

## Discrete Mathematics

D Term, MMXVI

Print Name: \_\_\_\_\_\_Sign: \_\_\_\_\_

- 1. (6 points) Prove by induction that  $n^2 + 5n + 1$  is odd for all  $n \ge 0$ .
- ♣ Proof by induction.

Base Case: n = 0. The statement is that  $0^2 + 5(0) + 1 = 1$  is odd, which is true. Inductive Step. We want to show that

$$(n^2 + 5n + 1) \ odd \implies ((n+1)^2 + 5(n+1) + 1) \ odd.$$

Let  $n^2 + 5n + 1$ . (This is the inductive hypothesis.) Then  $((n+1)^2 + 5(n+1) + 1) = n^2 + 2n + 1 + 5n + 5 + 1 = (n^2 + 5n + 1) + 2(n+1)$ . We have that  $n^2 + 5n + 1$  is odd by the inductive hypothesis, and 2(n+1) is even since it is divisible by 2, so  $((n+1)^2 + 5(n+1) + 1)$  is odd, as required.

Since the basis case and the inductive step are both true, the statement is true for all n > 0 by induction.

- 2. (4 points) Let p and q be statements. Show that  $(p \lor q) \land (\neg p \lor r) \Rightarrow (q \lor r)$
- There are many ways to correctly do this. The most tedious and least instructive is via truth tables.

Best to show directly:

Let  $(p \lor q) \land (\neg p \lor r)$ , so both  $p \lor q$  and  $\neg p \lor r$  are true.

Either p or  $\neg p$  is true.

If p is true, then  $\neg p$  is false and  $\neg p \lor r$  gives r is true, so  $q \lor r$  is true.

If p is false,  $p \lor q$  gives q is true, so  $q \lor r$  is true.

So in either case,  $q \vee r$  is true.

Another method is to use the distributive law first:

$$(p \lor q) \land (\neg p \lor r) = (p \lor \neg p) \land (p \lor r) \land (q \lor \neg p) \land (q \lor r).$$

If  $(p \lor q) \land (\neg p \lor r)$  is true, each of  $(p \lor \neg p)$ ,  $(p \lor r)$ ,  $(q \lor \neg p)$  and  $(q \lor r)$  is true, so  $(q \lor r)$  is true.