Exercises for Lectures 10 – Induction

1. Suppose that p_n is a statement which depends on the positive integer n. Suppose that p_5 is false, p_6 is false, p_7 is true, and $p_n \Longrightarrow p_{n+2}$.

Does it follow that p_{10} is true?

Does it follow that p_2 is false?

What can you conclude about p_i using induction?

- 2. Suppose that p_n is a statement which depends on the positive integer n. Suppose that p_{50} is true, p_{500} is true, and $p_{n+1} \Longrightarrow p_n$. What can you conclude about p_i using induction?
- 3. Let p_n be the statement

 $p_n := [n^2 - 5n \text{ is even.}]$

Prove p_n is true for all positive integers n by induction.

4. Let p_n be the statement

$$p_n:$$
 1+3+3²+3³+3⁴+...+3ⁿ = $\frac{3^{n+1}-1}{2}$

Prove p_n is true for all positive integers n by induction.

- 5. Prove by induction that $n^2 n$ even for all integers n > 0.
- 6. Prove by induction that $n^3 n$ is evenly divisible by 6 for all integers n > 0.
- 7. Prove by induction that $n^3 + 3n^2 + 2n$ is evenly divisible by 6 for all integers n > 0.
- 8. Prove by induction that $\sum_{i=1}^{n} i^{3} = [n(n+1)/2]^{2}$.
- 9. Let $f(x) = \frac{1}{1+x}$. Show by induction that the sequence $f^{2n}(5)$ is decreasing.
- 10. Let $f(x) = \frac{1}{1+x}$. Show by induction that the sequence $f^{2n}(1)$ is increasing.
- 11. We showed that for sets that the union is associative

$$A \cup (B \cup C) = (A \cup B) \cup C$$

Use this result and induction to any union of n sets $\{A_1, \ldots, A_n\}$ can be parenthesized in any manner.

Hint: Show any parenthesized union of $\{A_1, \ldots, A_n\}$ is equal to

$$A_1 \cup (A_2 \cup (A_3 \cup \ldots \cup (A_{n-1} \cup A_n)))$$

12. We showed that for sets that the intersection distributes over the union

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Use this result and induction to show that for any set A and any finite collection of sets $\{B_1, \ldots, B_n\}$ we have

$$A \cap (B_1 \cup B_2 \cup \dots \cup B_n) = (A \cap B_1) \cup (A \cap B_2) \cup \dots \cup (A \cap B_n)$$

13. We showed that for sets that the intersection distributes over the union

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Use this result and induction to show that for any set two finite collections of sets $\{A_1, \ldots, A_m\}$ and $\{B_1, \ldots, B_n\}$ we have

$$(A_1 \cup A_2 \cup \dots \cup A_m) \cap (B_1 \cup B_2 \cup \dots \cup B_n) = \bigcup_{1 \le i \le m, 1 \le j \le n} (A_i \cap B_j)$$