

 $\begin{array}{c} \mathrm{Ma2201/CS2022} \\ \mathrm{Quiz} \ 1100 \end{array}$

Foundations of C.S.

Spring, 2019

PRINT NAME: $_{\mathcal{SIGN}}$: $_{\mathcal{SIGN}}$

1. Draw the state diagram for a non-deterministic finite automaton whose language is $(a^2)^* \cup (a \cup b)^2$.

$$\begin{array}{ccc} \boxed{q_0} & \stackrel{\lambda}{\longrightarrow} & \boxed{q_1} & \stackrel{a}{\longleftrightarrow} & \boxed{q_2} \\ \downarrow a, b & & & \\ \hline q_3 & \stackrel{a,b}{\longrightarrow} & \boxed{q_4} \end{array}$$

a) (4 pts) Fill in the table of the state transition function

state	λ – closure	a	$\mid b \mid$
q_0			
q_1			
q_2			
q_3			
$\overline{q_4}$			

*

state	λ – closure	a	b
$\overline{q_0}$	$\{q_0,q_1\}$	$\{q_2,q_3\}$	$\{q_3\}$
q_1	$\{q_1\}$	$\{q_2\}$	Ø
$\overline{q_2}$	$\{q_2\}$	$\{q_1\}$	Ø
$\overline{q_3}$	$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\overline{q_4}$	$\{q_4\}$	Ø	Ø

b) (5 **pts**) Use part a to draw the diagram of the deterministic finite automaton with the same language.

• Our algorithm gives

Note that states $\{q_1\}$ and $\{q_1,q_4\}$ are indistinguishable, and can be combined if desired.