Exercises for Lectures 7 and 8

Cardinality of Finite Sets:

Lectures 7 and 8 we discussed functions on sets, the cardinality of infinite sets and introduced formal logic.

If X and Y are finite sets, the number of functions from X to Y, $f: X \to Y$ is $|Y|^{|X|}$. The number of one to one functions is $\frac{|Y|!}{(|Y|-|X|)!}$.

Two sets have the same cardinality if there is a one-to-one and onto function between them.

A set with the same cardinality as \mathbb{N} is said to be *countable*.

We showed $\mathcal{P}(\mathbb{N})$ is uncountable.

We considered several examples. In general, countable unions and finite products of countable sets are countable. An infinite product of a finite sets is uncountable.

Formal logic concerns statements. A statement is either TRUE (1) or FALSE (0).

Statements can be formed from \land (AND), \lor (OR) and \neg (NOT). We stated the distributive laws:

$$p \lor (q \land r) = (p \lor q) \land (p \lor r) \qquad \qquad p \land (q \lor r) = (p \land q) \lor (p \land r)$$

and Demorgan's laws:

$$\neg (p \lor q) = (\neg p) \land (\neg q) \qquad \neg (p \land q) = (\neg p) \lor (\neg q)$$

- 1. find a one-to-one and onto function from $\mathcal{P}_2(\{1,2,3,4,5\})$ to to $\mathcal{P}_3(\{1,2,3,4,5,6\},$ or show that one does not exist.
- 2. find an onto function from $\mathcal{P}_2(\{1,2,3,4,5,6\})$ to to $\mathcal{P}(\{2,4,6\},$ or show that one does not exist.
- 3. find a one-to-one and onto function from $\mathcal{P}_2(\{1,2,3,4\}) \cup \mathcal{P}_2(\{6,7,8,9,10\})$ to to $\mathcal{P}(\{1,2,3,4\})$, or show that one does not exist.
- 4. find a one-to-one and onto function from $\mathcal{P}_2(\{1,2,3,4\}) \times \mathcal{P}_2(\{6,7,8,9,10\})$ to to $\mathcal{P}(\{1,2,3,4\})$, or show that one does not exist.
- 5. Is $\mathcal{P}_2(\mathbb{N})$ countable. Why or why not?
- 6. Is $\mathcal{P}_3(\mathbb{N})$ countable. Why or why not?
- 7. Is $\mathcal{P}_3(\mathbb{Q})$ countable. Why or why not?
- 8. Is $\mathcal{P}_3(\mathbb{Q} \times \mathbb{Q})$ countable. Why or why not?
- 9. Is the set of finite subsets of \mathbb{N} countable? Why or why not?
- 10. Is the set of finite subsets of $\mathcal{P}(\mathbb{N})$ countable? Why or why not?

11.	Suppose p is TRUE and q is FALSE, and r is a statement.	Label each of
	the following as true or false, or undecidable:	

 $\underline{\hspace{1cm}} p \vee \neg ((p \wedge q) \vee \neg (p \wedge q \wedge r)).$

12. Suppose $p \wedge (q \vee (p \wedge q))$ is TRUE. What can you conclude about the truth of p and q?