Problem description

One calm afternoon Calculus Cam decides to launch Hamster Huey into the air using a model rocket. The rocket is launched straight up off the ground, from rest. The rocket engine is designed to burn for specified time while producing non-constant net acceleration given by the equations below. After the engine stops the rocket continues upward in free-fall. A parachute opens after the rocket falls a specified vertical distance from its maximum height. When the parachute opens, assume the rocket instantly stops, and then increases speed to a terminal velocity given by the equation below. Assume the air resistance affects the rocket only during the parachute stage. Calculate the total time the rocket is in the air.

Givens:

Acceleration of rocket while engine burns	$a_{AB}[t] = -1.1t^2 + 21$	m/s²
Engine burn time	t _{AB} = 4.8	sec
Vertical distance rocket falls max height before parachute opens	h = 112	m
Velocity of rocket with parachute	$v_{DE} = -18(1 - e^{-t/11})$	m/s
Gravity	a _{BD} = -9.8	m/s²
Initial velocity	v _A = 0	m/s
Initial position	y _A = 0	m

Variables:

Point A	The rocket is on the ground, right
	before take off.
Point B	The engine of the rocket cuts out.
Point C	The maximum height of the rocket.
Point D	The point when the parachute is
	deployed.
Point E	The rocket hits the ground.

Strategy

- Integrate the acceleration equation into velocity and position equations and substitute the time to solve for velocity (v[t]) and position (y[t]) when the engine cuts out (point B).
- With the velocity and position, use one of the kinematic equations to calculate the maximum height the rocket reaches (point C). Subtracting (h = 112m) from this value will give the height when the parachute deploys (point D).
- 3. Using the kinematic equation, calculate at what time the rocket will reach **point D**.
- 4. Integrate the equation of velocity for when the parachute is deployed (v_{DE}) to find the equation for position (y_{DE}) . Take the equation and solve for time when the rocket hits the ground.
- 5. Add up each subsection for time $(t_{AB} + t_{BD} + t_{DE})$ to find the total time in the air (t_{Total}) .

Step 1 (part 1), Solving for v_B:

The equation of acceleration is $a_{AB}[t] = -1.1t^2 + 21$. $v_{AB}[t]$ can be derived by taking the integral of $a_{AB}[t]$.

$$v_{AB}(t) = \int (a_{AB})dt$$
$$v_{AB}(t) = \int (-1.1t^2 + 21)dt$$
$$v_{AB}(t) = -0.3667t^3 + 21t + C$$

C is 0 m/s because the rocket starts on the ground at rest ($v_A = 0$ m/s). Substituting 0 for C gives:

$$v_{AB}(t) = -0.3667t^3 + 21t$$

The engine burns for 4.8 seconds, so substituting 4.8 in place of t gives:

$$v_B(4.8) = -0.3667(4.8)^3 + 21(4.8)$$
$$v_B = 60.2497 \text{ m/s}$$

Step 1 (part 2), Solving for y_B:

The equation of velocity is $v_{AB}[t] = -0.3667t^3 + 21t$. $y_{AB}[t]$ can be derived by taking the integral of $v_{AB}[t]$.

C is 0 m because the rocket starts on the ground ($y_A = 0$ m). Substituting 0 for C gives:

$$y_B(t) = -0.091667t^4 + 10.5t^2$$

The engine burns for 4.8 seconds, so substituting 4.8 in place of t gives:

$$y_B(4.8) = -0.091667(4.8)^4 + 10.5(4.8)^2$$

$$y_B = 193.26 m$$

Step 2: Find the y_c and y_D

To find maximum height, an equation for y_f needs to be created. The equation:

$$x_f = \frac{1}{2}a\Delta t^2 + v_i\Delta t + x_i$$

Can be modified into:

$$y_c = \frac{1}{2}a_{BD}t_{BC}^2 + v_B t_{BC} + y_B$$

Since $a_{BD} = -9.8 \text{ m/s}^2$, $v_B = 60.2497 \text{ m/s}$, and $y_B = 193.26 \text{ m}$, substitute these values into the equation gives:

$$y_{C} = \frac{1}{2}(-9.8)t_{BC}^{2} + (60.2497)t_{BC} + 193.26$$
$$y_{C} = -4.9t_{BC}^{2} + 60.2497t_{BC} + 193.26$$

To find the maximum, $-\frac{b}{2a}$ gives t_{BC} at maximum:

$$t_{BC} = -\frac{b}{2a}$$

$$t_{BC} = -\frac{60.2497}{2(-4.9)}$$

$$t_{BC} = 6.14793s$$

Substituting 6.14793 back into the kinematic equation gives:

$$y_c = -4.9(6.15)^2 + 60.2497(6.15) + 193.26$$

$$y_c = 378.465 m$$

The parachute deploys 112 meters from the maximum height, so to find y_D , subtract 112 from y_C :

$$y_D = y_c - 112$$

 $y_D = 378.465 - 112$
 $y_D = 266.465 m$

Step 3, Solving for t_{BD}:

The equation to calculate maximum height:

 $y_{C} = -4.9t_{BC}^{2} + 60.2497t_{BC} + 193.26$ Can be modified to calculate for y_D:

 $y_D = -4.9 t_{BD}^2 + 60.2497 t_{BD} + 193.26$ Since y_D = 266.465 m, substituting this value into the equation gives:

$$266.465 = -4.9t_{BD}^{2} + 60.2497t_{BD} + 193.26$$

$$0 = -4.9t_{BD}^{2} + 60.2497t_{BD} - 73.2048$$

$$t_{BD} = 1.367s \text{ or } 10.9289s$$

In this case, 1.367 seconds is not used because that is when the rocket initially reaches 266.465 m. Point D is when the rocket hits 266.465 m for the second time. This gives the time: $\frac{t_{RD}}{t_{RD}} = 10.9289s$

Step 4, Solving for t_{DE}:

The first part of this step is to create an equation for $y_{\text{DE}}[t].$ The equation $v_{\text{DE}}[t]$ is:

$$v_{DE} = -18(1 - e^{-\frac{t_{DE}}{11}})$$

The equation of position can be derived by taking the integral of $v_{DE}[t]$:

$$y_{DE}[t_{DE}] = \int (v_{DE})dt_{DE}$$

$$y_{DE}[t_{DE}] = \int (-18(1 - e^{-\frac{t_{DE}}{11}}))dt_{DE}$$

$$y_{DE}[t_{DE}] = \int (-18(1 - e^{-\frac{t_{DE}}{11}}))dt_{DE}$$

$$y_{DE}[t_{DE}] = -18 \int (1 - e^{-\frac{t_{DE}}{11}})dt_{DE}$$

$$y_{DE}[t_{DE}] = (-18 \int (1)dt_{DE}) - (-18 \int (e^{-\frac{t_{DE}}{11}}dt_{DE}))$$

$$y_{DE}[t_{DE}] = -18t_{DE} - 198e^{-\frac{t_{DE}}{11}} + C$$

The next step is to solve for C:

$$y_{DE}[0] = 266.465 m$$

 $y_{DE}[0] = -18(0) - 198e^{-\frac{(0)}{11}} + C$

Substitute 266.465 for y_{DE}[0]:

$$266.465 = -18(0) - 198e^{-\frac{(0)}{11}} + C$$

$$266.465 = 0 - 198 + C$$

$$C = 464.465 m$$

Plugging C back into the position equation gives the final equation for $y_{DE}[t_{DE}]$:

 $y_{DE}[t_{DE}] = -18t_{DE} - 198e^{-\frac{t_{DE}}{11}} + 464.465$ The next step is to find when the rocket hits the ground. Since the ground is at 0 m:

$$y_{DE}[t_{DE}] = 0$$

$$0 = -18t_{DE} - 198e^{-\frac{t_{DE}}{11}} + 464.465$$

$$t_{DE} = -14.2025s \text{ or } 24.6317s$$

In this case, -14.2025s is not used because the time used is the time after the parachute is deployed.

$$t_{DE} = 24.6317s$$

Step 5, find t_T (total time)

For the final step, t_{Total} is found by adding up all of the time segments from before.

$$\begin{aligned} t_{Total} &= t_{AB} + t_{BD} + t_{DE} \\ t_{Total} &= 4.8 + 10.9289 + 24.6317 \\ \hline t_{Total} &= 40.36 \ seconds \end{aligned}$$





