

Ma2201/CS2022 Quiz 0101

Discrete Mathematics

D Term, MMXVI

Print Name: ______ Sign: ___

1. (6 points) Use the Euclidean Algorithm to find gcd(119, 85). Find λ and μ so that $\lambda \cdot 119 + \mu \cdot 85 = gcd(119, 85)$. & Euclidean Algorithm:

$$119 = 1 \cdot 85 + 34$$

$$85 = 2 \cdot 34 + 17$$

$$34 = 2 \cdot 17 + 0$$

So gcd(119, 85) = 17.

(Really? $85 = 5 \cdot 17$, $119 = 7 \cdot 17$, ok - I believe it. That Euclidean Algorithm is always right.)

 $We \ add$

 $\begin{array}{rl} -2: & 119 = 1 \cdot 85 + 34 \\ 1: & 85 = 2 \cdot 34 + 17 \end{array}$

and get

$$(-2)(119) + (3)(85) = 17$$

2. (4 points) Let p, and q be primes, $p \neq q$. Label each of the following true or false.

2p+q must be prime.

Sounds like wishful thinking. Let's see ... if p = 3 and q = 2 then 2p + q = 8, which is not prime. FALSE.

 $\underline{\qquad} \gcd(p^2 + q^2, pq) = 1.$

♣ pq only has divisors 1, p, q and pq. Since $p | p^2$, if $p | (p^2 + q^2)$, then $p | q^2$ which is impossible since $p \neq q$. And the same for p, so the greatest common divisor is 1. TRUE.

 $\underline{\qquad} 3p^2 - 5q^3$ cannot be zero.

• If $3p^2 = 5q^3$ then 3 is in the prime factorization of $5q^3$, so q = 3. By the same token p = 5, so $3p^2 = 5q^3$ says 27 = 125. TRUE.

(Or you could say the prime factorization of $3p^2$ has 3 primes, and the prime factorization of $5q^3$ has four, violating uniqueness.)

____ For any integers n and m, $gcd(n, m^2) = gcd(n^2, m) \Rightarrow gcd(n, m) = 1$.

♣ Consider n = 6 and m = 10. gcd(6, 100) = 2 = gcd(10, 36) = 2, but gcd(6, 10) = 2 also. FALSE.

(What is true if $gcd(n, m^2) = gcd(n^2, m)$ is that every prime occurring the both the prime factorization of n and m must have the same exponent in both.)

