Lectures 11 and 12

We discussed logical implication: $p \Rightarrow q$, IF p THEN q, or p IMPLIES q.

$$(p \Rightarrow q) = (q \lor \neg p)$$

We showed the double implication method for showing $p \Leftrightarrow q$ by showing separately that $p \Rightarrow q$ and $q \Rightarrow p$

We discussed the cannonball stacking problem.

We showed how it was reasonable to suspect that the number of cannonballs in a square based stack of height n is given by $\frac{n(n+1)(2n+1)}{c}$.

We proved this statement by Mathematical Induction.

Exercises for Lectures 9 and 10

1. Use the double implication method to show that

$$p \lor (q \land r) \Longleftrightarrow (p \lor q) \land (p \lor r).$$

2. Use the double implication method to show that

$$p \land (q \lor r) \iff (p \land q) \lor (p \land r).$$

3. Use the double implication method to show that

 $\neg (q \lor r) \iff (\neg p \land \neg q).$

4. Use the double implication method to show that

 $\neg (q \land r) \iff (\neg p \lor \neg q).$

- 5. Show that $[(p \Rightarrow q) \Rightarrow r] \Longrightarrow [p \Rightarrow (q \Rightarrow r)].$
- 6. Show that $[(p \Rightarrow q) \Rightarrow r] \Longrightarrow [p \Rightarrow (q \Rightarrow r)].$
- 7. Show that $[(p \land \neg r) \lor (q \land \neg p) \lor (r \lor \neg q)] \iff [(p \land \neg q) \lor (q \land \neg r) \lor (r \lor \neg p)].$
- 8. Let p_n be the statement $2 + 4 + 6 + 8 + \dots + (2n) = n(n+1)$. What is p_1 ? What is p_2 . What is p_{10} ? Which of them are true?
- 9. Let p_n be the statement $2+4+6+8+\cdots(2n)=n(n+1)$. Show that p_n is true for all n by induction.
- 10. Let n be a natural number and let p_n be the statement "The number $n^3 n$ is evenly divisible by 3".

What is statement p_2 ?

What is statement p_5 ?

Are they both true?

11. Let n be a natural number and let p_n be the statement "The number $n^3 + 2n$ " is evenly divisible by 3.

Show that p_n is true for all n by induction.

12. Let p_n be the statement "In a party with *n* people, if every guest shakes hands once with every other guest, there must be n(n-1)/2 handshakes during the party."

What is statement p_5 ? It is true?

Show all statements p_n are true by induction for n > 0.

- 13. Prove by induction that $2n^3 + 3n^2 + n$ is always evenly divisible by 6.
- 14. Show by induction that $1 + 3 + 5 + 7 + \dots + (2n 1) = n^2$
- 15. Consider the statement p_n defined by

$$1 + n + \frac{n(n-1)}{2} + \frac{n(n-1)(n-2)}{6} + \frac{n(n-1)(n-2)(n-3)}{24} = 2^n$$

Check the truth of p_n for n = 0, n = 1, n = 2, n = 3, and n = 4.

What can you conclude from this about the truth of p_n for all n?

16. Consider a collection of *n* straight lines drawn haphazardly in the plane, so that no two are parallel and no three or more intersect in a single point. How many points of intersection does this collection of *n* lines have? Note, the intersection point still exists even if it is off the paper.

Consider small cases, and look for a formula. Prove your formula using induction.

- 17. Use induction on m to show that the number of functions from n-set to an m-set is m^n for $m \ge 1$.
- 18. Use induction on n to show that

 $p \lor (q_1 \land q_2 \land \dots \land q_n) = (p \lor q_1) \land (p \lor q_2) \land \dots \land (p \lor q_n).$

19. Use induction on n to show that

$$A \cup (B_1 \cap B_2 \cap \dots \cap B_n) = (A \cup B_1) \cap (A \cup B_2) \cap \dots \cap (A \cup B_n)$$

20. Use induction on n to show that

$$\neg (B_1 \cap B_2 \cap \dots \cap B_n) = (\neg B_1) \cup (\neg B_2) \cup \dots \cup (\neg B_n).$$