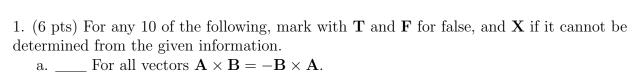
Ma1023 Final Exam (A)

Calculus III

A Term, 2013

Print Name:



True. The cross product is anti-commutative.

b. ____ If
$$\lim_{n\to\infty} \frac{f(n+1)}{f(n)} = 0$$
 then the series $\sum_{n=0}^{\infty} f(n)$ converges.

True. Ratio Test.

c. ____ If the power series $\sum_{n=0}^{\infty} c_k (x-8)^k$ converges absolutely at x=7, then it converges absolutely for x=5.

You cannot conclude it. The radius of convergence could be 2.

d. ____ For all vectors \mathbf{u} , it is true that $\mathbf{u} \times \mathbf{0} = \mathbf{u}$.

False. It is only true for $\mathbf{u} = \mathbf{0}$.

e. ____ The Taylor series for $f(x) = \cos(x)$ has radius of convergence 1.

False. It is infinite.

f. ____ The plane $(2,1,2) \cdot \mathbf{v} = 3$ has distance 1 from the origin.

True. (2/3, 1/3, 2/3) is a unit vector.

2. (8 pts) For each value of x determine whether the following power series converges absolutely, converges conditionally, or diverges. Show all steps required to carefully present your work.

It would.

$$\sum_{n=1}^{\infty} \frac{1}{n2^{n}} (x-1)^{n}$$

$$\sum_{k=1}^{\infty} \frac{1}{n2^{n}} (x-1)^{n}$$
Absolute Value Series $\sum_{n=1}^{\infty} \frac{1}{n2^{n}}$

Ratio Test: $|T_{nn}(\frac{1\times-1)^{n+1}}{(n+1)(2^{n+1})}| = |T_{nn}(\frac{1\times-1)}{n2^{n}}| = |T_{nn}(\frac{1\times-1)^{n}}{n2^{n}}| = |T_$

3. (4 pts) The power series $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{n!}$ converges absolutely for all x, so define

$$f(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{n!}$$

Answer each of the following:

- a) Find $f^{(7)}(0)$.
- b) Find the Taylor Series for f'(x) centered at 0. What is its radius of convergence?

a) Taylor Serice
$$\sum_{k=0}^{\infty} f^{(k)}(a)(x-a)^k$$
 $k=0$
 $k=0$
 $k!$

The term $f^{(q)}(o) x^{\frac{1}{2}}$ for $\sum_{n=0}^{\infty} x^{2n+1}$ the term in $x^{\frac{1}{2}} + x^{\frac{1}{2}}$
 $f^{(q)}(a) x^{\frac{1}{2}} = x^{\frac{1}$

4. (4 pts) Using the known Taylor Series for e^x with center 0, find the Taylor series for the function $f(x) = x^2 e^{3x+1}$ centered at 0.

Show all steps required to carefully present your work.

Recall
$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{n}}{n!}$$

$$x^{2}e^{3x+1} = x^{2}e^{3x}e = x \sum_{k=0}^{\infty} \frac{3x^{n}}{n!}e = \sum_{k=0}^{\infty} \frac{e^{3^{n}}x^{n}x^{2}}{n!}e = \sum_{k=0}^{\infty} \frac{e^{3^{n}}x^{n}x^{2}}{n!}e$$

- 5. (8 pts) Let $\mathbf{f}(t) = \cos(\pi t^2)\mathbf{i} + \sin(\pi t^2)\mathbf{j} + t^2\mathbf{k}$ be a position vector at time t.
- a) Find all times where the speed is 0.
- b) Show that the angle between the velocity vector $\mathbf{v}(t)$ and the vector \mathbf{k} is constant for all t > 0.
 - c) Find a unit vector tangent to the curve at t = 2.
 - d) Compute $|\mathbf{f}(2) \times \mathbf{v}(2)|$.

a)
$$\int_{Y(1)} f(1) = \cos(\pi t^{2}) \vec{l} + \sin(\pi t^{2}) \vec{l} + f^{2} \vec{k}$$

$$Velocity: Y(1) = -2\pi t \sin(\pi t^{2}) \vec{l} + 2\pi t \cos(\pi t^{2}) \vec{j} + 2t \vec{k}$$

$$\int_{Y(1)} f(1) = -2\pi t \sin(\pi t^{2}) \vec{l} + 2\pi t \cos(\pi t^{2}) \vec{j} + 2t \vec{k}$$

$$\int_{Y(1)} f(2) = -2\pi t \sin(\pi t^{2}) \vec{l} + 2\pi t \cos^{2}(\pi t^{2}) + 4t^{2}$$

$$= 2t t \sqrt{\pi^{2}} (\sin^{2}(\pi t^{2}) + \cos^{2}(\pi t^{2}) + 4t^{2}$$

$$= 2t t \sqrt{\pi^{2}} (\sin^{2}(\pi t^{2}) + \cos^{2}(\pi t^{2})) + \frac{1}{4}$$

$$= 2t t \sqrt{\pi^{2}} + 1$$

$$= 2t t \sqrt{\pi^{2}} + 2$$

$$= 2t t \sqrt$$

(Blank page for Scrap paper.)