

import java.util.ArrayList;

import java.util.Random;

import java.util.Scanner;

public class ArrayListExercises {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 System.out.print("Enter a triangular number! ===>> ");

 int upperBound = input.nextInt();

 input.close();

 bulgarianSolitaire(upperBound);

 // You do not need to handle the User Interface (UI).

 // Instead you can run the JUnit test cases found in

 // ArrayListExercisesTests.java

 }

 /**

 * Removes all of the strings of even length from the given list

 *

 * @param listOfStrings the list of Strings (list can be empty)

 * @return the given list with all even length strings removed

 */

 public static ArrayList<String> removeEvenLength(ArrayList<String>

listOfStrings) {

 for (int i = listOfStrings.size() - 1; i >= 0; i--) {

 if (listOfStrings.get(i).length() % 2 == 0) {

 listOfStrings.remove(i);

 }

 }

 return listOfStrings; // This return statement should be last

 }

 /**

 * Moves the minimum value in the list to the front, otherwise

preserving the

 * order of the elements

 *

 * @param listOfIntegers the list of Integers (list cannot be

empty)

 * @return the given list with the minimum value in the front

(zeroth element)

 */

 public static ArrayList<Integer> minimumToFront(ArrayList<Integer>

listOfInts) {

 int min = listOfInts.get(0);

 int minIndex = 0;

 for (int i = 1; i < listOfInts.size(); i++) {

 if (min > listOfInts.get(i)) {

 min = listOfInts.get(i);

 minIndex = i;

 }

 }

 listOfInts.remove(minIndex);

 listOfInts.add(0, min);

 return listOfInts; // This return statement should be last

 }

 /**

 * Removes all elements from the given list whose values are in the

range min

 * through max (inclusive). If no elements in range min-max are

found in the

 * list, the list's contents are unchanged. If an empty list is

passed, the list

 * remains empty. Assume min < max.

 *

 * @param listOfInts the list of Integers (list can be empty)

 * @param min the minimum value in the range

 * @param max the maximum value in the range

 * @return the given list with the range min-max removed

 */

 public static ArrayList<Integer> filterRange(ArrayList<Integer>

listOfInts, int min, int max) {

 for (int i = 0; i < listOfInts.size(); i++) {

 if (listOfInts.get(i) >= min && listOfInts.get(i) <=

max) {

 listOfInts.remove(i);

 i--;

 }

 }

 return listOfInts; // This return statement should be last

 }

 /**

 * Models/simulates the game of Bulgarian Solitaire.

 *

 * @param numCards the number of cards to start with; n must be a

triangular

 * number (a triangular number is a number that can

be written

 * as the sum of the first n positive integers).

 */

 public static void bulgarianSolitaire(int numCards) {

 // Check if given number of cards is triangular

 int n = (int) Math.sqrt(2 * numCards);

 if (n * (n + 1) / 2 != numCards) {

 System.out.println(numCards + " is not triangular");

 return;

 }

 ArrayList<Integer> Completion = new ArrayList<>();

 ArrayList<Integer> piles = new ArrayList<>();

 for (int i = 1, tempCard = numCards; tempCard != 0; i++) {

 tempCard = tempCard - i;

 Completion.add(i);

 }

 Random randy = new Random();

 while (numCards != 0) {

 int pile = randy.nextInt(numCards) + 1;

 numCards = numCards - pile;

 piles.add(pile);

 }

 while (!piles.containsAll(Completion)) {

 System.out.println(piles);

 int count = piles.size();

 for (int i = 0; i < piles.size(); i++) {

 piles.set(i, piles.get(i) - 1);

 }

 for (int i = 0; i < piles.size(); i++) {

 if (piles.get(i) == 0) {

 piles.remove(i);

 i--;

 }

 }

 piles.add(count);

 }

 System.out.println(piles);

 }

}

