {

10 const TIFFFieldInfo *fip =
11 _TIFFFindFieldInfo (tif , info[i].field_tag , info[i]. field_type);
12 if (!fip) {
13 *tp++ = (TIFFFieldInfo *) (info + i);
14 tif ->tif_nfields ++;
15 }
16 }
17 return n;
18 }
19 TIFFFieldInfo * _TIFFCreateAnonFieldInfo (...)
20 {
21 fld = (TIFFFieldInfo *) _TIFFmalloc(sizeof (TIFFFieldInfo));
22 if (fld == NULL)
23 return NULL;
24 fld ->field_name = (char *) _TIFFmalloc (32);
25 if (fld ->field_name == NULL)
26 {
27 return NULL;
28 }
29 }
30 void* _TIFFmalloc(tsize_t s)
31 {
32 return (malloc ((size_t) s));
33 }

Code 4 NULL-pointer dereference bug in libtiff.

NULL-pointer dereference bug in OpenSSL. When testing the OpenSSL custom module X509 with insufficiently
allocated space for X509, it can result in the function do_cmd calling the function lh_FUNCTION_retrieve, which sets
the value of the variable fp to NULL (line 5, Code 5). Subsequently, when invoking the function EVP_get_digestbyname
in line 8, it leads to the execution of the function ossl_lib_ctx_get_data (line 1). The function ossl_lib_ctx_get_data
is responsible for retrieving context information (line 15) and dereferencing the variable ctx->lock (line 16). Besides,
the function context_init initializes the structure variable ctx. When initialization fails, the error handling code is exe-
cuted, setting all fields of ctx to NULL. This results in a NULL-pointer dereference bug when dereferencing the variable
ctx->lock in line 16.

1 // do_cmd -> lh_FUNCTION_retrieve -> EVP_get_digestbyname ->...-> ossl_lib_ctx_get_data
2 static int do_cmd ()
3 {
4 //fp: retrieve function pointer
5 fp = lh_FUNCTION_retrieve(prog , &f);
6 if (fp == NULL)
7 {
8 if (EVP_get_digestbyname(argv [0])) {...}

Wei et al. 349

9 }
10 return 1;
11 }
12 void *ossl_lib_ctx_get_data ()
13 {
14 ctx = ossl_lib_ctx_get_concrete (ctx);
15 if (! CRYPTO_THREAD_read_lock (ctx ->lock))
16 return NULL;
17 }
18 static int context_init(OSSL_LIB_CTX *ctx)
19 {
20 ctx ->oncelock = CRYPTO_THREAD_lock_new ();
21 if (ctx ->oncelock == NULL)
22 goto err;
23 return 1;
24 err:
25 memset(ctx , ’\0’, sizeof (*ctx));
26 return 0;
27 }

Code 5 NULL-pointer dereference bug in OpenSSL.

Bug features. We attribute HuntFUZZ’s ability to discover zero-day bugs to its capacity to achieve higher error cover-
age than other fuzzers within the same timeframe (refer to Section 5.2.2). Error coverage signifies the fuzzer’s proficiency
in thoroughly testing scenarios involving the injection of errors. Reviewing these zero-day bugs, three key observa-
tions emerge: 1) most of the errors caused by these bugs revolve around operations on pointer-type data. For example,
Jasper’s bug involves a wild free operation on an uninitialized pointer, while the other two involve dereference opera-
tions on NULL pointers. This suggests that incorrect operations on pointers are prone to triggering program crashes or
failures; 2) we find that Jasper and OpenSSL bugs result from incorrect error handling functionality, while the bug in
libtiff is caused by a failed malloc operation. This indicates that our tool can detect not only bugs related to error han-
dling but also other types of bugs leading to program crashes or failures; 3) we find that some zero-day bugs require
the simultaneous activation of two error points to trigger. For example, for Jasper, there are two error points: one where
prof= jas_malloc(sizeof(jas_iccprof_t)) (line 5 in Code 3), and the other where prof->attrtab ≠ jas_iccattrtab_create()
(line 9 in Code 3). The bug in libtiff has two error points: fld=NULL (line 24 in Code 4) and fld->field_name=NULL
(line 27 in Code 4). The OpenSSL bug also has two error points: fp=NULL (line 5 in Code 5) and ctx->lock=NULL
(line 27 in Code 5).

5.2 Comparison to existing fuzzing approaches
We select four state-of-the-art fuzzing approaches for comparison on testing 33 applications from two datasets (Unibench
41 and applications tested by EH-FUZZ21), including three traditional fuzzers (AFL34, AFL++42, and AFLGo43) and one
SFI-based fuzzer: EH-FUZZ.21 It is worth noting that within the current landscape of SFI-based fuzzing approaches17–21,
both POTUS17 and iFIZZ20 are limited to testing specific domains of applications. Specifically, POTUS is tailored for
USB driver testing, while iFIZZ is designed for testing IoT firmware applications. Since these tools do not align with the
applications we intend to test, and to our knowledge, FIZZER18 and FIFUZZ19 are not yet open source, we ultimately opt
for EH-FUZZ as the tool for comparison with HuntFUZZ. We compare HuntFUZZ with selected/representative fuzzing
tools in terms of bug finding, error coverage (the number of error sequences), and code coverage (the number of covered
code branches).

In Table 2, we present the results of the comparative experiments. For each tool, we repeat the experiment five times.
The number of bugs detected by the tool is the total number from all five runs, while the values for branches and error
sequences represent the average across these runs. The depth column indicates the number of error-handling bugs identified
by the tool, where the depths of the error points that trigger these bugs fall within a specific range. For HuntFUZZ, we
configure the parameter values associated with the algorithm at their default value, that is, k= 2, w1=w2= 0.5, and
mutateThreshold= 10,000.

5.2.1 Comparison on bug finding. Due to the fact that AFL34, AFL++42, and AFLGo43 are only capable of testing user-
level applications, they are utilized to assess the user-level applications listed in Table 2. Since AFLGo is a directed
fuzzer43, which means it focuses on guiding the fuzzing process toward specific parts of the code rather than exploring
the entire code randomly, we use the line of the identified error points as AFLGo’s targets. However, no faults are injected
at these error points. It is observed that AFL++ and AFLGo outperform AFL in discovering more bugs, owing to their

350 Journal of Computer Security 33(5)

Ta
bl

e
2.

T
he

re
su

lts
of

co
m

pa
ri

ng
H

un
tF

U
Z

Z
w

ith
fo

ur
st

at
e-

of
-t

he
-a

rt
fu

zz
in

g
ap

pr
oa

ch
es

in
te

rm
s

of
bu

g
fin

di
ng

,e
rr

or
co

ve
ra

ge
,a

nd
co

de
co

ve
ra

ge
.

A
FL

A
FL
+
+

A
FL

G
o

EH
-F

U
Z

Z
H

un
tF

U
Z

Z

D
ep

th
D

ep
th

Te
st

ed
pr

og
ra

m
Bu

g
Br

an
ch

Bu
g

Br
an

ch
Bu

g
Br

an
ch

Bu
g

(e
rr

or
ha

nd
lin

g
bu

g)
<

50
0

>
=

50
0

Br
an

ch
Er

rS
eq

Bu
g

(e
rr

or
ha

nd
lin

g
bu

g)
<

50
0

>
=

50
0

Br
an

ch
Er

rS
eq

ex
iv

2
0

56
36

0
17

,4
97

0
12

,9
45

1(
1)

1
0

26
,4

84
23

,7
41

3(
2)

1
1

11
,3

53
35

,3
72

gd
k_

pi
xb

uf
_p

ix
da

ta
0

92
56

0
14

,5
36

0
14

,8
23

0
0

0
17

,2
56

44
,8

41
2(

0)
0

0
78

21
58

,9
52

ja
sp

er
0

79
04

0
11

,2
53

0
12

,5
53

2(
1)

1
0

15
,9

04
56

84
4(

2)
1

1
69

78
70

23
jh

ea
d

0
99

53
0

99
52

0
10

,2
34

2(
1)

1
0

15
,5

64
78

31
5(

3)
1

2
83

42
91

02
lib

tif
f

0
42

46
0

29
,5

47
2

11
,5

68
3(

1)
1

0
36

,8
50

30
,4

95
7(

3)
2

1
14

,1
09

44
,0

51
la

m
e

0
52

42
0

26
,2

34
0

19
,8

35
1(

0)
0

0
27

,2
30

96
1

5(
1)

0
1

15
,9

67
12

37
m

p3
ga

in
0

72
54

0
10

,6
32

0
98

94
0

0
0

17
,5

46
21

3
1(

0)
0

0
94

48
11

49
sw

ft
oo

ls
0

63
51

0
16

,5
69

0
13

,0
56

0
0

0
21

,6
54

24
,5

10
3(

0)
0

0
12

,3
05

36
,2

94
ffm

pe
g

0
51

27
2

13
,2

46
3

12
,0

65
10

(5
)

4
1

25
,3

12
12

,3
68

13
(7

)
4

3
10

,3
20

19
,3

76
flv

m
et

a
0

44
65

0
14

,2
54

0
10

,9
34

1(
0)

0
0

16
,4

46
29

84
2(

0)
0

0
82

95
42

08
Be

nt
o4

0
99

62
0

22
,1

56
0

22
,1

05
2(

1)
1

0
24

,3
04

56
92

6(
2)

1
1

17
,7

30
88

43
cfl

ow
0

22
58

0
15

,0
61

0
15

,9
64

1(
1)

1
0

16
,2

18
36

7
1(

0)
0

0
46

92
99

2
nc

ur
se

s
0

34
33

0
23

,9
72

0
19

,1
27

1(
1)

1
0

28
,3

38
20

72
3(

0)
0

0
19

,9
34

30
15

jq
0

45
49

0
34

,5
01

0
12

,2
57

4(
2)

2
0

35
,5

54
35

91
6(

2)
2

0
12

,4
13

42
18

m
uj

s
0

25
42

0
88

39
0

10
,2

13
1(

0)
0

0
12

,2
40

15
36

2(
0)

0
0

64
91

20
59

pd
ft

ot
ex

t
0

38
07

0
19

,9
56

0
14

,2
47

1(
1)

1
0

28
,7

23
29

85
3(

1)
1

0
14

,3
02

36
45

SQ
Li

te
0

51
54

0
27

,5
62

0
23

,3
95

4(
2)

2
0

31
,1

54
30

51
5(

3)
2

1
19

,9
34

49
59

bi
nu

til
s

0
44

50
0

16
,7

49
0

19
,4

52
3(

2)
2

0
24

,6
01

37
74

6(
2)

2
0

10
,5

56
40

95
lib

pc
ap

0
39

24
0

12
,9

85
0

19
,5

76
3(

1)
1

0
13

,0
24

33
52

4(
1)

1
0

95
60

38
57

tc
pd

um
p

0
31

23
0

20
,1

21
2

18
,7

55
7(

3)
3

0
24

,7
02

19
76

9(
3)

3
0

11
,3

45
29

75
vi

m
0

59
37

0
19

,3
05

0
12

,9
58

3(
1)

1
0

28
,3

17
23

,9
68

5(
2)

1
1

10
,8

51
35

,5
24

bi
so

n
0

40
85

0
14

,5
21

0
11

,9
75

0
0

0
17

,0
22

11
,9

56
0

0
0

10
,8

35
43

,8
77

na
sm

0
43

66
0

78
34

0
83

47
0

0
0

10
,1

18
12

85
0

0
0

64
31

31
02

ca
td

oc
1

58
6

2
67

5
0

66
3

2(
1)

1
0

19
98

82
1

5(
4)

1
3

75
9

10
70

cl
am

av
0

69
61

0
17

,1
40

0
13

,1
25

3(
1)

1
0

19
,9

03
13

,1
24

3(
1)

1
0

12
,1

45
16

,8
32

gi
f2

pn
g+

lib
pn

g
0

51
67

0
42

46
0

34
52

0
0

0
71

23
53

0
0

0
32

45
19

2
op

en
ss

l
0

78
35

0
12

,2
49

1
13

,1
25

3(
1)

1
0

26
,4

84
24

,5
36

4(
3)

1
2

82
40

37
,6

84
bt

rf
s

–
–

–
–

–
–

2(
1)

1
0

11
,2

35
89

4
3(

1)
1

0
12

07
10

52
xf

s
–

–
–

–
–

–
0

0
0

23
,8

45
10

42
1(

1)
0

1
34

81
21

54
jfs

–
–

–
–

–
–

1(
1)

1
0

84
59

12
30

2(
3)

1
2

28
95

26
65

ce
ph

fs
–

–
–

–
–

–
3(

2)
2

0
12

,3
95

73
9

4(
1)

0
1

19
68

15
49

xh
ci

–
–

–
–

–
–

0
0

0
42

92
12

93
1(

1)
0

1
38

63
27

05
vm

xn
et

3
–

–
–

–
–

–
2(

1)
1

0
21

53
13

46
3(

1)
1

0
40

17
37

23
To

ta
l

1
14

3,
57

3
4

44
1,

59
2

8
36

6,
64

3
66

(3
2)

31
(9

6.
9%

)
1(

3.
1%

)
63

2,
44

8
26

4,
31

1
12

1(
50

)
28

(5
6%

)
22

(4
4%

)
30

1,
83

2
40

7,
55

1

Wei et al. 351

Figure 4. Comparsion of EH-FUZZ and HuntFUZZ in terms of error coverage.

integration of superior strategies for input mutation and seed selection. However, due to the absence of injection error
points in these three fuzzing methods, they face challenges in detecting bugs related to error handling. Throughout our
testing process, these three tools do not identify bugs associated with error handling.

Compared to the three aforementioned fuzzers, EH-FUZZ21 and HuntFUZZ both have the capability to test kernel-level
applications. Overall, for the user-level and kernel-level applications listed in Table 2, HuntFUZZ has demonstrated the
discovery of a greater number of bugs compared to EH-FUZZ, particularly in the realm of error-handling bugs. Moreover,
HuntFUZZ identifies all the error-handling bugs detected by EH-FUZZ.

In addition, regarding EH-FUZZ and HuntFUZZ, we summarize the depths of error points that trigger error handling
bugs in the CFG. We find that out of the 32 error-handling bugs discovered by EH-FUZZ, depths of 31 bugs’ error points
<500. Conversely, among the 50 error handling bugs found by HuntFUZZ, depths of 22 bugs’ error points ≥500. This
finding demonstrates that HuntFUZZ has the ability to test error points with deeper depth. We believe this is because,
for some deep-state error points, the program inputs must adhere to very intricate and specific constraints. EH-FUZZ,
using traditional fuzzing methods to generate inputs, may struggle to test these deep-state error points (as we discussed
in Section 2.1.2). In contrast, HuntFUZZ leverages concolic execution to purposefully solve input constraints within a
cluster, which can include deep-state error points. This helps the fuzzer systematically cover such deep-state error points.

5.2.2 Comparison on error coverage. Since the three traditional fuzzing approaches (AFL, AFL++, and AFLGo) cannot
conduct fault injection, we compare HuntFUZZ with the representative SFI-based fuzzing method (EH-FUZZ) in terms
of error coverage. The results are shown in Table 2. Similar to EH-FUZZ21, in this paper, error coverage represents the
number of error sequences (indicating whether the error points can execute normally or fail). The ability to test more error
sequences signifies that the fuzzer can test more scenarios where errors are injected. As shown in Figure 4, we select four
applications—SQLite, OpenSSL, libtiff, and Jasper—to showcase the number of error sequences tested by both EH-FUZZ
and HuntFUZZ. We can see that HuntFUZZ achieves higher error coverage because the clustering enables fuzzing at a
faster pace. Figure 4 shows that HuntFUZZ rapidly ramps up to reach error points, surpassing EH-FUZZ. For example,
when testing SQLite, HuntFUZZ can test approximately 2,000 error sequences within about 8 h. In contrast, EH-FUZZ
takes around 16 h to test the same number of error sequences (HuntFUZZ has an efficiency improvement of roughly
double). Notably, averaging across experiments spanning 24 h for each program test, HuntFuzz achieves 38.9% higher
than EH-FUZZ.

5.2.3 Comparison on code coverage. For code coverage, we compare this metric by summarizing the number of code
branches tested by various fuzzers. As shown in Table 2, we record the number of code branches tested by the five fuzzers.
To further illustrate this, Figure 5 presents how the code branches evolve over time for four selected applications—SQLite,
OpenSSL, libtiff, and Jasper—under the influence of these five fuzzing approaches. Generally, EH-FUZZ achieves higher
code coverage compared to the three traditional fuzzing approaches. This is because EH-FUZZ covers error points in dif-
ferent calling contexts, which encourages it to explore more code branches. However, this also leads EH-FUZZ to explore
some branches that are unrelated to error points. In contrast, HuntFUZZ does not achieve the highest code coverage. This
is because HuntFUZZ focuses specifically on code branches where error points reside, without exploring branches that do
not contain error points.

5.3 The impact of parameters in algorithms
In this section, we explore the impact of several parameters of the algorithm on the error coverage of HuntFUZZ. We
conduct these experiments on seven applications, including SQLite, OpenSSL, libtiff, Jasper, jhead, ffmpeg, and libpcap.
These parameters include the distance parameter k in the error points clustering algorithm (Algorithm 1), the weighted

352 Journal of Computer Security 33(5)

Figure 5. Comparsion of AFL, AFL++, AFLGo, EH-FUZZ, and HuntFUZZ in terms of code coverage.

Figure 6. The influence of k, w1, w2, and mutateThreshold to error coverage.

metrics w1 and w2 in the cluster weight calculation algorithm (Algorithm 2), and the threshold mutateThreshold for the
number of test cases generated by the fuzzer in the fuzzing-based iterative constraint solving algorithm (Algorithm 4).
When investigating the impact of a specific parameter on the error coverage of HuntFUZZ, we maintain the values of the
other variables at their defaults. We define the default values for these three parameters as follows: k= 2, w1=w2= 0.5,
and mutateThreshold= 10,000.

5.3.1 Cluster distance k. In Algorithm 1, the parameter k signifies that the distance of error points within a cluster to their
common parent node is less than or equal to k. Consequently, for a given tested program, the value of k influences the
number of error points within a cluster. As depicted in Figure 6(a), we illustrate the impact of varying k values on the error
coverage of HuntFUZZ across seven applications. Our results represent the error coverage observed after conducting tests
on these applications for 24 h. When k= 0, it implies that the distance from the error point to the common parent is 0.
In this scenario, the concolic executor needs to solve input constraints separately for each error point. As k increases, the
number of error points within a cluster grows, allowing the concolic executor to only solve constraints for the paths that
enable approaching or reaching the cluster. Consequently, the performance of the concolic executor improves. However,
the concolic executor can only guide the fuzzer to the common parent node of these error points, requiring the fuzzer to still
attempt coverage of error points within the cluster. Therefore, as k continues to increase, the performance of the fuzzer
decreases. Hence, during the same testing duration, both excessively small and overly large values of k can adversely
impact the error coverage of HuntFUZZ.

5.3.2 Cluster weights w1 and w2. In Algorithm 2, w1 and w2 are weights assigned to the parameters EPNum (number of
injected error points) and clusterDistance (distance between the cluster and the current path) when calculating the cluster
weight. These weights signify the importance of EPNum and clusterDistance in determining the weight of a cluster. In
Figure 6(b), we present the impact of different values for w1 and w2 on the error coverage of HuntFUZZ. It can be
observed that different values of w1 and w2 lead to slight variations in error coverage. In general, for the majority of
applications, when w1= 0.5 and w2= 0.5, the error coverage of HuntFUZZ is maximized after 24 h.

5.3.3 mutateThreshold. In Algorithm 4, when the fuzzer attempts to cover a cluster of error points, the mutateThreshold
signifies the point at which the exploration of this cluster stops once the fuzzer generates a specified number of test
cases. In Figure 6(c), we document the impact of different mutateThreshold values on the error coverage of HuntFUZZ.
It is evident that as the mutateThreshold value increases, for instance, from 5000 to 10,000, there is an improvement in
HuntFUZZ’s error coverage after 24 h. However, when the mutateThreshold value becomes excessively large (such as
20,000), the error coverage almost plateaus and may even exhibit a slight decline. This is attributed to the fact that an

Wei et al. 353

excessively large mutateThreshold consumes too much time on that specific cluster, hindering the exploration of other
error points and causing the overall error coverage to stabilize or slightly decrease.

5.4 Effectiveness of generated test cases
Although Sections 5.2 and 5.3 discuss the effectiveness of HuntFUZZ in terms of error coverage and code coverage,
HuntFUZZ introduces a novel approach that sets it apart from existing SFI-based fuzzers by incorporating the concept
of clustering error points. Therefore, we also need to validate HuntFUZZ’s effectiveness in covering clusters and assess,
at the cluster level, how many error points within clusters are reached. Additionally, in this section, we also address the
following question: based on the test cases output by the concolic executor, what percentage of the test cases generated by
the fuzzer can reach the target cluster_max, and what percentage of the test cases are unable to reach any cluster?

In practice, HuntFUZZ does not guarantee that all the error points within the cluster will be covered. Although we
intuitively expect that fuzzer mutations of test cases generated by the concolic executor are likely to cover error points in
the cluster (since error points are close to the common parent node and require fewer mutations to reach, as discussed in
Section 2.2), this remains a probabilistic event. There may be cases where the fuzzer’s mutated test cases do not cover
the error points within the cluster. To address this, we conduct the following statistical experiments. For HuntFUZZ,
we configure the parameter values associated with the algorithm at their default value, that is, k= 2, w1=w2= 0.5, and
mutateThreshold= 10,000.

As shown in Table 3, in columns 2–4, we present, respectively, the total number of error points for each tested appli-
cation, the total number of clusters, and the average number of error points per cluster. Column 5 records the average
number of error points within each cluster that are covered by the test cases generated by HuntFUZZ. Column 6 records
the average percentage of test cases generated by HuntFUZZ that are able to reach the target cluster (i.e. cluster_max in
Algorithm 4). Specifically, within each iteration of the iterative constraint-solving process, we calculate the proportion of
test cases that reach the cluster_max by dividing the number of such test cases by the total number of test cases generated
during that iteration. The value in column 6 is the average of these proportions across all iterations. Column 7 records
the percentage of test cases that fail to reach any cluster (including cluster_max and all other clusters). The numbers in
columns 5–7 represent averages from five runs of HuntFUZZ.

From column 5 of Table 3, we can see that the test cases generated by HuntFUZZ cover a significant portion of the error
points within clusters (an average of 88%). This high coverage of error points within clusters indicates the effectiveness
of the test cases generated by HuntFUZZ, demonstrating that the concolic executor indeed helps the fuzzer explore most
of the error points within the clusters. However, we also need to note that even though the concolic executor helps guide
the fuzzer to the cluster, the percentage of fuzzer-generated test cases reaching a target cluster_max is not particularly
high. This is because the fuzzer still randomly mutates the test cases generated by the concolic executor. That is why the
percentage of the fuzzer-generated test cases reaching cluster_max is 39.9% (column 6). Additionally, 27.9% of the test
cases generated by fuzzer do not reach any cluster at all (column 7).

6 Related work
Many recent studies17–21 have utilized SFI-based fuzzing to trigger infrequently executed errors in programs, covering
various scenarios such as USB drivers17, device drivers18, and IoT firmware.20 These techniques typically mutate both
error sequences and program inputs together, aiming to test whether error points will trigger error handling bugs. However,
a common challenge in SFI-based fuzzing is the issue of early crash, where the execution stops if an error is encountered,
preventing the testing from reaching deep error paths. To address this challenge, FIFUZZ19 introduces a context-sensitive
error injection method that effectively distinguishes shallow and deep error points, thus avoiding injecting shallow errors
when testing deep error points. Similarly, iFIZZ20 tackles the problem by saving the context of error points to prevent
the reproduction of previously tested error points. On the other hand, EH-FUZZ21 argues that using code coverage to
guide error sequence generation is insufficient since if two test cases trigger the same error point but in different execution
contexts, these methods would consider them as equivalent. However, the contexts in which these error points are triggered
may differ, and code coverage cannot reflect the context information of error points. In light of this, EH-FUZZ proposes
using error coverage to guide the generation of error sequences. This approach allows for a more comprehensive testing of
handling errors by considering the diverse contexts in which errors can occur, rather than relying solely on code coverage-
based guidance.

However, existing SFI-based fuzzing approaches rely on traditional fuzzing for test case generation, these approaches
do not consider the correlation of paths where error points are located. This leads to fuzzers needing to repeatedly generate
test cases to explore duplicated paths, thereby diminishing the efficiency of the fuzzer. This paper introduces HuntFUZZ,

354 Journal of Computer Security 33(5)

Table 3. The coverage of error points within clusters and the percentage of the test cases generated by the fuzzer that can (or
cannot) reach (any) cluster.

Tested program
Number of
error points

Number of
clusters
(k =,2)

Average number of
error points in
clusters

Average number of
error points
covered in cluster

Test cases that
reach clustermax

Test cases that fail
to reach any
cluster

exiv2 70 17 4.1 3.7 39.4% 32.5%
gdk-pixbuf-pixdata 63 39 1.6 1.0 39.5% 28.7%
jasper 92 22 4.2 4.0 38.5% 24.7%
jhead 359 188 1.9 1.6 38.4% 29.6%
libtiff 695 182 3.8 3.2 44.6% 31.6%
lame 332 73 4.5 3.9 44.6% 24.7%
mp3gain 198 38 5.2 4.8 39.7% 29.9%
swftools 571 150 3.8 3.6 35.3% 25.9%
ffmpeg 112 31 3.6 3.0 37.2% 22.3%
flvmeta 254 56 4.5 4.2 42.2% 30.7%
Bento4 348 69 5.0 4.6 41.4% 32.5%
cflow 88 51 1.7 1.5 41.0% 28.5%
ncurses 210 46 4.6 4.1 35.1% 33.8%
jq 485 186 2.6 2.4 43.2% 24.5%
mujs 279 73 3.8 3.4 42.6% 32.9%
pdftotext 165 45 3.7 3.2 40.0% 24.9%
SQLite 91 21 4.3 3.7 43.5% 32.6%
binutils 144 57 2.5 2.0 43.5% 26.0%
libpcap 329 70 4.7 4.2 37.9% 29.2%
tcpdump 626 223 2.8 2.4 38.3% 27.5%
vim 270 108 2.5 2.2 43.8% 24.2%
bison 125 33 3.8 3.3 38.7% 29.4%
nasm 26 5 5.2 4.7 35.9% 32.1%
catdoc 69 14 4.9 4.7 41.5% 30.9%
clamav 1247 277 4.5 4.2 44.9% 24.1%
gif2png+libpng 65 17 3.8 3.4 35.9% 29.7%
openssl 102 29 3.5 3.1 36.6% 30.6%
btrfs 351 184 1.9 1.7 40.7% 20.9%
xfs 171 34 5.0 4.6 37.7% 20.0%
jfs 100 25 4.0 3.8 36.3% 32.3%
cephfs 140 36 3.9 3.6 37.4% 30.3%
xhci 104 38 2.7 2.0 41.2% 30.4%
vmxnet3 43 26 1.7 1.4 44.0% 26.9%
man-db 158 63 2.5 2.4 43.8% 31.3%
woff2 139 55 2.5 2.2 35.8% 25.7%
gzip 272 181 1.5 1.2 37.4% 25.0%
bzip2 365 110 3.3 2.8 42.9% 25.7%
sassc 284 94 3.0 2.4 35.8% 27.5%
tidy 381 97 3.9 3.4 35.5% 23.6%
jqlang 67 27 2.5 2.3 44.0% 24.5%
bash 351 85 4.1 4.0 42.5% 29.4%
mksh 343 127 2.7 2.6 36.6% 22.4%
Average 254.4 78.6 3.5 3.1 (88%) 39.9% 27.9%

which addresses the aforementioned limitations in SFI-based fuzzing by incorporating concolic execution. Taking into
account the correlation among paths where certain error points are situated, HuntFUZZ solves constraints for paths
that enable approaching or reaching the cluster of certain error points, thereby enhancing the efficiency of the fuzzer
in exploring these error points.

7 Conclusion and future work
In this paper, we introduce HuntFUZZ, by considering correlations among paths containing error points and selectively
solving constraints for paths that enable approaching or reaching error points with path overlaps. Specifically, we propose

Wei et al. 355

an algorithm for clustering error points with common paths, calculating the weight of each cluster, and utilizing an opti-
mization strategy to explore clusters with the highest weights. HuntFUZZ surpasses current SFI-based fuzzing methods
with faster and superior error coverage, specifically showing a substantial 38.9% increase in error coverage compared to
the most advanced SFI-based fuzzing method. Moreover, HuntFUZZ detects zero-day bugs that other tools failed to find.

Furthermore, although we observe the correlation of error points’ paths, such path correlations may be prevalent across
the fuzzer’s targets beyond error handling scenarios. In addition to error-handling scenarios, more general contexts may
also benefit from clustering targets to reduce fuzzers’ exploration of redundant paths. We will delve deeper into this in
future work.

In addition, we still need to manually verify whether the error points identified by HuntFUZZ are actual errors, as
demonstrated in Section 5. We aim to automate this process in our future work. Typical error point patterns often include
recurring function calls, memory allocation issues, and boundary condition checks that can be systematically identified.
Potential automation could involve developing tools to recognize these common patterns using static analysis. By focusing
on frequently occurring patterns, automation can streamline the identification process, making it more manageable despite
the high volume of potential error sites. This will be a focus of our future work.

ORCID iD
Ping Chen https://orcid.org/0000-0002-8517-0580

Funding
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work
was supported by National Key R&D Program of China under grant No. 2022YFB3102902.

Declaration of conflicting interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References
1. Gunawi HS, Rubio-González C, Arpaci-Dusseau AC, et al. Eio: Error handling is occasionally correct. In: 6th USENIX Conference

on File and Storage Technologies, FAST’08, San Jose, California, February 26–29, 2008, USENIX Association, 2560 Ninth St.
Suite 215 Berkeley, CA United States.

2. Saha S, Lozi JP, Thomas G, et al. Hector: Detecting resource-release omission faults in error-handling code for systems software.
In: 2013 43rd annual IEEE/IFIP international conference on dependable systems and networks (DSN), Budapest, Hungary, 24–27
June 2013, pp.1–12. IEEE.

3. Weimer W and Necula GC. Finding and preventing run-time error handling mistakes. In: Proceedings of the 19th annual ACM
SIGPLAN conference on object-oriented programming, systems, languages, and applicationss (OOPSLA ’04), Vancouver, British
Columbia, Canada, Oct. 2004, pp.419–431, Association for Computing Machinery, New York, United States.

4. Cabral B and Marques P. Exception handling: a field study in java and. net. In: ECOOP 2007–object-oriented programming: 21st
European conference, Berlin, Germany, July 30–August 3, 2007. Proceedings 21, 2007, pp.151–175. Springer, Berlin, Heidelberg.

5. Ebert F and Castor F. A study on developers’ perceptions about exception handling bugs. In: 2013 IEEE international conference
on software maintenance, Eindhoven, Netherlands, 22–28 September 2013, Eindhoven, Netherlands, pp.448–451. IEEE, NW
Washington, DC, United States.

6. Kery MB, Le Goues C and Myers BA. Examining programmer practices for locally handling exceptions. In: Proceedings of the
13th international conference on mining software repositories (MSR), Austin Texas, May 14–22, 2016, pp.484–487, Association
for Computing Machinery, New York, United States.

7. Shah H, Görg C and Harrold MJ. Why do developers neglect exception handling? In: Proceedings of the 4th international workshop
on Exception handling (WEN), Atlanta Georgia, November 14, 2008, pp.62–68, Association for Computing Machinery, New York,
United States.

8. Fu C, Ryder BG, Milanova A, et al. Testing of Java web services for robustness. In: Proceedings of the 2004 ACM SIGSOFT
international symposium on Software testing and analysis, Boston, Massachusetts, USA, July, 2004, pp.23–34, Association for
Computing Machinery, New York, United States.

9. Askarov A and Sabelfeld A. Catch me if you can: permissive yet secure error handling. In: Proceedings of the ACM SIGPLAN
fourth workshop on programming languages and analysis for security, Dublin Ireland, June 15–21, 2009, pp.45–57, Association
for Computing Machinery, New York, United States.

10. Jana S, Kang YJ, Roth S, et al. Automatically detecting error handling bugs using error specifications. In: 25th USENIX security
symposium (USENIX Security 16), Austin, TX, Aug. 2016, pp.345–362, USENIX Association, 2560 Ninth St. Suite 215 Berkeley,
CA, United States.

https://orcid.org/0000-0002-8517-0580

356 Journal of Computer Security 33(5)

11. Lawall J, Laurie B, Hansen RR, et al. Finding error handling bugs in OpenSSL using Coccinelle. In: 2010 European dependable
computing conference, Valencia, Spain, 28–30 April, 2010, pp.191–196. IEEE.

12. Zuo C, Wu J and Guo S. Automatically detecting ssl error-handling vulnerabilities in hybrid mobile web apps. In: Proceedings of
the 10th ACM symposium on information, computer and communications security, Singapore, Republic of Singapore, April 14–17,
2015, pp.591–596, Association for Computing Machinery, New York, United States.

13. M. CORPORATION. Cve-2019-7846, 2019. https://nvd.nist.gov/vuln/detail/CVE-2019-7846.
14. M. CORPORATION. Cve-2019-2240, 2019. https://nvd.nist.gov/vuln/detail/CVE-2019-2240.
15. M. CORPORATION. Cve-2019-1750, 2019. https://nvd.nist.gov/vuln/detail/CVE-2019-1750.
16. M. CORPORATION. Cve-2019-1785, 2019. https://nvd.nist.gov/vuln/detail/CVE-2019-1785.
17. Patrick-Evans J, Cavallaro L and Kinder J. {POTUS}: Probing {Off −The−Shelf } {USB} drivers with symbolic fault injection. In:

11th USENIX workshop on offensive technologies (WOOT 17), Vancouver BC Canada, August 14–15, 2017, USENIX Association,
2560 Ninth St. Suite 215 Berkeley, CA, United States.

18. Jiang ZM, Bai JJ, Lawall J, et al. Fuzzing error handling code in device drivers based on software fault injection. In: software
reliability 2019 IEEE 30th International symposium on engineering (ISSRE), Berlin, Germany, 27–30 Oct, 2019, pp.128–138.
IEEE.

19. Jiang ZM, Bai JJ, Lu K, et al. Fuzzing error handling code using {Context-Sensitive} software fault injection. In: 29th USENIX
security symposium (USENIX Security 20), August 12–14, 2020, pp.2595–2612, USENIX Association, 2560 Ninth St. Suite 215
Berkeley, CA, United States.

20. Liu P, Ji S, Zhang X, et al. Ifizz: Deep-state and efficient fault-scenario generation to test IoT firmware. In: 2021 36th IEEE/ACM
International conference on automated software engineering (ASE), Melbourne Australia, November 15–19, 2021, pp.805–816.
IEEE.

21. Bai JJ, Fu ZX, Xie KT, et al. Testing error handling code with software fault injection and error-coverage-guided fuzzing. IEEE
Trans Dependable Secure Comput 2023, vol. 21, pp.1724–1739.

22. Rosenberg HA and Shin KG. Software fault injection and its application in distributed systems. In: FTCS-23 the twenty-third
international symposium on fault-tolerant computing, Toulouse, France, June 22–24, 1993, pp.208–217. IEEE.

23. Yang X, Chen Y, Eide E, et al. Finding and understanding bugs in c compilers. In: Proceedings of the 32nd ACM SIGPLAN confer-
ence on Programming language design and implementation, San Jose, California USA, June 4–8, 2011, pp.283–294, Association
for Computing Machinery, New York, United States.

24. Chen Y, Groce A, Zhang C, et al. Taming compiler fuzzers. In: Proceedings of the 34th ACM SIGPLAN conference on Program-
ming language design and implementation, Seattle, Washington, USA, June 16–19, 2013, pp.197–208, Association for Computing
Machinery, New York, United States.

25. Godefroid P, Kiezun A and Levin MY. Grammar-based whitebox fuzzing. In: Proceedings of the 29th ACM SIGPLAN confer-
ence on programming language design and implementation, Tucson, AZ, USA, June 7–13, 2008, pp.206–215, Association for
Computing Machinery, New York, United States.

26. Wang J, Chen B, Wei L, et al. Skyfire: Data-driven seed generation for fuzzing. In: 2017 IEEE symposium on security and privacy
(SP), San Jose, CA, USA, May 22–26, 2017, pp.579–594. IEEE.

27. Rawat S, Jain V, Kumar A, et al. Vuzzer: Application-aware evolutionary fuzzing. In: NDSS, Vol. 17, 2017, pp.1–14.
28. Holler C, Herzig K and Zeller A. Fuzzing with code fragments. In: 21st USENIX Security Symposium (USENIX Security 12),

Bellevue, WA, August 8–10, 2012, pp.445–458, USENIX Association, 2560 Ninth St. Suite 215 Berkeley, CA, United States.
29. Lemieux C and Sen K. Fairfuzz: A targeted mutation strategy for increasing greybox fuzz testing coverage. In: Proceedings of

the 33rd ACM/IEEE international conference on automated software engineering, Montpellier, France, September 3–7, 2018,
pp.475–485, Association for Computing Machinery, New York, United States.

30. Pham VT, Böhme M, Santosa AE, et al. Smart greybox fuzzing. IEEE Trans Softw Eng 2019; 47: 1980–1997.
31. Aschermann C, Frassetto T, Holz T, et al. Nautilus: fishing for deep bugs with grammars. In: NDSS, 2019.
32. Padhye R, Lemieux C, Sen K, et al. Semantic fuzzing with zest. In: Proceedings of the 28th ACM SIGSOFT international sympo-

sium on software testing and analysis, Beijing, China, July 15–19, 2019, pp.329–340, Association for Computing Machinery, New
York, United States.

33. Wang J, Chen B, Wei L, et al. Superion: Grammar-aware greybox fuzzing. In: 2019 IEEE/ACM 41st international conference on
software engineering (ICSE), Montreal, Quebec, Canada, 27 May 2019, pp.724–735. IEEE.

34. Zalewski M. American fuzzy lop, 2023. https://github.com/google/AFL.
35. Google. Honggfuzz, 2023. https://google.github.io/honggfuzz/.
36. Böhme M, Pham VT and Roychoudhury A. Coverage-based greybox fuzzing as Markov chain. In: Proceedings of the 2016 ACM

SIGSAC conference on computer and communications security, Vienna, Austria, October 24–28, 2016, pp.1032–1043, Association
for Computing Machinery, New York, United States.

https://nvd.nist.gov/vuln/detail/CVE-2019-7846
https://nvd.nist.gov/vuln/detail/CVE-2019-2240
https://nvd.nist.gov/vuln/detail/CVE-2019-1750
https://nvd.nist.gov/vuln/detail/CVE-2019-1785
https://github.com/google/AFL
https://google.github.io/honggfuzz/

Wei et al. 357

37. Gan S, Zhang C, Qin X, et al. Collafl: Path sensitive fuzzing. In: 2018 IEEE symposium on security and privacy (SP), San
Francisco, CA, May 21–23, 2018, pp.679–696. IEEE.

38. Yun I, Lee S, Xu M, et al. Qsym: a practical concolic execution engine tailored for hybrid fuzzing. In: Proceedings of the 27th
USENIX security symposium (USENIX Security 18), Baltimore MD, USA, August 15–17, 2018, pp.745–761, USENIX Association,
2560 Ninth St. Suite 215 Berkeley, CA, United States.

39. Aschermann C, Schumilo S, Blazytko T, et al. Redqueen: Fuzzing with input-to-state correspondence. In: Proceedings of the 26th
Annual network and distributed system security symposium (NDSS), vol. 19, San Diego, CA, February 24–27, 2019, pp.1–15.

40. M. CORPORATION. Cve-2019-4332, 2019. https://nvd.nist.gov/vuln/detail/CVE-2019-4332.
41. Li Y, Ji S, Chen Y, et al. {UNIFUZZ}: A holistic and pragmatic {Metrics-Driven} platform for evaluating fuzzers. In: 30th

USENIX security symposium (USENIX Security 21), Vancouver, B.C., Canada, August 11–13, 2021, pp.2777–2794.
42. Fioraldi A, Maier D, Eißfeldt H, et al. {AFL++}: Combining incremental steps of fuzzing research. In: 14th USENIX workshop

on offensive technologies (WOOT 20), 11 August, 2020, pp.10–21, USENIX Association, 2560 Ninth St. Suite 215 Berkeley, CA,
United States.

43. Böhme M, et al. Directed greybox fuzzing. In: Proceedings of the 2017 ACM SIGSAC conference on computer and communications
security, Dallas, Texas, USA, 30 October–3 November 2017, Association for Computing Machinery, New York, United States.

44. Bai JJ, Wang YP, Liu HQ, et al. Mining and checking paired functions in device drivers using characteristic fault injection. Inf
Softw Technol 2016; 73: 122–133.

45. Banabic R and Candea G. Fast black-box testing of system recovery code. In: Proceedings of the 7th ACM European conference on
computer systems, Bern, Switzerland, April 10–13, 2012, pp.281–294, Association for Computing Machinery, New York, United
States.

46. Cong K, Lei L, Yang Z, et al. Automatic fault injection for driver robustness testing. In: Proceedings of the 2015 international
symposium on software testing and analysis, Baltimore, MD, USA, July 13–17, 2015, pp.361–372, Association for Computing
Machinery, New York, United States.

47. Marinescu PD and Candea G. Lfi: a practical and general library-level fault injector. In: 2009 IEEE/IFIP International Conference
on Dependable Systems & Networks, storil/Lisbon, Portugal, 2009, pp.379–388. IEEE.

48. Mendonca M and Neves N. Robustness testing of the Windows DDK. In: 37th annual IEEE/IFIP international conference on
dependable systems and networks (DSN’07), June 25–28, 2007, pp.554–564. IEEE, NW Washington, DC, United States.

49. Susskraut M and Fetzer C. Automatically finding and patching bad error handling. In: 2006 Sixth European dependable computing
conference, Coimbra, Oct. 18–20, 2006, pp.13–22. IEEE.

50. Zhang P and Elbaum S. Amplifying tests to validate exception handling code. In: 2012 34th International conference on software
engineering (ICSE), Zurich, Switzerland, June 2–9, 2012, pp.595–605. IEEE.

51. Fuzzing IW. Sage: Whitebox fuzzing for security testing. SAGE 2012; 10:1, pp.20–27.
52. Stephens N, Grosen J, Salls C, et al. Driller: augmenting fuzzing through selective symbolic execution. In: NDSS, Vol. 16, 2016,

pp.1–16.
53. Cadar C, Dunbar D, Engler DR, et al. Klee: Unassisted and automatic generation of high-coverage tests for complex systems

programs. In: OSDI, vol. 8, 2008, pp.209–224, USENIX Association, 2560 Ninth St. Suite 215 Berkeley, CA, United States.
54. Cha SK, Avgerinos T, Rebert A, et al. Unleashing mayhem on binary code. In: 2012 IEEE symposium on security and privacy,

San Francisco, CA, USA, May 20–23, 2012, pp.380–394. IEEE.
55. Shoshitaishvili Y, Wang R, Salls C, et al. Sok:(state of) the art of war: Offensive techniques in binary analysis. In: 2016 IEEE

symposium on security and privacy (SP), San Jose, CA, USA, May 22–26, 2016, pp.138-157. IEEE.
56. Pak BS. Hybrid fuzz testing: discovering software bugs via fuzzing and symbolic execution. Master’s thesis, School Comput Sci

Carneg Mellon Univ 2012.
57. Majumdar R and Sen K. Hybrid concolic testing. In: 29th international conference on software engineering (ICSE’07),

Minneapolis, MN, May 20–26, 2007, pp.416–426. IEEE.
58. Poeplau S and Francillon A. Symbolic execution with {SymCC}: Don’t interpret, compile! In: 29th USENIX security symposium

(USENIX security 20), August 12–14, 2020, pp.181–198, USENIX Association, 2560 Ninth St. Suite 215 Berkeley, CA, United
States.

59. Python. https://www.python.org/.
60. Z3 time out issue. https://github.com/Z3Prover/z3/issues/419.
61. Jiang ZM, Bai JJ, Lawall J, et al. Fuzzing error handling code in device drivers based on software fault injection. In: 2019 IEEE

30th international symposium on software reliability engineering (ISSRE), Berlin, Germany, Oct. 28–31, 2019, pp.128–138. IEEE.
62. LLVM pass. https://llvm.org/docs/WritingAnLLVMPass.html.
63. Serebryany K, Bruening D, Potapenko A, et al. {AddressSanitizer}: A fast address sanity checker. In: 2012 USENIX annual

technical conference (USENIX ATC 12), Boston, MA, June 13–1, 2012, pp.309–318, USENIX Association, 2560 Ninth St. Suite
215 Berkeley, CA, United States.

https://nvd.nist.gov/vuln/detail/CVE-2019-4332
https://www.python.org/
https://github.com/Z3Prover/z3/issues/419
https://llvm.org/docs/WritingAnLLVMPass.html

358 Journal of Computer Security 33(5)

64. Msan: memory sanitizer, 2019. http://github.com/google/sanitizers/wiki/MemorySanitizer.
65. Luk CK, Cohn R, Muth R, et al. Pin: building customized program analysis tools with dynamic instrumentation. ACM SIGPLAN

Notices 2005; 40: 190–200.
66. Research M. https://github.com/Z3Prover/z3.
67. man db. https://gitlab.com/man-db/man-db/-/tree/2.12.0?ref_type=tags.
68. woff2. https://github.com/google/woff2.
69. gzip. https://ftp.gnu.org/gnu/gzip/.
70. bzip2. https://github.com/vim/vim/tree/v9.0.1343.
71. sassc. https://github.com/sass/sassc.
72. tidy. https://github.com/htacg/tidy-html5.
73. jqlang. https://github.com/jqlang/jq.
74. bash. https://ftp.gnu.org/gnu/bash/bash-5.2.21.tar.gz.
75. mksh. http://www.mirbsd.org/MirOS/dist/mir/mksh/mksh-R59c.tgz.
76. K S. OSS-Fuzz-google’s continuous fuzzing service for open source software.

Appendix A. Other zero-day bugs found by HuntFUZZ
In this section, we present zero-day bugs discovered by HuntFUZZ in other applications.

READ memory access bug in tidy. As shown in Code 6, the InsertDocType function contains a while loop with the
condition !nodeIsHTML(element) (line 6). The expanded nodeIsHTML macro checks if element and element->tag exist,
and if element->tag->id equals a specific value tid (lines 1 and 2). The bug occurs when element is NULL. In this case,
the condition !nodeIsHTML(element) evaluates to true, leading to the loop’s execution. Inside the loop body, there is an
attempt to access a NULL pointer via element->parent (line 7), resulting in a “READ memory access” error due to invalid
memory access.

1 #define TagIsId(node , tid) ((node) && (node)->tag && (node)->tag ->id == tid)
2 #define nodeIsHTML(node) TagIsId(node , tidyTag_HTML)
3

4 static void InsertDocType (tidyDocImpl* doc , Node *element , Node *doctype)
5 { ...
6 while (!nodeIsHTML(element))
7 element = element ->parent;
8 ...
9 }

Code 6 READ memory access bug in tidy.

Heap overflow bug in jqlang. As shown in Code 7, the function jvp_literal_number_literal calculates a length len as
jvp_dec_number_ptr(n)->digits+ 14 (line 4). It then allocates a memory buffer of size len and stores the pointer in plit-
>literal_data using jv_mem_alloc (line 5). Next, the function decNumberToString is called to convert pdec into a string
and store it in the allocated buffer (line 6). However, decNumberToString calculates the string length as len+ 15, which is
larger than the allocated buffer size. Since the buffer is only allocated with length len, this can cause decNumberToString
to write beyond the allocated memory, leading to a heap overflow.

1 static const char* jvp_literal_number_literal(jv n)
2 { ...
3 if (plit ->literal_data == NULL) {
4 int len = jvp_dec_number_ptr (n)->digits {\ xmlplus} 14;
5 plit ->literal_data = jv_mem_alloc(len);
6 decNumberToString(pdec , plit ->literal_data);
7 }
8 ...
9 }

Code 7 Heap overflow bug in jqlang.

Segmentation fault in bash and mksh. During testing of both bash and mksh, we encounter segmentation fault
errors. In bash, the issue occurred in parse.y within the function pop_string, where accessing t->expander->flags
&= AL_BEINGEXPANDED (Code 8, line 21) failed due to inaccessible addresses set for variables t->expand and t-
>next. Similarly, in mksh, a segmentation fault occurred in the function wdscan (Code 9, line 7) because its parameter wp
pointed to an invalid address. The reasons behind these issues in both applications are currently unclear. We have provided
proof-of-concept exploits for both bugs to the developers and are awaiting their responses.

http://github.com/google/sanitizers/wiki/MemorySanitizer
https://github.com/Z3Prover/z3
https://gitlab.com/man-db/man-db/-/tree/2.12.0?ref_type=tags
https://github.com/google/woff2
https://ftp.gnu.org/gnu/gzip/
https://github.com/vim/vim/tree/v9.0.1343
https://github.com/sass/sassc
https://github.com/htacg/tidy-html5
https://github.com/jqlang/jq
https://ftp.gnu.org/gnu/bash/bash-5.2.21.tar.gz
http://www.mirbsd.org/MirOS/dist/mir/mksh/mksh-R59c.tgz

Wei et al. 359

1 static void
2 pop_string ()
3 {
4 STRING_SAVER *t;
5 FREE (shell_input_line);
6 shell_input_line = pushed_string_list ->saved_line;
7 shell_input_line_index = pushed_string_list ->saved_line_index;
8 shell_input_line_size = pushed_string_list ->saved_line_size ;
9 shell_input_line_len = pushed_string_list ->saved_line_len;

10 shell_input_line_terminator = pushed_string_list ->saved_line_terminator;
11 #if defined (ALIAS)
12 if (pushed_string_list ->expand_alias)
13 parser_state |= PST_ALEXPNEXT ;
14 else
15 parser_state &= ~PST_ALEXPNEXT ;
16 #endif
17 t = pushed_string_list ;
18 pushed_string_list = pushed_string_list ->next;
19 #if defined (ALIAS)
20 if (t->expander)
21 t->expander ->flags &= ~AL_BEINGEXPANDED;
22 #endif
23 free ((char *)t);
24 set_line_mbstate ();
25 }

Code 8 Segmentation fault in bash.

1 const char *
2 wdscan(const char *wp , int c)
3 {
4 int nest = 0;
5 while (/* CONSTCOND */ 1)
6 switch (*wp++) {
7 case EOS:
8 return (wp);
9 case ADELIM:

10 if (c == ADELIM &{\ xmlamp} nest == 0)
11 return (wp + 1);
12 if (ord(*wp) == ORD(/*{*/ ’}’))
13 goto wdscan_csubst ;
14 /* FALLTHROUGH */
15 ...
16 }
17 }

Code 9 Segmentation fault in mksh.

	1 Introduction
	2 Background and key insights
	2.1 Background
	2.1.1 SFI-based fuzzing for error-handing test
	2.1.2 Concolic execution and hybrid fuzzing

	2.2 Key insights

	3 Design of HuntFUZZ
	3.1 Error points clustering
	3.2 Cluster weight calculation
	3.3 Constraint solving
	3.4 Fuzzing-based iterative constraint solving

	4 Implementation
	4.1 Error points extractor
	4.2 Static code instrumentation
	4.3 Runtime fuzzing and concolic executor

	5 Evaluation
	5.1 Found bugs
	5.2 Comparison to existing fuzzing approaches
	5.2.1 Comparison on bug finding
	5.2.2 Comparison on error coverage
	5.2.3 Comparison on code coverage

	5.3 The impact of parameters in algorithms
	5.3.1 Cluster distance k
	5.3.2 Cluster weights w1 and w2
	5.3.3 mutateThreshold

	5.4 Effectiveness of generated test cases

	6 Related work
	7 Conclusion and future work
	ORCID iD
	Funding
	Declaration of conflicting interests
	References
	A Appendix A. Other zero-day bugs found by HuntFUZZ

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

