Mal023 (jalClihlS III A Term, 2013

Pseudo-Final Exam Print Name: Pancho Bosphorus

1. Mark the following T and F for false, and X if it cannot be determined from the given
information.
1°=0=1
0 .
False. 1 is a number, the other expressions are invalid.

d
If @T(Qo) = 0 then the graph of 7(6) has a horizontal tangent at 6, in the xy-plane.

It has a horizontal tangent in the r#-plane.

1
cos <1 + > =1.
y 00
False. oo is not a number.

r(6) = sin(#) cos(f) tan(f) has as horizontal tangent at the origin in the xy plane.
True with no calculations since r(0) = 0.

If {a,}°, converges to m then Y °° | a,, cannot converge to 7.
True. The series diverges by the divergence test.

. 00 . . .
The series > 7, 17 is a geometric series.
True. The ratio is 1.

_ Every telescoping series converges.

False. 3>>° ,[n — (n — 1)] telescopes.

_ The limit comparison test fails if the limit is 1.

False. The ratio test fails if the the limit is 1.

__Ifa,>0and nh_)nolo a, = 0 then > (—1)"a, converges by the Alternating Series
Test.

False. There is one other condition to be checked.

nn(@=2

The power series Y02 | (—1)""*— ! has radius of convergence 1.

False. It is not a power series.

__ Every Taylor Series converges at its center.

True.

_ The 5’th Maclauren Polynomial of f(x) = |z| is actually a polynomial of degree 4.
False. f(x) is not differentiable at 0 so there is no Maclauren Polynomial.

_ Iflim, o R,(z) < 1, then the Taylor series converges.

Can’t tell. The limit would have to be zero.

_ If vector is directed into the 4’th quadrant then its magnitude is negative,
The magnitude is always positive.

~ For all vectors A-B=-B-A.

False. The dot product is commutative.

___ The plane (1,2,1) - X = —1 has distance 1 from the origin.

False. It isn’t -1 either.



2. Determine for which values of = the following series converges absolutely, converges

conditionally, or diverges. Show all steps required to carefully present your work.
00 3

S ()

= 1+nt
Also compute the radius of convergence.
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3. Determine for which values of = the following series converges absolutely, converges
conditionally, or diverges. Show all steps required to carefully present your work.

00 $3n

= n!

Also compute the radius of convergence.

00 3n
In the interval of converge define f(z) = x

n=0
For the above series, answer the following:

a) Find f(0).

21!

b) Compute f’(x) inside the radius of convergence.

c¢) Compute / f(z) dx inside the radius of convergence.
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2
a) Find the limit of the sequence TZL”

Show all steps required to carefully present your work.

[e's} 2
b) Decide whether or not the series Z on is geometric. If it is geometric, and converges,
n=0

determine the sum.
Show all steps required to carefully present your work.

¢) Using the Taylor Series for sin(x) with center 0, find the Taylor series for sin(3z?).
Show all steps required to carefully present your work.
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5. Let u=3i+3j — 3k and v = 1i — 3j — 2k.
a) Find the magnitudes of u and v as well as unit vectors which point in their directions.

b) Find the angle 6 between u and v.

¢) Find (u+2v) - (2u+v).

d) Which of the following products is undefined, and why?
(2u)-u, (2u)xu, (u-v)-v, (u-v)xv, (uxv)xv, (uxv)-v.

d) Find the equation of the plane which is normal to u and whose closest distance to

the origin is |v|.
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6. Let f(t) = ti + t?j — t°k be a position vector at time ¢
a) Find all values ¢ for which the speed is 0

b) Show that the velocity vector at ¢ = 0 is a unit vector
) Find a unit vector tangent to the curve at ¢ = 1

d) Find any vector perpendicular to both f(1) and v(1)
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