
CS5003 Foundations of C.S. Spring, 2015
Final Exam PRINT NAME:

SIGN :

Do any six problems. Write your answers clearly and neatly.
Use the back if necessary.

1. Let L be the language with definition

L = {aibk | 0 ≤ i ≤ k ≤ 2i}.

Give a recursive definition of L. Find L3 according to your definition. Finally give a
context free grammar which realizes L.

Solution:
BASIS: λ ∈ L
RECURSIVE STEP: u ∈ L⇒ aub, aub2 ∈ L.
CLOSURE: All elements in the language can be obtained from the basis with a finite

number of applications of the recursive step.

With this definition:
L0 = {λ}.
L1 = {λ, ab, ab2}.
L2 = {λ, ab, ab2, a2b2, a2b3, a2b4}.
L3 = {λ, ab, ab2, a2b2, a2b3, a2b4, a3b3, a3b4, a3b5, a3b6}.

G : S ⇒ aSb | aSb2

1 of 8

2. Let L be given by
BASIS: b, b2, b3 ∈ L
RECURSIVE STEP: If u ∈ L then auc ∈ L and babuc3 ∈ L2.
CLOSURE: A string is in L if if can be obtained from the basis by a finite number of

applications of the recursive step.
Prove by induction that for all w ∈ L, na(w) + nc(w) is even.

SOLUTION:
Proof. We will prove the statement by induction on the number of steps in the recursive

definition of w ∈ L.
Base Case: Suppose w ∈ L0. Then w ∈ {b, b2, b3}, so na(w) = nc(w) = 0, and

na(w) + nc(w) = 0 which is even.
Inductive step. Suppose na(u) + nc(u) is even for all u ∈ Ln. Let w ∈ Ln+1, so either

w = auc or w = auc3.
If w = auc then na(w) + nc(w) = na(u) + 1 + nc(u) + 1 = (na(u) + nc(u)) + 2 which is

even by the induction hypothesis.
If w = auc3 then na(w) + nc(w) = na(u) + 1 + nc(u) + 3 = (na(u) + nc(u)) + 4 which is

even by the induction hypothesis.
In either case na(w) + nc(w) is even, which completes the induction step.
So the statement is proved by induction.

2 of 8

3. Give regular expressions for each of the following subsets of {a, b, c}∗.
a) Strings which do not contain the substrings aa or bb.

SOLUTION:
Without c as a separator you have even or odd alternating a’s and b’s, so you could

take [(ab)∗(a ∪ λ)] ∪ [(ba)∗(b ∪ λ)].
With c, you can take

c∗{[[(ab)∗(a ∪ λ)] ∪ [(ba)∗(b ∪ λ)]]c+}∗[[(ab)∗(a ∪ λ)] ∪ [(ba)∗(b ∪ λ)]]

Note this also matches the empty string.

b) Set of strings of odd length containing exactly two b’s.

SOLUTION: It seems simplest to think of four cases, where the three strings separate
by the two b’s have length even-even-odd, even-odd-even, odd-even-even, or odd-odd-odd

[((a ∪ c)2)∗]b[((a ∪ c)2)∗]b[((a ∪ c)2)∗(a ∪ c)]
∪[((a ∪ c)2)∗]b[((a ∪ c)2)∗(a ∪ c)]b[((a ∪ c)2)∗]
∪[((a ∪ c)2)∗(a ∪ c)]b[((a ∪ c)2)∗]b[((a ∪ c)2)∗]
∪[((a ∪ c)2)∗(a ∪ c)]b[((a ∪ c)2)∗(a ∪ c)]b[((a ∪ c)2)∗(a ∪ c)]

c) Set of strings with an even number of a’s

SOLUTION:
[(a(b ∪ c)∗a) ∪ b ∪ c]∗

3 of 8

4. Give a deterministic finite automaton which realizes each of the following languages on
{a, b, c}.

a) Strings which do not contain the substrings aa or bb.

b) Set of strings of odd length containing exactly two b’s.

c) Set of strings with an even number of a’s

4 of 8

5. Construct a context free grammar whose language is L = {ambian | i = m+ n}.
Prove that your grammar is correct.

SOLUTION:

G : S → AB

A → aAb | λ
B → bBa | λ

We will S(G) the sentential forms of the grammar, is equal to the set
X = {S, amAbmbnBan, amAbmbnan, ambmbnBan, ambmbnan} with n,m ≥ 0.
Let S Proof: S(G) ⊆ X. Induction on the number of rules applied.
Base Case: If 0 rules have been applied, the sentential form is S, which is in X as

required.
Inductive Step. Assume that, after n rules have been applied, the sentential form n is

contained in X. If a rule applies w has an S, and A or a B.
If w has an S, then w = S and the applying the only rule gives AB ∈ X.
If an A rule applies then w is amAbmbnBan or amAbmbnan and applying the rule gives

am+1Abm+1bnBan, am+1Abm+1bnan, ambmbnBan or ambmbnan, each of which are in X.
If a B rule applies then w is amAbmbnBan or ambmbnBan and applying the rule gives

amAbmbn+1Ban+1, ambmbn+1Ban+1, amAbmbnan, or ambmbnan, each of which are in X,
So in any case, applying a rule gives a new rule in X and by induction L(G) ⊆ X
To show X ⊆ L(G), we provide a derivation sequence for the elements of X.

S ⇒ AB
m⇒ amAbmB

n⇒ amAbmbnBam ⇒ ambmbnBam ⇒ ambmbnam

Are derivation sequences for amAbmbnBam, ambmbnBam and ambmbnam and

S ⇒ AB
m⇒ amAbmB

n⇒ amAbmbnBam ⇒ amAbmbnam

are is a derivation sequence for amAbmbnam.
So X is the set of sentential forms, and the the elements with no variables are the

language L, so L = L(G).

5 of 8

6. Let G be the grammar given by

G : S → aAbB | ABC | a
A → aA | a
B → bBcC | b
C → abc

D → aAbBcCCC | AaA | E
E → DE | ED

Convert this grammar to Chomsky Normal Form.

First note that the final two symbols are useless, and can be eliminated. D is unreach-
able and E is non-terminable.

The grammar is non-contracting, and removing D removes the only chain rule. If you
keep D and E this chain rule must be removed. We will follow the procedure we covered
in class: We first introduce Ca, Cb, Cc

G : S → CaACbB | ABC | a
A → CaA | a
B → CbBCcC | b
C → CaCbCc

Ca → a

Cb → b

Cc → c

and then split all the long rules:

G : S → CaF1 | AG1 | a
A → CaA | a
B → CbH1 | b
C → CaG1

F1 → AF2

F2 → CbB

G1 → BC

H1 → BH2

H2 → CcC

G1 → CbCc

Ca → a

Cb → b

Cc → c

6 of 8

7. a) Let G be the grammar given by

G : S → AB | C
A → aA | B
B → bB | C
C → cC | A | a

Construct an equivalent grammar which does not contain chain rules.

We have seen this silly example before. CHAIN(S) = {S,A,B,C}, CHAIN(A) =
{A,B,C}, CHAIN(B) = {A,B,C}, CHAIN(C) = {A,B,C},

So A, B, and C are all equivalent.
We can either simplify to

G : S → AB | aA | aB | aC | a
A → aA | aB | aC | a
B → aA | aB | aC | a
C → aA | aB | aC | a

or just

G : S → AA | aA | a
A → aA | a

b) For the grammar

G : S → AB | BCS
A → aA | C
B → bbB | b
C → cC | λ

construct an essential non-contracting grammer GL with non-recursive start

For the non-recursive start we “step back” to a new start symbol S ′, and introduce a
new chain rule. (The directions to require us to remove the chain rules.)

G : S ′ S

S → AB | BCS
A → aA | C
B → bbB | b
C → cC | λ

7 of 8

Null(G) = {A,C} so we translate by

G : S ′ S

S → AB | BCS | B | |BS
A → aA | C | a
B → bbB | b
C → cC | c

If you also remove the chain rules, CHAIN(S ′) = {S ′, S, B}, CHAIN(S) = {S,B},
CHAIN(A) = {A,C}, CHAIN(B) = {B}, and CHAIN(C) = {C}. and we get

G : S ′ AB | BCS | bbB | b | |BS
S → AB | BCS | bbB | b | |BS
A → aA | cC | c | a
B → bbB | b
C → cC | c

Both the pervious two grammars solve the problem. And any essentially non-contracting
grammar giving the same language does as well, since the question did not specify how it
was to be created.

8 of 8

8. Find an equivalent Deterministic Finite Automaton. (Note that in the diagram, λ is
denoted by l.)

a

a q3

q2

q1

b

b

b

a a

q4

q5

l

lq0

l

Also give a regular expression for the language.

We first compute the transition function:

λ− closure a b
q0 {q0, q1, q2, q3, q5} {q2, q3, q4, q5} {q3, q5}
q1 {q1} {q3} ∅
q2 {q2, q3, q5} {q2, q3, q4, q5} {q3, q5}
q3 {q3} ∅ {q3}
q4 {q4} {q4} {q4}
q5 {q5} ∅ {q5}

Giving the automaton.

For the regular expression we can use the expression graphs, and the regular expression
easily simplifies to b+ ∪ a(a ∪ b)∗.

9 of 8

