Foundations of C.S.

CS5003 Quiz 0101 Spring, 2020

PRINT NAME: $_{\mathcal{SIGN}}$:

1. Let A be the set of natural numbers which are defined recursively by BASIS: 1 and 3 are in A.

RECURSIVE STEP: If $n \in A$, then 4n + 1 and 4n + 3 are both in A.

CLOSURE: $n \in A$ if a is obtained from the basis after a finite number of applications of the recursive step.

a) (4 points) Write down all the elements in L_0 and L_2 .

♣ This is the question I intended to ask: L_0 is the basis $L_0 = \{1, 3\}$

 L_1 consists of L_0 together with 5, 13, 7 and 15: $L_1 = 1, 3, 5, 7, 13, 15$

 L_2 consists of L_1 and new elements generated from 5, 13, 7 and 15, namely $L_2 = 1, 3, 5, 7, 13, 15, 21, 23, 29, 31, 53, 55, 61, 63$. Of course, in base 4 it is faster: L_0 is the basis

 $\begin{aligned} &L_0 = \{1,3\} \\ &L_1 = \{1,3,11,13,31,33\} \\ &L_12 = \{1,3,11,13,31,33,111,131,311,331,113,133,313,333\} \end{aligned}$

Let $B \subseteq \mathbb{N}$ be the set of all natural numbers whose base four representation has only digits 1 and 3.

b) (3 points) Show $A \subseteq B$

♣ Let $a \in A$. We show $a \in B$ by induction on the number of recursive steps applied to generate a.

Base Case: 0 steps. Then a is in the basis, so a = 1 or a = 3, and $a \in B$ as required.

Inductive Step: Suppose inductively that after n steps we have generated $a' \in B$, and we apply the n + 1'st step to generate a. a' is in B, so it is represented as a string of 1's and 3's. Multiplying by e shifts it by to the left and adds a zero at the end, and depending on which rule, we add a 1 or a 3. In either case, $a \in B$, as required.

So $a \in B$ no matter how many steps are required.

(A less formal induction is ok, but for that you have to be even more careful with your argument!)

Here is a second version without appealing to strings of 1's and 3's.

Basis Case: The same

Inductive Step: Suppose inductively that after n steps we have generated $a' \in B$, and we apply the n + 1'st step to generate a. a' is in B,

$$a' = f_0 4^0 + f_1 4^1 + \dots + f_n 4^n, \qquad f_i \in \{1, 3\}$$

We will apply one rule, if the first, let f = 1 and if the second, let f = 3. Then we get

$$a' = f \cdot 4^0 + f_0 4^1 + f_1 4^2 + \dots + f_n 4^{n+1}), \qquad f, f_i \in \{1, 3\}$$

so $a \in B$, as required.

c) (**3** points) Show $B \subseteq A$

Again, I will put in two write-ups, one with base 4 lingo, and one without.

Let $b \in B$. We have to show b can be recursively generated. and

$$b = f_0 4^0 + f_1 4^1 + \dots + f_n 4^n \qquad f_i \in \{1, 3\}$$

So start with the basis, 1 is $f_n = 1$ and 3 if f_n is 3, and apply the recursive step n times, at the *i*'th step taking the first rule if $f_{n-i} = 1$, and the second if $f_{n-i} = 3$. This generates b, so $b \in A$.

Let $b \in B$. We have to show b can be recursively generated. b is represented by a a string of 1's and 3' of length n. So start with the basis, 1 if the leftmost digit is 1 and 3 otherwise, and apply the same criterion at the i'th step using depending on the i's digits from the left of n. This generates b, so $b \in A$.

