

Discrete Mathematics

D Term, MMXVI Print Name: __

Sign:

1. (6 points) Use the double inclusion method to prove that

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

(If you need more room, please use the back.)

 \clubsuit First show $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ Let $x \in A \cup (B \cap C)$. So either $x \in A$ or $x \in B \cap C$.

If $x \in A$, then $x \in A \cup B$ and $x \in A \cup C$, so $x \in (A \cup B) \cap (A \cup C)$, as required.

On the other hand, if $x \in B \cap C$, then $x \in B$ and $x \in C$. Since $x \in B$, $x \in A \cup B$. Since $x \in C$, $x \in A \cup C$, so $x \in (A \cup B) \cap (A \cup C)$, as required.

So in either case $x \in (A \cup B) \cap (A \cup C)$.

Second we show $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$

Let $y \in (A \cup B) \cap (A \cup C)$. So $x \in A \cup B$ and $x \in A \cup C$. Either $y \in A$ or $y \notin A$.

If $y \in A$, then $y \in A \cup (B \cap C)$ as required.

If $y \notin A$, then since $y \in A \cup B$, $y \in B$. Since $y \in A \cup C$, $y \in C$. So $y \in B \cap C$, hence $y \in A \cup (B \cap C)$.

So in either case $y \in A \cup (B \cap C)$.

- 2. (4 points) Let $A = \{\emptyset, \{\emptyset\}, 0\}$. Label each of the following TRUE or FALSE.
- \clubsuit A has 3 elements so $\mathcal{P}(A)$ has $2^3 = 8$ elements:

$$\{\ \emptyset,\ \{\emptyset\},\ \{\{\emptyset\}\},\ \{0\},\ \{\emptyset,\{\emptyset\}\},\ \{\emptyset,0\},\ \{\{\emptyset\},0\},\ \{\emptyset,\{\emptyset\},0\}\ \}$$

- a) $A \subseteq \mathcal{P}(A)$. $A \subseteq \mathcal{P}(A)$. $A \in \mathcal{P}(A)$ ince all elements of $\mathcal{P}(A)$ are sets. It is true that $A \in \mathcal{P}(A)$.
- b) $\longrightarrow \emptyset \subseteq \mathcal{P}(A)$. \clubsuit TRUE: \emptyset is a subset of every set. (In this case, it is also true that $\emptyset \in \mathcal{P}(A)$.)
 - c) $A \cap \mathcal{P}(A) = \emptyset$. \clubsuit FALSE: $A \cap \mathcal{P}(A) = \{\emptyset, \{\emptyset\}\}\$
 - d) $\mathcal{P}(A) \subset \mathcal{P}(A)$. \clubsuit TRUE: Every set is a subset of itself.