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Abstract—To detect the potential malicious mobile
applications that may cause data leakages, this paper1

proposes to take advantage of the attack-neutral and hard-
to-avoid system calls of the mobile system, reconstructing
an activity graph for each application to reflect its
interactions with the system. This paper makes efforts to
automate the activity graph generation in Android, with
the main contribution being an open source tool that can
be of great assistance for the test team of application
stores. The tool’s effectiveness has been validated by our
evaluation against some existing or home-brewed mobile
applications that leak data.
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I. INTRODUCTION

The recent security breaches like XcodeGhost hack
[1] and iCloud nude leaks [2] scandal emit strong
signals of potential occurrences of private data leakages
associated with smart phones. With business data and
personal data mixed and co-residing on the same device,
it’s a huge concern to have device owner’s confidential
information exposed to the unexpected audience. The
concerns further extend to employers when the usage
of mobile devices reaches the entry point to the busi-
ness networks and infrastructure, namely entry point
security.

However, revealed by a survey administrated as a
part of this project which attracted 503 anonymous
responses, most of the mobile users haven’t gained
adequate attention for the risks that come along with
their mobile devices. Specifically, according to the
survey, 34% of the users do not analyze and restrict
permissions for mobile applications, 63% do not know
that third party applications may be malicious and
hidden after installation, and over 90% of the users
who root their devices install third party applications
with root privilege, etc.

The above data shows the significant gap between
the mobile security demand and reality. On one side,

1This paper is a report of research outcomes from open source
master projects [4]–[6], and the resultant code can be shared upon
request.

the gap is inherently due to the vulnerabilities inherited
from the insecure programming practices during system
or application development, which is pretty hard to cope
with; on the other side, the gap is rooted in the user-
side lack of security understanding and awareness of
how the system or application runs. Taking XcodeGhost
as a good example, where the vulnerability originated
from the altered versions of Apple Xcode development
environment, both the authors and users of the infected
applications were unaware of this security issue, even
two months after the initial vulnerability report [3].

This paper diagnoses the unawareness as a result
of the black-box view that is delivered by application
developers and held by users. As indicated by its name,
“black-box” describes the way to test or use an object
by viewing it as merely a monolithic intermediate
between given inputs and expected outputs. This view
greatly eases users’ device operation by hiding imple-
mentation complexity behind navigation interfaces, but
also leads to poor awareness and management of the
inside data flow. The same problem was observed and
solved by Jiang et al [7] to reconstruct the semantic
view hidden inside individual virtual machines. Com-
pared to virtual machines which are inherently no dif-
ferent from traditional computers, mobile applications
have more risks in privacy data leakage, as they run in
an environment that is also a repository of personal data,
such as the videos, audios, images, and texts collected
or transmitted through the phone cameras, microphone,
chatting tools, etc. In other words, proximity to user
data turns into a big security concern due to the black-
box view. To provide examples, this paper demonstrates
how malicious mobile applications leak data in Sec-
tion V.

To detect the potential malicious mobile applica-
tions that may cause data leakages, this paper proposes
to break the aforementioned “black-box” view by our
approach which features visualization of the mobile
application activities. This feature allows us see mobile
data leakages if any. And the most appropriate entity to
perform this operation is the intermediate between the
end users and application developers, i.e. the auditing
department of the application stores, which also has
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the responsibility, resources and capability to do so.
The insight of our approach is to take advantage of
the attack-neutral and hard-to-avoid system calls of the
mobile system, reconstructing an activity graph for each
application to reflect its interactions with the system.
In the event that a random test triggers the mobile
application to leak user data, it will be captured and
revealed visually by the activity graph. Figure 1 is an
illustration of a home-brewed application named “Data
Peek” leaking mobile contacts (phone numbers) through
emailing via SMTP protocol.

This paper is an effort to automate the generation of
such activity graphs, with the main contribution being
an open source tool which can be of great assistance for
the application test team. The tool’s effectiveness has
been validated by our evaluation against some existing
or home-brewed mobile applications that leak data.

The rest of this paper is structured as follows: Sec-
tion III describes the model and approach, Section IV
provides the details of the tool implementation, and
Section V gives the evaluation results. Section II reports
the literature review, and Section VI concludes this
paper.

II. RELATED WORK

This paper mainly falls into the following two
categories of research.

Dynamic Analysis for Android Malware Detection
In contrast to static analysis, the dynamic analysis
detects malware by watching its behavior at runtime. It
may still work in the situations of code obfuscation and
dynamic code loading, where static analysis definitely
does not work. Taitdroid [8] tracks information at
runtime to monitor privacy leakage for smartphones.
The mobile dynamic analysis can be system call-based
or API call-based. For example, Afonso et al. [9]
leverages the frequency of system calls and API calls
to differentiate malware from benign software. This
paper differs from the above-mentioned previous work
by being more application-specific, and is designed to
promote the validation of mobile application security
before applications go to the end users.

System Call based Intrusion Detection System calls
were introduced as one way to detect whether a program
has infected by Forrest et al. [10] and Lee et al. [11].
At the beginning, only sequence [12] [13] of the system
calls was leveraged. Later system call arguments [14]
[15], temporal properties [16], and other more sophisti-
cated mechanisms start to be considered. Following the
approaches presented in the study by King and Chen
[17] and in our prior study [18] [19], this paper values
causality relationship embodied by system calls, and
extends the efforts to make this approach work in the
context of mobile malware detection.

Table I: Tested Malicious Mobile Applications.

Malware Description
Home-brewed ones

Data Peek Steal contact information (phone numbers)
Spy Cam Take and upload photos to a remote server

Call Tracker Record and upload calls to a remote server
Existing ones

Exprespam [20] Steal device info, contacts, and emails
Armor for Android [21] Steal device (IMEI) information

III. MODEL AND APPROACH

The proposed activity graph is a visualization to
break the “black-box” view. For this purpose, a graphi-
cal model is expected. Considering that Android, which
is our choice of study platform, is modified based on
Linux kernel, it is rational to adopt the graphical model
that we proposed in a prior study [18] that involves
Linux systems. In this prior study we used the graphical
model for a different purpose, i.e. the zero-day attack
path identification. However, we can easily update the
definition for per-host system object dependency graph
in the prior study with minor modifications, and get
the following Definition 1 which is for per-application.
From this perspective, the mobile application activity
graph is a simplified mutation of the per-host System
Object Dependency Graph (SODG) in the prior study.

Definition 1. Mobile Application Activity Graph (a
simplified mutation of Definition 1 in our prior study
[18])
If the system call trace for the mobile application is
denoted as Σ, then the activity graph for the application
is a directed graph G(V , E), where:
• V is the set of nodes, and initialized to empty

set ∅;
• E is the set of directed edges, and initialized

to empty set ∅;
• If a system call syscall∈Σ, and dep is the

dependency relation parsed from syscall, where
dep∈{(src→sink), (src←sink), (src↔sink)},
src and sink are mobile OS objects (mainly
a process, file or socket), then V = V ∪{src,
sink}, E = E∪{dep}. dep inherits timestamps
start and end from syscall;

• If (a→b)∈E and (b→c)∈E, then c transitively
depends on a.

Figure 1 illustrates one example activity graph.
Compared to per-host SODGs in our prior study, mobile
application activity graphs are usually much smaller
due to its per-application nature instead of being per-
host. As shown in Figure 1, at the center is often a
process, which interacts with other system entities (files
or sockets). Hence, mobile application activity graphs
are also more cognition-friendly than per-host SODGs,
which is deemed to be very valuable for practice.

Another benefit of adopting the same graphical
model is the reuse of the system call dependency rules
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/dev/cpuctl/tasks /sys/qemu_trace/process_name

/data/app/com.project.fetch.contactdetails-1/base.apk

PID 1295

49

/system/framework/ext.jar

18

..other system framework jars

9

61 2

src: 10.0.2.15:57919 dst:74.25.28.108:465 SMTP

1

Figure 1: An example activity graph for an application named “Data
Peek” (tailored due to space constraints), in which a rectangle denotes
a process, a diamond denotes a socket, an ellipse denotes a plain file,
and a house denotes an Android file. The red color highlights the
data leakage. The number on the edge is the number of system calls.
Readers need not discern text in small font.

listed in Table 1 of our prior study [18]. The rules are
used to parse system calls and generate the directed
edges in activity graph, according to Definition 1. For
space constraints, the table is not shown here. Consid-
ering that a mobile system is less capable and more
power-consuming, the Android-based implementation
allows user customization to just use a subset of the
rules (always including some fundamental ones such as
sys read, sys write, sys connect and sys accept, etc.)
for system call parsing. The tradeoff is the potential
escape of data leakages due to the miss of some system
calls.

Definition 1 also defines the steps of the approach
for generating the activity graph. Step 1 logs the system
calls for the target application. Step 2 generates the
activity graph based on the collection of system calls.
Step 3 highlights and discerns the socket objects in the
activity graph which connects to unexpected IPs.

IV. IMPLEMENTATION

The tool is implemented based on an Android em-
ulator with Android SDK, NDK, and Goldfish Kernel
installed. Goldfish Kernel is for supporting Loadable
Kernel Module (LKM).

System Call Auditing As the only step that has to
run on the fly, we perform system call auditing via
Loadable Kernel Module. By locating the system call
table and changing the system call’s address (changed
back when the module exits), the module detours the
system calls of our interests to record their parameters
and return information. It also preserves the object’s
identity information from the corresponding data struc-
tures, such as struct task struct for the process, struct
files struct for the file, and struct sockaddr in for the
socket. As a result, the activity graph objects parsed
from the collection of system calls could have a name
or pathname instead of just a meaningless number.
This constitutes another reason why activity graph is
cognition-friendly for analysts.

Activity Graph Generation This step is implemented
off-line. Taking in the system calls, the parsing process
turns them into a set of objects and edges, where the
edges connect the objects in a directed fashion. Using

the way specified the Definition 1, they can be repre-
sented in a .dot file defined by Graphviz [22]. Graphviz
then could be further used to turn the .dot file into a JPG
or PDF format picture. In the resultant activity graphs,
a rectangle denotes a process, a diamond denotes a
socket, an ellipse denotes a plain file, and a house
denotes an Android file.

Socket Object Validation This step is also imple-
mented off-line. This step needs to ask the analyst to
give a white-list of IP addresses. Then, the white-list is
matched with each of the socket objects in the activity
graph. In the event that a socket object is associated
with an unexpected IP address, an alert is raised and
highlighted. For socket object validations, we could also
deploy baits in the system, such as a file (a photo, an
audio, or a contact) which contains information that
should not flow to Internet. In the event that a socket
object has one of the baits as its predecessor or ancestor
node, an alert is also raised and highlighted, since this
indicates that the bait information is being flowed across
the network boundary.

V. EVALUATION

A. Effectiveness

For evaluation, this paper identified two existing and
three home-brewed malicious mobile applications, all of
which are used for effectiveness test. The application
information is summarized in Table 1. According to
Table 1, the tested applications steal different types of
data, respectively phone numbers, photos, phone calls,
emails, device information and the like. This demon-
strates that our approach is effective in overseeing the
leakages of a diverse set of data.

Figures 1-5 illustrate activity graphs for
the five mobile applications listed in Table
1. Figure 1 shows that the information of
/data/app/com.project.fetch.contactdetails-1/base.apk
flows to the tainted socket which leaks data to the
remote machine with IP: 74.25.28.108 and port: 465
via SMTP. This reveals that the contact details are
indeed stolen by the application named “Data Peek”
via email.

Figure 2 depicts that the application calls
/bg non interactive/tasks to run in the background for
taking photos. The photo is saved to /storage/0AF1-
1D07/Pictures/MYGALLERY/1455508625702.jpg and
also transmitted to the machine with IP: 10.0.0.3 and
Port: 8888. This reveals that the candid photos are
indeed stolen by the application named “Spy Cam”.

Figure 3 illustrates that the application calls
/bg non interactive/tasks to run in the background for
recording the incoming or outgoing calls when the
user receives/makes them. After completing, the audio
recordings are converted from RAW to .wav format, and
transferred to the machine with IP: 10.0.0.3 and Port:
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../tasks ..bg_non_interactive/tasks

../base.apk

PID 1248

49

System Framework JARS

2

119 4

src:10.0.2.15:38142,dst:10.0.0.3:8888,POST /SavePhoto.php

2

..MYGALLERY/1455508625702.jpg

1

Figure 2: An activity graph for an application named “Spy Cam”
(tailored due to space constraints). Same notations used in Figure 1
are also used here.

../tasks ..bg_non_interactive/tasks

/storage/0AF1-1D07/aditi_1457216528949.wav

PID 1248

3

/storage/0AF1-1D07/aditi.raw

107

52 1

src:10.0.2.15:38027,dst:10.0.0.3:8888,POST /UploadToServer.php

1

/storage/0AF1-1D07/aditi_1457216528949.wav

107

Figure 3: An activity graph for an application named “Call Tracker”
(tailored due to space constraints). Same notations used in Figure 1
are also used here.

8888. This reveals that the audio recordings are indeed
stolen by the application named “Call Tracker”.

Figure 4 shows that the application is trying to query
the IP for the site ftukguhilcom.globat.com. The site
was used for uploading the stolen information by this
application when it was discovered in Jan 2013, but is
not active right now. This reveals that the application
named “Exprespam” tried to steal data, but failed due
to unavailability of attacker site.

Figure 5 depicts that the application accesses the
device information (IMEI, IMSI, etc) and tried to con-
nect to several sites, but some of them are unavailable
now. This reveals that the device information is indeed
stolen by the application named “Armor”.

B. Comparison

This paper also compares our system call-based
approach to API call-based approach. For comparison,
we implemented the graph generation based on API
calls, via application call interception and script-based
text mining. Figures 6-8 are the resulting graphs that
were generated from the three home-brewed mobile ap-
plications. Compared to Figures 1-3 which use system
call-based approach, API call-based graphs are more
complex and ad-hoc. In contrast, the system call-based
activity graphs are concise and natural. In addition, sys-
tem call-based activity graphs could be used for logical
inference as the edges represent causality relationships,
where the API call-based graphs are more like profiles
merely providing contextual information for analysis.

VI. CONCLUSION

Inspired by our mobile security survey which at-
tracted over 500 responses and revealed huge risk in
mobile data leakages, this paper presents an open-
source tool based on system calls to build activity
graphs for mobile applications. The activity graph en-
ables the visualization of an application interacting with

/dev/cpuctl/tasks /sys/fs/selinux/context

../frhfsd.siksdk.ujdsfjkfsd-1/base.apk

PID 1215

3

System Framework Jars

1

/seapp_contexts

4

src: 10.0.2.15:59881 dst:10.0.2.3:53 DNS Query for ftukguhilcom.globat.com

82 4 1

Figure 4: An activity graph for an application named “Exprespam”
(tailored due to space constraints). Same notations used in Figure 1
are also used here.

..background tasks ..cpuctl/tasks

../Mixpanelapi.xml

PID 1248

12

Other APPS- ../base.apk

10

../device.xml

2

../APP_PREFS.xml

3 2 443

dst:169:54:128.8,POST Mixpanel

13

dst:103.224.182.244

1

TCP 65.52.244.182

1

Figure 5: An activity graph for an application named “Armor”
(tailored due to space constraints). Same notations used in Figure
1 are also used here.

com.project.fetch.contactdetails

MethodName

Email

User

Password

Port

Host

getString

sendTextMessage

setText

parse

insert

getInstance

setRecipients

setFrom

['TimothyMRester@jourrapide.com']

...

['AlejandroBKennedy@rhyta.com', ..., 'TravisKHunter@armyspy.com']

['arpitatushit27513@gmail.com']

['kartiki.aditi@gmail.com']

arpitatushit27513@gmail.com

arpitatushitshah

465

smtp.gmail.com

Figure 6: A application-call graph for an application named “Data
Peek”, in which a yellow rectangle denotes a project, a pink rectangle
denotes an attribute, and a white rectangle denotes a value. Readers
need not discern text in small font.

com.camera.project.camerawithoutpreview

MethodName

Socketaddress

SdcardReturnValue

getAbsolutePath

execute

http://192.168.78.129/SavePhoto.php

Pictures/MYGALLERY/1460648052389.jpg

Figure 7: A application-call graph for an application named “Spy
Cam”. Same notations used in Figure 6 are also used here.

the mobile system and network, and thus could be
leveraged as an assistance facility for mobile security
personnel to detect and diagnose covert data leakages
caused by the mobile malwares. With Android as our
choice of study platform, this paper implements the tool
and tests it against two existing and three home-brewed
malicious mobile applications. The evaluation results
show that our tool is effective in visually revealing the
causes and processes of data leakages.
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com.project.incomingcallsample

MethodName

Port

localPort

Socketaddress

SdcardReturnValue

getAbsoluteFile

getAbsolutePath

getInputStream

getOutputStream

80

43170

/192.168.78.129

aditi_1460649246153.wav

aditi.raw

Figure 8: A application-call graph for an application named “Call
Tracker”. Same notations used in Figure 6 are also used here.
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