Lectures 19 and 20

We described RSA, which requires is based on two primes p, and q, and two numbers ϵ and δ such that $\epsilon \delta \equiv 1 \mod (p-1)(q-1)$.

Then Alice encodes M by $M^{\epsilon} \mod pq$, and Bob decodes by M^{ϵ} by $(M^{\epsilon})^{\delta} \mod pq$.

We showed $(M^{\epsilon})^{\delta} = M^{\epsilon \delta} \equiv M \mod pq$.

We also showed that RSA depends on having a fast method to exponentiate in \mathbf{Z} , and introduced the repeated squaring algorithm.

We also introduced the big-O and little-o notation to easily compare growth rates.

Exercises for Lectures 19 and 20

1. Suppose we have an RSA scheme in which p = 13 q = 17. Suppose Alice's encoding key is 19. What is the Bob's decoding key?

How many possible encoding keys could Alice have been assigned. (Hint - use inclusion, exclusion.)

- 2. Suppose we have an RSA scheme in which $p = 101 \ q = 103$. How many possible encoding keys are there?
- 3. Suppose we have an RSA scheme in which p = 41 q = 43. Can we use 41 or 43 as encoding keys? If so, what are the decoding keys?
- 4. Compute $2^{1000} \mod 11$.
- 5. Compute $2^{1000} \mod 101$.
- 6. Use fast exponentiation to compute $10^{18} \mod 13$.
- 7. Use fast exponentiation to compute $10^{17} \mod 101$.
- 8. Show that the number of binary digits of the number n is $O(\log_2(n))$.
- 9. Show that the number of binary digits of the number n is $O(\log_{10}(n))$.
- 10. Show $\ln(n) = O(n \ln(n))$.
- 11. Show $\ln(n) = o(n \ln(n))$.
- 12. Is $e^n = O(2^n)$?
- 13. Is $n^3 = O(n^4)$?
- 14. Let f(n) be a quadratic and g(n) be a cubic. Show $f(n) + g(n) = O(n^3)$. Show $f(n)g(n) = O(n^5)$. Show g(n)/f(n) = O(n). Show $f(g(n)) = O(n^6)$.