Discrete Mathematics

D Term, 2019

Ma2201/CS2022 Quiz 0100

1. (6 points) How many strings on 12 characters satisfy at least one of the following conditions; they repeat every three characters, like askaskaskask; they repeat every 4 characters, like dripdripdrip; or the have the second, fifth, eighth, and eleventh character a vowel, ($\{a, e, i, o, u\}$), like *poptoptictac*.

Your answer can be in the form of an algebraic expression, but make sure you don't use any variables you don't define.

 \clubsuit There are 26¹² strings on 12 characters, so best to use an algebraic expression.

Define A to be the set of strings on 12 characters which repeat every three characters. Define B to be the set of strings on 12 characters which repeat every 4 characters.

Define C to be the set of strings on 12 characters which have the second, fifth, eighth, and eleventh character a vowel.

Using the multiplicative principle, we can compute: $|A| = 26^3$, $|B| = 26^4$, $|C| = 26^8 \cdot 5^4$, $|A \cap B| = 26$, since all the letters must be the same, $|A \cap C| = 26^2 \cdot 5$, $|B \cap C| = 5^4$, since all the characters must be vowels, and and $|A \cap B \cap C| = 5$ since all the characters must be equal and vowels.

So

$$\begin{array}{ll} |A \cup B \cup C| &=& |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| \\ &=& 26^3 + 26^4 + 26^8 \cdot 5^4 - 26 - 26^2 \cdot 5 - 5^4 + 5 & \clubsuit \end{array}$$

- 2. (4 points) Let $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and let $B = \mathcal{P}_2(\{0, 1\} \times \{0, 2\})$. a) How many functions are there, $A \to B$.
 - b) How many functions are there, $A \rightarrow B$, which are one to one?
 - c) How many functions are there, $A \rightarrow B$, which are onto?

d) Draw the relation diagram of any one-to-one and onto function with domain and target **both** A, so $A \to A$. Label your diagram clearly and neatly.

(You may use either style diagram. Use the back if you like.)

♣ We need only note the cardinalities of A and B for the first three parts. |A| = 10, and $|B| = \binom{4}{2} = 6$. So there are 6^{10} functions. None are one-to-one because B is too small. For the number of onto functions we need to decorate the 6'th row of Pascal's triangle:

$$\begin{pmatrix} 6\\0 \end{pmatrix} \cdot 6^{10} - \begin{pmatrix} 6\\1 \end{pmatrix} \cdot 5^{10} + \begin{pmatrix} 6\\2 \end{pmatrix} \cdot 4^{10} - \begin{pmatrix} 6\\3 \end{pmatrix} \cdot 3^{10} + \begin{pmatrix} 6\\4 \end{pmatrix} \cdot 2^{10} - \begin{pmatrix} 6\\5 \end{pmatrix} \cdot 1^{10} + \begin{pmatrix} 6\\6 \end{pmatrix} \cdot 0^{10}$$
$$1 \cdot 6^{10} - 6 \cdot 5^{10} + 15 \cdot 4^{10} - 20 \cdot 3^{10} + 15 \cdot 2^{10} - 6 \cdot 1^{10} + 1 \cdot 0^{10}$$

or

are both correct.

•

For the last part

works for the identity function, which is one to one, or for something different in the other style:

\bullet^0	\rightarrow	\bullet^1	\rightarrow	\bullet^2	\rightarrow	\bullet^3	\bullet^4
↑						\downarrow	\mathbf{a}_{0}^{1}
•9	\leftarrow	•8	\leftarrow	\bullet^7	\leftarrow	\bullet^6	\bullet^5