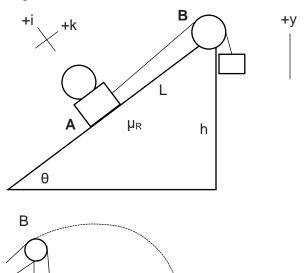
October 30, 2019 Uber Pulley – Algebra

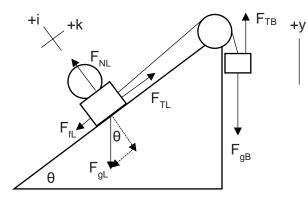
Problem description

Leaping Larry decided to make a laborious launcher for his luxury luge using a pulley and ramp system. His method was to attach one end of a massless stretchless rope to a barrel or rocks and to hold the other end of the rope. He placed the rope over a massless frictionless pulley, and then walked down the ramp as far down as possible to point A (where L = h). When he sat in the luge he accelerated up the ramp to point B and then launched off the top at the same angle as the ramp (all while releasing the rope and avoiding the pulley). He flew through the air as a projectile to point C, transitioning all of his speed into the horizontal direction, and eventually slid to a stop at point D. Note: Ignore any height differences between luge height, barrel height, and size of the pulley, and the diagram is not drawn to scale.

Diagrams:



Free Body Diagram:



Givens:

divens.		
Total mass of Larry and luge	m∟= 40	kg
Total mass of barrel and rocks	m _в = 55	kg
Ramp angle above the horizontal	θ = 34	deg
Coefficient of friction between luge	μ _R = 0.13	
and ramp		
Height of ramp	h = 6.5	m
Total horizontal distance from	Δx _{BD} = 57	m
vertical base of ramp to final		
1		
location		
Coefficient of friction between luge	μ _G = ???	

Variables:

Point A	When Larry and the luge is at the
	lowest point on the ramp
Point B	The point Larry and the luge reaches
	the pulley
Point C	The point where Larry and the luge hits
	the ground
Point D	The point where Larry and the luge
	slides to a stop

Strategy

D

- 1. Find the acceleration of Larry and the luge from the equations from the force of friction, force of gravity, normal force, and force of tension from the rope at **point A**.
- 2. With the acceleration of Larry and the luge, calculate their velocity at **point B**.
- 3. Componentize the velocity into its x and y axis and calculate the total x distance traveled right before Larry and the luge hit the ground at **point C**.
- 4. Find the net velocity of Larry and the luge at **point C** and find the acceleration of Larry and the luge so that they travel Δx_{CD} to **point D**.
- 5. With the acceleration, find the coefficient of friction (μ_G) from **point C** to **point D** between the luge and the ground.

Step 1, Solving for a_A:

Some pre-equation assumptions:

$$F_{TL} = F_{TB}$$
$$a_L = -a_B$$

The sum of the forces in the j direction are:

$$\Sigma F_k: F_{TL} - F_{fL} - F_{gL} sin\theta = m_L a_L$$

Solving for FT1 gets:

$$F_{TL} = m_L a_L + F_{gL} sin\theta + F_{fL}$$

The sum of the forces in the y axis is:

$$\Sigma F_{y}: F_{TB} - F_{gB} = m_{B}a_{E}$$
$$F_{TB} = m_{B}a_{B} + F_{gB}$$

Since that $F_{T1} = F_{T2}$, the two equations can be set equal to each other:

$$m_L a_L + F_{gL} \sin\theta + F_{fL} = m_B a_B + F_{gB}$$

 F_f comes from F_N , which is in the i axis:

$$\Sigma F_i: F_{NL} - F_{aL} cos \theta = m_L a_L$$

There is no acceleration in the i axis because the luge stays on the ramp.

 $F_{NL} - F_{aL}\cos\theta = 0$ $F_{NL} = F_{gL} cos \theta$ The equation for force of friction is:

 $F_{fL} = \mu_{\rm R} F_{NL}$

Substituting F_{NL} into this equation gives: $F_{fL} = \mu_{\rm R} m_L g \cos \theta$

Substituting all of this into the $F_{T1} = F_{T2}$ equation gets:

$$m_{\rm L}a_L + m_Lgsin\theta + \mu_{\rm R}m_Lgcos\theta = m_Ba_B + m_Bg$$

Since $a_1 = -a_2$, change a_2 to $-a_1$: $m_L a_L + m_L g sin\theta + \mu_R m_L g cos\theta = -m_B a_L + m_B g$

Substitute the values and solve for a:

 $(40)a_L + (40)(9.8)\sin(34) + (0.13)(40)(9.8)\cos(34) = -(55)a_L + (55)(9.8)$ $40a_L + 219.204 + 42.25 = -55a_L + 539$ $95a_L = 277.549$ $a_L = 2.922 \ m/s^2$

 $a_{\mbox{\tiny L}}$ is the same acceleration for all of when Larry and the luge is on the ramp.

Step 2, Solving for v_B:

Using the kinematic equation:

 $v_B^2 = v_A^2 + 2a\Delta \mathbf{x}$ $\Delta \mathbf{x}$ on the ramp is the same as the height, as noted in the problem description. The initial velocity is also 0. Substitute the values into the equation and simplify:

$$v_B^2 = 0^2 + 2(2.92156)(6.5)$$

 $v_B^2 = 37.9803$
 $v_B = 6.163 \text{ m/s}$

This is the net velocity at point B.

Step 3, Solving for Δx_{BC} :

First, solve for the initial vertical and horizontal velocity:

$$v_{xB} = v_B sin\theta$$
$$v_{xB} = 6.163 sin34$$
$$v_{xB} = 3.446 m/s$$
$$v_{xB} = 0.0000 rms$$

$$v_{yB} = v_B \cos \theta$$

 $v_{yB} = 6.163 \cos 34$
 $v_{yB} = 5.109 \ m/s$

Find the total time Larry and the luge spend in the air with the kinematic equation:

$$y_f = \frac{1}{2}a_y t^2 + v_{yB}t + y_i$$

Substitute and solve:

 $0 = \frac{1}{2}(-9.8)t^2 + (3.4462)t + 6.5$ $0 = -4.9t^2 + (3.4462)t + 6.5$ t = -0.852s or 1.556sOnly use the positive value in this case so:

$$t = 1.556s$$

The horizontal velocity is constant, so use the kinematic equation to solve for total horizontal distance traveled:

$$\Delta x_{BC} = v_x t$$

$$\Delta x_{BC} = (5.109)(1.556)$$

$$\Delta x_{BC} = 7.949m$$

Step 4, Find net acp:

Larry and the luge transfer all of their net velocity at point C into horizontal velocity. Find vertical velocity:

$$v_{yC} = a_y t + v_{yB}$$

 $v_{yC} = (-9.8)(1.556) + (3.446)$
 $v_{yC} = -11.80 m/s$

Use the Pythagorean theorem to find the net velocity:

$$v_y^2 + v_x^2 = v^2$$

(-11.80)² + (5.109)² = v²
165.38 = v²
v = 12.86 m/s

To find the acceleration from point C to D, use the kinematic equation, substitute, and solve for acD:

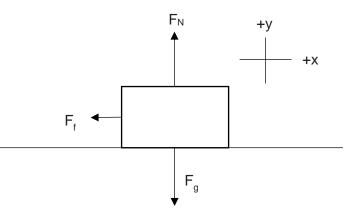
$$v_D^2 = v_C^2 + 2a_{CD}\Delta x_{CD}$$

$$0^2 = 12.86^2 + 2a_{CD}(57 - 7.949)$$

$$0 = 165.38 + 98.102a_{CD}$$

$$\underline{a_{CD}} = -1.686 \text{ m/s}^2$$

Free Body Diagram for Step 5:



Step 5, Solve for µ_G:

The sum of the forces in the y-axis is:

$$\Sigma F_{y}$$
: $F_{N} - F_{g} = ma$

Larry and the luge remain on the ground, so acceleration is 0. Solving for F_N gives:

$$F_N = F_g$$

$$F_N = mg$$
The equation for friction is:

$$F_f = \mu_G F_N$$
Substituting in F_N gives:

$$F_f = \mu_G mg$$
The sum of the forces in the x-axis is:

$$\Sigma F_x : -F_f = ma$$
Substituting F_F gives the final x-axis equation:

$$-\mu_G mg = ma$$
Substituting numbers and solving for μ_G gives:

$$-\mu_G (40) (9.8) = (40) (-1.686)$$

$$-\mu_C (392) = -67.44$$

$$-\mu_G(392) = -67.44$$
$$-\mu_G = -0.1720$$
$$\mu_G = 0.1720$$