Methylene Blue as a Means

to Bypass the Compromised

Complex I in Mitochondrial

by Ila Chakravarthy

Advisor: Dr. Kevin Crowthers, PhD.

Direct Supervisor: Dr. Srinivas Chakravarthy, PhD.

Background

- Oxidative phosphorylation (OXPHOS), the process by which ATP is produced, is fueled by the Electron Transport Chain (ETC) – an electron assembly line
- Some mitochondrial diseases (MD) involve a mutation of Complex I, the first gateway to the rest of the ETC
- The disease pathology necessitates frequent surgical intervention due to the constant degeneration of high-energy-demand organ tissue (Sasano, et al., 2007).
- Certain anesthetics such as propofol are known inhibitors of Complex I (Vanlander, et al., 2012).

The Problem

- Propofol, isoflurane, and other common anesthetics pose significant health risks to MD patients
 - Blockage of ubiquinone-binding sites in Complex I lead to electron leakage (Pereira, 2023).
 - Unused/leaked electrons exposed to oxygen can become reactive oxygen species (ROS). ROS prematurely oxidize cellular components like lipids and proteins, leading to severe tissue damage.

Researchable Question

Hypothesis

Can methylene blue act as an

alternative electron carrier in

the Electron Transport Chain

when Complex I is inhibited?

Spectrophotometric analysis of

cytochrome c will show greater

Complex III activity when

mitochondrial tissue is exposed

to methylene blue.

Planning & Future Steps

Insert Analysis piece here.

Figure 4: Cytochrome c absorption with non-MB LB10 mitochondria: minute 0 to minute 19 (minimal to no reduction)

Figure 5: Cytochrome c absorption with MB-treated LB10 mitochondria: minute 0 to Overnight (reduction present)

Adjust going forward