

Ma1023 Quiz 6 A

Calculus III

A Term, 2013

O _{Normal}

O Triple Down

Print Name:

The Double-Down Quiz

1. (3 pts) Consider the function $r(\theta) = \cos(4\theta)$.

O Double Down

Label each of the following with \mathbf{T} if it must be true, \mathbf{F} if it must be false, and \mathbf{X} if it cannot be determined from the given information.

<u>T</u> The graph of $r(\theta)$ has a horizontal tangent at $\pi/4$ in the θr -plane $\cos(4\theta)$ has a local min at $\pi/4$.

<u>F</u> The graph of $r(\theta)$ has a horizontal tangent at $\pi/4$ in the xy-plane At the local min the polar graph of $r = \cos(4\theta)$ will be perpendicular to the ray $\pi/4$.

<u>T</u> The graph of $r(\theta)$ has a tangent of slope $\tan(\pi/8)$ at $\pi/8$ in the xy-plane $\cos(4\pi/8) = 0$, so the polar graph will pass through the origin tangent to the ray $\pi/8$.

2. (3 pts) Compute carefully and neatly the following integral, showing all steps required. $\int_{4}^{\infty} (1+x)e^{-3x} dx = \lim_{b \to \infty} [(-4-3b)e^{-3b}/9] - [(-4-3\cdot 4)e^{-3\cdot 4}/9]$ $= -[(-4-12)e^{-3\cdot 4}/9] = 16/9e^{-12}$

Sidebar:
$$\int (1+x)e^{-3x} dx \stackrel{u=1+x}{du=dx} \stackrel{v=(-1/3)e^{-3x}}{=} (1+x)(-1/3)e^{-3x} - \int (-1/3)e^{-3x} dx$$
$$= (1+x)(-1/3)e^{-3x} - (-1/3)(-1/3)e^{-3x} = (-4-3x)e^{-3x}/9$$
Sidebar:
$$\lim_{b \to \infty} (-4-3b)e^{-3b} = \lim_{b \to \infty} \frac{-4-3b}{e^{3b}} \stackrel{\text{l'h}}{=} \frac{\text{rule}}{b \to \infty} \frac{-3}{3e^{3b}} = 0$$

3. (4 pts) Use l'Hopital's rule to compute the following limit. Show all work neatly and clearly.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x/2} = \lim_{x \to \infty} e^{(x/2)\ln(1 + \frac{1}{x})} = e^{1/2} = \sqrt{e}.$$

Sidebar: $\lim_{x \to \infty} (x/2) \ln(1 + \frac{1}{x}) = (1/2) \lim_{x \to \infty} \frac{\ln(1 + \frac{1}{x})}{1/x} \, {}^{1^{\prime}h} \stackrel{\text{rule}}{=} (1/2) \lim_{x \to \infty} \frac{(1 + \frac{1}{x})^{-1}(-1/x^2)}{-1/x^2}$ $= (1/2) \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{-1} = (1/2) \cdot 1 = 1/2.$