Ma2201/CS2022 Quiz 0011

Spring, 2019

SIGN:

PRINT NAME:

1. (4 pts Give a recursive definition of the set $\{(n,m) \mid n \in \mathbb{N}, m \in \mathbb{N}, m < n\}$.

 \clubsuit Idea: The second coordinate can be any natural number, and given m, the lowest value the first coordinate can have is m + 1. Make a first rule generating (m + 1, m), and a second rule which just increments the first coordinate.

BASIS: (1, 0) is in the set.

RECURSIVE STEP: If (p,q) is in the set, (p+1,q+1) is in the set. (This alone generates $\{(m+1,m)\}$.)

If (p,q) is in the set, (p+1,q) is in the set.

CLOSURE: Every element is generated from the basis after a finite number of applications of the recursive step. *

2. (6 pts) Prove clearly and carefully by induction that $2 + 4 + 6 + \cdots + 2n = n^2 + n$.

 \clubsuit *Proof.* By induction on n.

Base case: For n = 1 the statement is $2 \cdot 1 = 1^2 + 1$, which is true. (Since the sum starts with 2, n = 0 is not a case. A similar formula with summation notation would work for n = 0.

Inductive Step. Suppose $2 + 4 + 6 + \cdots + 2n = n^2 + n$ for some $n \ge 1$. (This is the inductive hypothesis.) We have to compute

$$2 + 4 + 6 + \dots + 2n + 2(n + 1) = (2 + 4 + 6 + \dots + 2n) + 2(n + 1)$$

= $(n^2 + n) + 2(n + 1)$ by the inductive hypothesis
= $n^2 + 3n + 2$
= $n^2 + 3n + 2$
= $(n^2 + 2n + 1) + (n + 1)$
= $(n + 1)^2 + (n + 1)$

So the statement is true for n + 1, concluding the inductive step.

So the statement is true for all $n \ge 1$ by induction.

Since the second problem was a proof, you were not asked to prove that your answer was correct, but you should be able to do this. *