Ma2201/CS2022 Quiz 0010

Spring, 2019

SIGN:

1. (4 pts) Let $f : \mathbb{N} \to X$ be one to one.

Label each of the following with T if it must be true, F, it it must be false, and X if there is not enough information given.

 $_$ X is countable.

♣ X: We can conclude from the one-to-one function f that $|\mathbb{N}| < |X|$. So X is an infinite set, but whether it is countable or not cannot be determined from f. ♣

 $\underline{\quad} X$ is uncountable.

♣ X: We can conclude from the one-to-one function f that $|\mathbb{N}| < |X|$. So X is an infinite set, but whether it is countable or not cannot be determined from f. ♣

 $\mathbb{N} \times \{x \in X \mid x = f(k), k \in \mathbb{N}\}$ is countable.

♣ T: f is onto $\{x \in X \mid x = f(k), k \in \mathbb{N}\} \subseteq X$, so $\{x \in X \mid x = f(k), k \in \mathbb{N}\}$ is countable, and the product of two countable sets is countable. ♣

____ There is an onto function $g: X \to \mathbb{N}$.

T: This follows directly, or from the first questions where have have $|X| < |\mathbb{N}|$.

2. (6 pts) Let $R \subseteq (\mathbb{Z} \times \mathbb{Z}) \times \mathbb{Z} \times \mathbb{Z})$ be defined by

$$R = \{ ((p,q), (r,s)) \mid p + s^2 = r + q^2 \}.$$

Show that R is an equivalence relation, and find the equivalence class of (0, 0).

& We have to show reflexivity, symmetry and transitivity.

Reflexive: Let $(n,m) \in \mathbb{Z} \times \mathbb{Z}$. Then $n + m^2 = n + m^2$, so $((n,m), (n,m)) \in \mathbb{R}$.

Symmetric: Let $((p,q), (r,s)) \in R$, so $p + s^2 = r + q^2$. Then $r + q^2 = p + s^2$ and $((r,s), (p,q)) \in R$

Transitive: Let $((p,q), (r,s)) \in R$, and $((r,s), (t,u) \in R$, so $p + s^2 = r + q^2$ and $r + u^2 = t + s^2$. Adding the two equations gives $p + s^2 + r + u^2 = r + q^2 + t + s^2$, and canceling give $p + u^2 = q^2 + t$, so $((p,q), (t,u)) \in R$, and the relation is transitive.

So the relation is an equivalence relation.

Now, the equivalence class of (0,0) is all pairs (n,m) such that $((0,0), (n,m)) \in \mathbb{R}$, that is, $0 + m^2 = n + 0^2$, so the equivalence class of (0,0) is $\{(m^2,m) \mid m \in \mathbb{Z}\}$.