Discrete Mathematics D Term 2019

Lectures 05 and 06

Summary

We introduced the cardinality of a set |A|, sets and showed

$$\begin{aligned} |\mathcal{P}(X)| &= 2^{|X|} \\ |\mathcal{P}_k(X)| &= \binom{|X|}{k} = \frac{|X|!}{k!(|X|-k)!}, \\ |X \times Y| &= |X| \cdot |Y|, \text{ The Multiplicative Principle!} \\ |X^c| &= |U| - |X|, \\ |A|, |B| \leq |A \cup B| \leq |A| + |B| \qquad 0 \leq |A \cap B| \leq |A|, |B| \end{aligned}$$

We introduced the union, intersection and complement, and the four identities

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \qquad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$\overline{A \cap B} = \overline{A} \cup \overline{B} \qquad \overline{A \cup B} = \overline{A} \cap \overline{B}$$

We demonstrated the double inclusion method of showing two sets are equal and did several examples, including that

$$\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B).$$

Set Theory

- 1. Let $Y = \{a, b, c, d, e\}$ What is $|\mathcal{P}(\mathcal{P}(Y)) \cap Y|$? What is $|\mathcal{P}(\mathcal{P}(Y)) \cap \mathcal{P}(Y)|$? What is $\mathcal{P}_2(Y) \cup \mathcal{P}_3(Y)$? What is $|\mathcal{P}(\mathcal{P}(Y)) \times \mathcal{P}(Y)|$?
- 2. Let $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$. For each of the following, write down at least two elements in the set (if there are that many) and compute the cardinality
 - (a) $X \times X$ (b) $X \times X \times X \times X$ (c) $\mathcal{P}(X)$ (d) $\mathcal{P}(X) \times X$ (e) $X \times \mathcal{P}_1(X) \times \mathcal{P}_1(\mathcal{P}_1(X)) \times \mathcal{P}_1(\mathcal{P}_1(\mathcal{P}_1(X)))$

- (f) $X \times \mathcal{P}_2(X) \times \mathcal{P}_2(\mathcal{P}_1(X)) \times \mathcal{P}_2(\mathcal{P}_2(\mathcal{P}_2(X)))$
- (g) $\mathcal{P}_0(X) \times \mathcal{P}_1(X) \times \mathcal{P}_2(X) \times \mathcal{P}_3(X)$
- (h) $\mathcal{P}(X) \cup \mathcal{P}(\mathcal{P}(X))$ (careful)
- (i) $\mathcal{P}(X) \cap \mathcal{P}(\mathcal{P}(X))$ (do you still have to be careful?)
- (j) $\mathcal{P}(\mathcal{P}(\mathcal{P}(X)))$
- (k) $\mathcal{P}_{10}(\mathcal{P}_{11}(\mathcal{P}_{12}(X)))$
- (l) $\mathcal{P}_{12}(\mathcal{P}_{11}(\mathcal{P}_{10}(X)))$
- (m) $\mathcal{P}(\mathcal{P}(X) \times X)$
- (n) $\mathcal{P}_2(\mathcal{P}_3(X) \times X)$
- (o) $\mathcal{P}_3(\mathcal{P}_2(X) \times X)$ (Better stop before I run out of letters)

 \clubsuit Ok, here goes...

(a) $X \times X$ (1,1) and (1,2). $|X \times X| = |X|^2 = 11^2$ (b) $X \times X \times X \times X$ (1, 2, 3, 4) and (4, 3, 2, 2). $|X \times X \times X \times X| = |X|^4 = 11^4$ (c) $\mathcal{P}(X)$ $\{1, 2, 3\}$ and \emptyset . $|\mathcal{P}(X)| = 2^{|X|} = 2^{11}$ (d) $\mathcal{P}(X) \times X$ $(\{1, 2, 3\}, 1)$ and $(\emptyset, 5)$. $|\mathcal{P}(X) \times X| = 2^{|X|} \cdot 11 = 2^{11} \cdot 11$ (e) $X \times \mathcal{P}_1(X) \times \mathcal{P}_1(\mathcal{P}_1(X)) \times \mathcal{P}_1(\mathcal{P}_1(\mathcal{P}_1(X)))$ $(9, \{1\}, \{\{2\}\}, \{\{\{3\}\}\})$ and $(8, \{1\}, \{\{2\}\}, \{\{\{3\}\}\}).$ $\binom{11}{1} = 11$, so 11^4 . (f) $X \times \mathcal{P}_2(X) \times \mathcal{P}_2(\mathcal{P}_1(X)) \times \mathcal{P}_2(\mathcal{P}_2(\mathcal{P}_2(X)))$ $(9, \{1, 2\}, \{\{2\}, \{3\}\}, \{\{\{1, 2\}, \{1, 3\}\}, \{\{1, 2\}, \{1, 4\}\}\})$ and $(8, \{1,2\}, \{\{2\}, \{3\}\}, \{\{\{1,2\}, \{1,3\}\}, \{\{1,2\}, \{1,4\}\}\}).$ $11 \cdot \binom{11}{2} \cdot \binom{\binom{11}{1}}{2} \cdot \binom{\binom{\binom{11}{1}}{2}}{2}$ (g) $\mathcal{P}_0(X) \times \mathcal{P}_1(X) \times \mathcal{P}_2(X) \times \mathcal{P}_3(X)$ $(\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\})$, and $(\emptyset, \{2\}, \{1, 2\}, \{1, 2, 3\})$. $\binom{11}{0} \times \binom{11}{1} \times \binom{11}{2} \times \binom{11}{3}$. (h) $\mathcal{P}(X) \cup \mathcal{P}(\mathcal{P}(X))$ (careful) $\emptyset, \{1\}.$ $|\mathcal{P}(X) \cup \mathcal{P}(\mathcal{P}(X))| = |\mathcal{P}(X)| + |\mathcal{P}(\mathcal{P}(X))| - |\mathcal{P}(X) \cap \mathcal{P}(\mathcal{P}(X))| =$ $|\mathcal{P}(X)| + |\mathcal{P}(\mathcal{P}(X))| - |\mathcal{P}(X \cap \mathcal{P}(X))| = |\mathcal{P}(X)| + |\mathcal{P}(\mathcal{P}(X))| - |\mathcal{P}(\emptyset)| = |\mathcal{P}(X)| + |\mathcal{P}($ $2^{|X|} + 2^{2^{|X|}} - 2^{0}$

(i) P(X) ∩ P(P(X)) (do you still have to be careful?)
Ø, that's all there is.
1.

You *always* have to be careful!

- (j) $\mathcal{P}(\mathcal{P}(\mathcal{P}(X)))$ $\emptyset, \{\{\{1\}\}\}.$ $2^{(2^{(2^{11})})}$ (is very very big.)
- (k) $\mathcal{P}_{10}(\mathcal{P}_{11}(\mathcal{P}_{12}(X)))$ Nothing here folks. (X has no 12 subsets.)
- (l) $\mathcal{P}_{12}(\mathcal{P}_{11}(\mathcal{P}_{10}(X)))$ X has 11 10 subsets, so the \mathcal{T}

X has 11 10-subsets, so the $\mathcal{P}_{11}(\mathcal{P}_{10}(X))$ has just one element, (all eleven of them) so there are no 12-subsets of that. So nothing here either.

If you don't like that, do $\binom{\binom{11}{10}}{12} = \binom{\binom{11}{11}}{12} = \binom{1}{12} = 0$ (m) $\mathcal{P}(\mathcal{P}(X) \times X)$

- $\begin{cases} (\{1\},1)\}, \text{ and } \{(\{1\},1),(\{1,5\},2)\}.\\ 2^{2^{11}\cdot 11}. \end{cases}$
- (n) $\mathcal{P}_2(\mathcal{P}_3(X) \times X)$ $\{(\{1, 2, 3\}, 3), (\{1, 2, 3\}, 4)\}$ and $\{(\{1, 2, 3\}, 3), (\{3, 4, 5\}, 4)\}.$ $\binom{\binom{11}{3} \cdot 11}{2}.$
- (o) $\mathcal{P}_3(\mathcal{P}_2(X) \times X)$ Now, that wasn't so bad... $\{(\{1,2\},3), (\{2,3\},4), (\{2,3\},5)\}$ and $\{(\{1,2\},3), (\{2,3\},4), (\{2,3\},7)\}.$ $\binom{\binom{11}{2}\cdot11}{3}.$
- 3. Let $A = \{1, 2, 3, 4, 5, 6\}$ and $B = \{2, 3, 6, 8\}$. Compute $A \cup B$, $A \cap B$, $\mathcal{P}(A \cap B)$, $\mathcal{P}(A) \cap \mathcal{P}(B)$
- 4. Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10\}$ be the universe from which all the elements are drawn. Let $A = \{5\}$ and $B = \{3, 4, 5, 6\}$. Compute $A \cup B$, $A \cap B$, $A \cap B^c$, $A^c \cap B^c$, and $A \cap (B \cap A^c)$.
- 5. Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10\}$ be the universe from which all the elements are drawn. Let $A = \{5\}$ and $B = \{3, 4, 5, 6\}$. Write down three different expressions involving A, B, \cup, \cap , and $(-)^c$ which denote the empty set.
- 6. Let A and B be sets. Prove that $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ using the double inclusion method.
- 7. Let A and B be sets. Prove that $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ using the double inclusion method.

♣ First we show $(A \cup B) \cap C \subseteq (A \cap C) \cup (B \cap C)$, so let $x \in (A \cup B) \cap C$. Thus $x \in A \cup B$ and $x \in C$. Since $x \in A \cup B$, we have $x \in A$ or $x \in B$. Case 1: Let $x \in A$. Then, since $x \in C$, we have $x \in A \cap C$, hence $x \in (A \cap C) \cup (B \cap C)$.

Case 2: Let $x \in B$. Then, since $x \in C$, we have $x \in B \cap C$, hence $x \in (A \cap C) \cup (B \cap C)$ in this case as well.

So $(A \cup B) \cap C \subseteq (A \cap C) \cup (B \cap C)$.

Second we show $(A \cap C) \cup (B \cap C) \subseteq (A \cup B) \cap C$, so let $y \in (A \cap C) \cup (B \cap C)$, so there are two cases.

Case 1: $y \in A \cap C$, so $y \in A$ and $y \in C$. Since $y \in A$, we have $y \in A \cup B$, so $y \in (A \cup B) \cap C$.

Case 2: $y \in B \cap C$, so $y \in B$ and $y \in C$. Since $y \in B$, we have $y \in A \cup B$, so $y \in (A \cup B) \cap C$ in this case as well.

So $(A \cap C) \cup (B \cap C) \subseteq (A \cup B) \cap C$.

Therefore, by the double inclusion method, $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

- 8. Let A and B be sets. Prove that $(A \cap B)^c = A^c \cup B^c$ using the double inclusion method.
- 9. Let A and B be sets. Prove that $(A \cup B)^c = A^c \cap B^c$ using the double inclusion method.
- 10. Let $P = \{n \in \mathbb{N} \mid n = 6i, i \in \mathbb{N}\}, Q = \{m \in \mathbb{N} \mid m = 3j, j \in \mathbb{N}\}, \text{ and } R = \{l \in \mathbb{N} \mid l = 2k, k \in \mathbb{N}\}.$

Show with the double inclusion method that $P = Q \cap R$.

[Hint: Somewhere in the argument, you might want to use that the product of two odd numbers must be odd.]

11. In class we proved $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

Try to prove $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$

(If you don't think if is true, try to find two sets A and B for which it is false.)

♣ It is false. Try $A = \{1\}$ and $B = \{2\}$, then $\mathcal{P}(A \cup B)$ contains $\{1, 2\}$ as an element, but neither of $\mathcal{P}(A)$ or $\mathcal{P}(B)$ does. ♣