er.

1 1
L] LEY

i = i = | |

(Nt w R w B ¥ i B (N Rt e RN w R (N}

e L s

(e T e TN - .
Do=sf b = = b s w0 W s oW W s M= LD

= = = = = = = = = =

- - - - -
(o O o O I T T Y [o O T Y TR B TR ¥ T~

_|
E
o |
=
=
(] &
=
a0
=
[5]
I
=

el

R N T T T T T I

e - e L I O i - o i - L I I - s

d

- - . L. T .

M= WL W MY e

er

Ent

import java.util.ArrayList;
import java.util.Random;
import java.util.Scanner;

public class ArraylListExercises {
public static void main(String[] args) {

Scanner input = new Scanner (System.in);
System.out.print ("Enter a triangular number! ===>> ");
int upperBound = input.nextInt();

input.close () ;

bulgarianSolitaire (upperBound) ;
// You do not need to handle the User Interface (UI).
// Instead you can run the JUnit test cases found in
// ArraylListExercisesTests.java

/**
* Removes all of the strings of even length from the given list
*
* (@param listOfStrings the list of Strings (list can be empty)
* @return the given list with all even length strings removed
*/
public static ArrayList<String> removeEvenLength (ArrayList<String>
1listOfStrings) {
for (int i = 1listOfStrings.size() - 1; 1 >= 0; i--) {
if (listOfStrings.get (i) .length() % 2 == 0) {
1listOfStrings.remove (i) ;
}
}
return listOfStrings; // This return statement should be last
}

/**
* Moves the minimum value in the list to the front, otherwise
preserving the
* order of the elements
*
* @param listOfIntegers the list of Integers (list cannot be
empty)
* @return the given list with the minimum value in the front
(zeroth element)
*/
public static ArrayList<Integer> minimumToFront (ArrayList<Integer>
listOfInts) {
int min = 1listOfInts.get (0);
int minIndex = 0;
for (int 1 = 1; 1 < listOfInts.size(),; i++) {
if (min > listOfInts.get(i)) {
min = listOfInts.get (i)
minIndex = 1i;

}
}

1listOfInts.remove (minIndex) ;
listOfInts.add (0, min);
return listOfInts; // This return statement should be last

}

/**
* Removes all elements from the given list whose values are in the
range min
* through max (inclusive). If no elements in range min-max are
found in the
* list, the list's contents are unchanged. If an empty list is
passed, the list
remains empty. Assume min < max.

*
*
* @param listOfInts the list of Integers (list can be empty)
* @param min the minimum value in the range
* (@param max the maximum value in the range
* @return the given list with the range min-max removed
*/
public static ArrayList<Integer> filterRange (ArrayList<Integer>
1listOfInts, int min, int max) {
for (int i = 0; i < listOfInts.size(); i++) {
if (listOfInts.get (i) >= min && 1listOfInts.get (i) <=

max) {
listOfInts.remove (1) ;
i--;
}
}
return 1listOfInts; // This return statement should be last
}
/**
* Models/simulates the game of Bulgarian Solitaire.
*
* @param numCards the number of cards to start with; n must be a
triangular
* number (a triangular number is a number that can
be written
* as the sum of the first n positive integers).
*/

public static void bulgarianSolitaire (int numCards) {

// Check if given number of cards is triangular

int n = (int) Math.sqrt (2 * numCards);

if (n * (n + 1) / 2 != numCards) {
System.out.println (numCards + " is not triangular");
return;

}

ArrayList<Integer> Completion = new ArrayList<>();

ArrayList<Integer> piles = new ArrayList<>();

for (int i = 1, tempCard = numCards; tempCard != 0; i++) {
tempCard = tempCard - 1i;

}

Completion.add(i);

Random randy = new Random() ;

while

while

}

(numCards != 0) {

int pile = randy.nextInt (numCards) + 1;

numCards = numCards - pile;
piles.add(pile);

(!piles.containsAll (Completion)) {
System.out.println (piles);
int count = piles.size();

for (int i = 0; i < piles.size(); i++)
piles.set (i, piles.get(i) - 1);
}
for (int 1 = 0; 1 < piles.size(); i++)
if (piles.get (i) == 0) {
piles.remove (1) ;
i--=;

}

}
piles.add(count);

System.out.println(piles);

{

{

