Actual observations:

Without MB

With MB

Both

I. HARVEST (Gandre, S., & Bliek, A. M., 2016)

Materials

- 5 worm plates per harvest [see next bullet]
- 1 (large) plate per treatment group
- 0.1M NaCl
- M9 buffer
- Mitochondrial IB
 - o 210 mM mannitol
- Centrifuge
- 1. Harvest worms from 5 plates (either MB treated or untreated) by washing off the plate with 10 mL M9 buffer per plate
 - a. x3 10mL/plate + 3mL to catch stragglers
- 2. Pellet the worms (all 5 plates together) by centrifugation for 5 min @ 4000g 2500g
 - a. Loose pellet formed; sent in for +10 min @ 2500g
 - b. Pellet still loose (especially blue); + 10 min @ 5000g
 - c. + 10 min @ 5000g
- 3. Resuspend the pellet in 10 volumes ice-cold 0.1M NaCl
 - a. Add an equal volume of ice-cold 60% sucrose solution; mix by inversion
 - b. Split into x2 1 mL tubes/group
- 4. Centrifuge for 2 min @ 500g
- 5. Transfer the uppermost layer (floating worms) to a new tube using a Pasteur pipet
 - a. Pool top 250 μ L from each tube (each group) \rightarrow 1 tube per group
- 6. Dilute the worm suspension with 10 volumes ice-cold 0.1M NaCl
 - a. Centrifuge for 2.5 min @ 500g 5000g
 - b. +10 mins @ 10000g
- 7. Discard the supernatant and resuspend the pellet in 50 volumes ice cold 0.1M NaCl
- **II. ISOLATE** (Gandre, S., & Bliek, A. M., 2016)

Materials (volumes were adjusted to reduced sample quantity)

- 5 plates worth of worms, pelleted
- Mitochondrial Isolation Buffer (IB) (for 25 mL)
 - o 210 mM mannitol -- 0.956 g
 - o 70 mM sucrose -- 0.599 g

- o 0.1 mM EDTA, pH 8.0 -- 0.00093 g (0.93 mg)
- o 5 mM Tris-HCl, pH 7.4 -- 0.0151 g (15.1 mg)
- o 1 mM PMSF -- 0.00435 g (4.35 mg) -- fume hood?
- Potter-Elvehjem homogenizer/Dounce/honestly, I will use a rock at this point
- Centrifuge
- 1. Pellet worms by centrifuging for 5 min @ 2000g
- 2. Resuspend 5 g worms (this was originally done for twice the amount of sample, so it's probably going to be *way* less than 5 g) in 5 mL ice-cold IB
- 3. Homogenize with 15 strokes of a chilled Potter-Elvehjem homogenizer
- 4. Collect the homogenate in a 25 mL Falcon tube and increase the volume to 13 mL with IB
 - a. Centrifuge for 10 min @ 750g
- 5. Transfer the supernatant to a fresh tube and resuspend the pellet in 5 mL IB
- 6. Homogenize the remaining pellet with 15 more strokes of the homogenizer
 - a. Repeat Steps 4 & 5
- 7. Combine the supernatants from Steps 5 & 6a; save an aliquot as total worm lysate
- 8. Centrifuge the supernatants for 10 min @ 12,000g; save an aliquot of the resulting supernatant as postmitochondrial supernatant
- 9. Resuspend the mitochondrial pellet in 6 mL IB
 - a. Centrifuge for 10 min @ 750g
- 10. Transfer the supernatant to a new tube without disrupting the pellet
 - a. Centrifuge for 10 min @ 12,000g and discard the supernatant
- 11. Combine and resuspend the mitochondrial pellets from Steps 9a & 10a in IB

III. ASSAY (Sigma-Aldrich, 2019)

Materials

- Isolated C. elegans mitochondria (MB treated or untreated)
- Equine heart cytochrome c
- Reaction buffer, on ice
 - o 50 mM Tris-HCl, pH 7.4 -- 6.057 g
 - o 250 mM sucrose -- 85.575 g
 - o 10 mM KCl -- 0.746 g
 - o 1 mM EDTA -- 0.372 g
 - o 10 mM KH₂PO₄ -- 1.361 g
 - o Final volume 1L w/distilled water
 - o Filter-sterilize through a 0.22 μm filter (optional)
- Spectrophotometer
- 1. Add $50 \mu L$ $50 \mu M$ $50 \mu L$ 4.4 mM oxidized cytochrome c to 950 μL of buffer in a cuvette (blank)
- 2. Add 50 μM 50 μL 4.4 mM oxidized cytochrome c to 950 μL of buffer to a new cuvette
 - a. Add 50 µL mitochondria
- 3. Allow the reactions to proceed at 25°C for 5 minutes; monitor absorbance

- 4. Add dithiothreitol (DTT) to a cuvette containing 950 μL of buffer and 50 μL 4.4 mM oxidized cytochrome c to observe the full reduction of cytochrome c.
- 5. Calculate reduction rate

a.
$$\frac{\Delta A}{min} = (A/\min)_{sample} - (A/\min)_{blank}$$

a.
$$\frac{\Delta A}{min} = (A/\min)_{sample} - (A/\min)_{blank}$$

b. Enzyme Activity (Units/mL) = $\frac{\Delta A/\min*dil*V_{reaction}}{V_{enzyme}*21.84}$

where:

21.84 = extinction coefficient of reduced cytochrome c (mM⁻¹cm⁻¹)

 $V_{\text{reaction}} = \text{total reaction volume}$

 $V_{\text{enzyme}} = \text{volume of mitochondrial sample}$

dil = dilution of mitochondrial sample

6. Compare treatment groups

a.
$$Difference (\%) = \frac{Activity_{MB} - Activity_{untreated}}{Activity_{untreated}} * 100$$