

Table of contents

Introduction

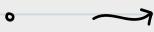
Background and overall problem

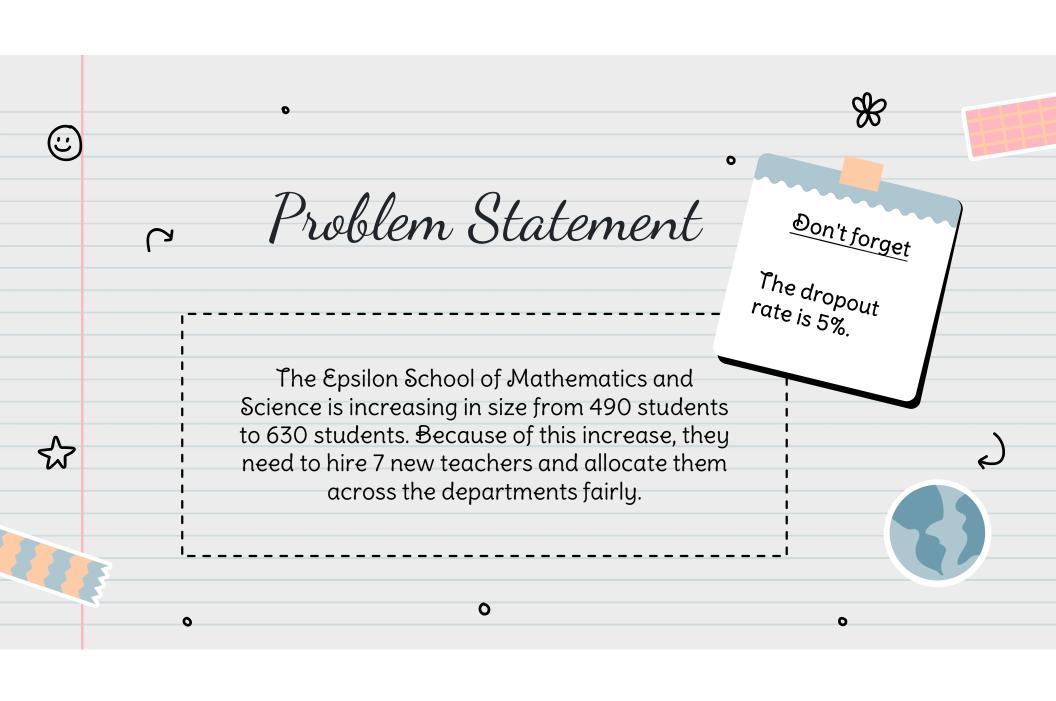
Assumptions

0

Assumptions we made using the information given

Solution


Steps we took to solve the problem


Conclusion

Strengths, weaknesses, and justification.

Assumptions

- 1. Fair means having the same number of class sections per teacher per day.
- 2. Each student takes 1 English Class per year. This gives us the number of students per grade.
- 3. Students drop out after 11th grade but before 12th grade.
- 4. Teachers teach all grades.

- 5. Students in different grades can be in the same class at the same time.
 - All subjects run the same number of sections per day (eg. 5 English classes per day, 5 math classes per day, 5 music classes per day).
- 7. All classes are approximately the same size (+/- 20 students).
- 8. Language teachers teach all languages and the department is combined.

Initial Variables And Hypothesis

The first few "variables" we used were:

- # of teachers in each department
- Class sizes (# of students per class)
- Graduating class size
- Percent that dropped out
- # of new students

Hypothesis:

0

 Before creating the model, we hypothesized that out of the 9 departments, we would add a single new teacher to the 7 departments with the greatest number of classes per teacher.

& Problem Analysis

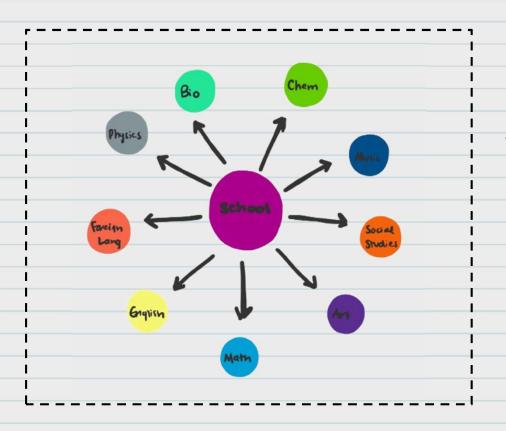
Problem is asking how to hire faculty

What does the current ratio between teachers and students look like?

Many grades have class requirements, so distribution of students should be similar

What
departments
would be the
most strained w/
current faculty?

0


0

Add faculty to these departments

Model Design

For our model, we decided to find ratios of students in each grade and in each department and use that to determine how many classes each teacher must teach. Then, this information can be used to determine what departments need more support.

Current # of students per grade

10th grade: 183

11th grade: 155

12th grade: 152

Total number of students in school: 490

0

Initial Calculations

Incoming class = graduating class + increase in school size

New graduating class = (2nd to last grade) x (percent remaining after dropout)

le-

Relative Frequency

Relative frequency of department of grade = # of students in department in grade / # of students in grade

Relative frequency of 10th grade art = 31/183 = 0.16939891

Relative Frequency Table (2024)	Class	10th Grade	11th Grade	12th Grade
	Art	0.16939891	0.2129032	0.2302632
	Biology	1.08196721	0.6129032	0.1710526
	Chemistry	0.27868852	0.8129032	0.7171053
	English	1	1	1
	All Lang	0.60655738	0.516129	0.6052632
	Math	1.00546448	1.2967742	1.7236842
	Music	0.27322404	0.3612903	0.3223684
	Physics	0.27322404	0.3741935	1.2039474
	Social Studies	0.98360656	0.8451613	0.3881579

0

Next Year Predictions

Example calculation

Predicted # of 10th grade art students = 0.16939891 x 292

Predicted # of students in department in grade = (relative frequency of department of grade) x (# of students in grade)

Predicted Num Students per class (2025)	Class	10th Grade	11th Grade	12th Grade	T
	Art	49.4644809	38.96129	33.90625	;
	Biology	315.934426	178.96774	25.1875	
	Chemistry	81.3770492	148.76129	105.59375	
	English	292	183	147.25	
	All Lang	177.114754	94.451613	89.125	
	Math	293.595628	237.30968	253.8125	i
	Music	79.7814208	66.116129	47.46875	
	Physics	79.7814208	68.477419	177.28125	;
	Social Studies	287.213115	154.66452	57.15625	i
0				~	

le-

Example Calculation

Art: 49.46448087 10th grade students + 38.96129032 11th grade students + 33.90625 12th grade students = 122.3320212 art students

new # of students in a department = Σ predicted # of students in department per grade

Predicted Num Students per class (2025	Class	10th Grade	11th Grade	12th Grade	Total
	Art	49.4644809	38.96129	33.90625	122.3320212
	Biology	315.934426	178.96774	25.1875	520.0896682
	Chemistry	81.3770492	148.76129	105.59375	335.7320895
	English	292	183	147.25	622.25
	All Lang	177.114754	94.451613	89.125	360.691367
	Math	293.595628	237.30968	253.8125	784.7178058
	Music	79.7814208	66.116129	47.46875	193.3662998
	Physics	79.7814208	68.477419	177.28125	325.5400901
	Social Studies	287.213115	154.66452	57.15625	499.0338809

Student to teacher ratio per department = new # of students in department / # of teachers in department

Data from excel

Class	Student to teacher ratio
Art	122.3320212
Biology	130.022417
Chemistry	111.9106965
English	124.45
All Lang	120.2304557
Math	130.786301
Music	193.3662998
Physics	108.5133634
Social Studies	99.80677618

le-

of class sections

of class sections
needed to run
department wide per
school day = new # of
students in department
/ class size

Example

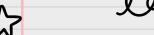
of class sections needed to run in art department = 122.3320212 / 20

Data from excel

Class	Class sections needed (divide by class size: 20)
Art	6.11660106
Biology	26.00448341
Chemistry	16.78660448
English	31.1125
All Lang	18.03456835
Math	39.23589029
Music	9.66831499
Physics	16.27700451
Social Studies	24.95169404

of classes per teacher per
 department = # of class
sections department-wide /
of teachers in department

Example Calculation:


of classes per art teacher = 6.11660106/1 = 6.11660106

Number of classes each teacher has (divide by num of teache	lass sections needed (divide by class size: 20)
6.116601	6.11660106
6.5011208	26.00448341
5.5955348	16.78660448
6.22	31.1125
6.0115227	18.03456835
6.5393150	39.23589029
9.668314	9.66831499
5.4256681	16.27700451
4.9903388	24.95169404

le-

How we decided to increase teachers

We chose to add teachers to the departments with the highest number of classes. We checked how that affected the outcome, and adjusted our solution accordingly.

New Classes per teacher

0

of classes per teacher per department = # of class sections departmentwide / # of teachers in department (increased)

ew # of classes e	ach teacher has
	6.11660106
	5.200896682
	4.196651119
	5.185416667
	4.508642088
	4.904486286
	4.834157495
	5.425668169
	4.990338809

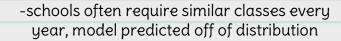
Solution

We added the following numbers of teachers to each department:

- 1 to Biology
- 1 to Chemistry
- 1 to English
- 1 to Foreign Languages
- 2 to Mathematics
- 1 to Music

0

We believe that our model fairly distributes the new teachers because the departments with the most students per teacher now have similar ratios as other departments, and no teacher will have drastically more students than any other.

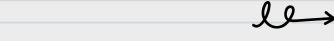


Strengths and Weaknesses

-model allocates teachers evenly (our definition of fair)

0

Weaknesses


-model is based on previous numbers

-students might drop out sophomore year too

-model isn't currently applicable to every situation

0

CREDJTS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon** and infographics & images by **Freepik**

Please keep this slide for attribution

