Lectures 17 and 18

We discussed the arithmetic of the systems \mathbb{Z}_n .

We illustrated the "Chinese Remainder Theorem" to solve

 $x \equiv b_1 \mod n_1$ $x \equiv b_2 \mod n_2$ $gcd(n_1, m_1) = 1$

Using $\lambda n_1 + \mu n_2 = 1$ as $x = b_2 \lambda n_1 + b_1 \mu n_2 = 1$.

We showed how to find the additive and multiplicative inverses in \mathbb{Z}_n . We showed that a has a multiplicative inverse in \mathbb{Z}_n if and only if gcd(a, n) = 1, and how to use the multiplicative inverse to divide in \mathbb{Z}_n .

We discussed the multiplicative order in \mathbb{Z}_n and showed that the multiplicative order of any element in \mathbb{Z}_n divides the number of elements in \mathbb{Z}_n which have multiplicative inverses.

In particular Fermat's Little Theorem: For any prime p and any $a \in \mathbb{Z}_p$ with $a \not\equiv 0 \mod p$ satisfies $a^{p-1} \equiv 1 \mod p$.

Exercises for Lectures 17 and 18

- 1. In \mathbb{Z}_7 compute the following: 15 + 25, 15 25, 15×25 , $15 \div 25$,
- 2. In \mathbb{Z}_{31} compute the following. 15 + 25, 15 25, 15×25 , $15 \div 25$,
- 3. In \mathbb{Z}_{101} compute the following: 15 + 25, 15 25, 15×25 , $15 \div 25$,
- 4. In \mathbb{Z}_{12} compute the following: 5 + 11, 5 11, 5 × 11, 5 ÷ 11,
- 5. In \mathbb{Z}_{24} find all elements which have multiplicative inverses, and find those inverses.
- 6. An band tries to march in rows of 8 but the last row has only 4 members. It is reorganized to march in rows of 11 but there are only 10 members. What is the fewest number of members this band can have?
- 7. Find an number which m such that $m \equiv 3 \mod 5$, $m \equiv 5 \mod 7$, and $m \equiv 7 \mod 11$.
- 8. Find the multiplicative order of every non-zero element in \mathbb{Z}_{17}
- 9. Find the multiplicative order every element in \mathbb{Z}_{30} which has multiplicative inverse. (There are eight of them.)
- 10. What are the possible multiplicative orders of elements in \mathbb{Z}_{101} ?
- 11. Find an element of multiplicative order 2 in \mathbb{Z}_{11} ?