

Ma2201/CS2022 Quiz 0111

Discrete Mathematics

1. (2 points) Consider $f(n) = \frac{n^n}{n!}$. Circle the best answer.

a) $f(n) \approx 3^n$ b) $f(n) = e^n$. c) f(n) grows faster than 2^n d) none of the above

By Stirling's formula $f(n) \approx \frac{e^n}{2\pi n}$, a) is not true. $f(n) \approx 3^n$ means that $\lim_{n \to \infty} \frac{f(n)}{3^n} = 1$, but $\lim_{n \to \infty} \frac{f(n)}{3^n} = \infty$. b) is false, just check at n = 1. c) is true since e/2 > 1 and $f(n)/2^n \approx \frac{(e/2)^n}{2\pi n}$. d) false since c) is true. 2. (2 points) Which of the following numbers is closest in value to $\binom{100}{100} + \binom{101}{100} + \binom{102}{100} + \binom{103}{100} + \binom{104}{100} + \binom{105}{100} + \binom{106}{100} + \binom{107}{100}$. Circle the best answer.

a)
$$2^{105}$$
 b) $\begin{pmatrix} 108\\100 \end{pmatrix}$.
c) $\begin{pmatrix} 108\\7 \end{pmatrix}$ d) $\begin{pmatrix} 108\\99 \end{pmatrix}$

By the "hockey stick" formula, the eight terms sum to $\binom{108}{101}$ which is equal to $\binom{108}{108-101} = \binom{108}{7}$.

So c) is the best answer.

3. (6 points) Prove that for all n

$$\sum_{i=0}^{n} \binom{n}{i} \binom{2n}{n+i} = \binom{3n}{n}$$

The term on the right is the number of ways to choose n things from 3n things. There terms on the right have two factors, the ways of choosing things from an n-set and a 2n-set respectively. This suggests the following argument:

Proof: Let A be a set with |A| = n and let B be a subset with |B| = 2n, and suppose $A \cap B = \emptyset$, so $|A \cup B| = 3n$. (A are the "golden elements")

 $\binom{3n}{n}$ is the number of subsets of $A \cup B$ with cardinality n.

For $i, 0 \leq i \leq n$, $\binom{n}{i}$ is the number of subsets of A with i elements and $\binom{2n}{n-i}$ is the number of subsets of B with n-i elements so $\binom{n}{i}\binom{2n}{n-i}$ is the number of subsets of $A \cup B$ of cardinality n with i elements in A and the rest of the elements in B. Since the subsets of $A \cup B$ have from 0 to n elements in A,

$$\sum_{i=0}^{n} \binom{n}{i} \binom{2n}{n-i} = \binom{3n}{n}.$$

Finally, by symmetry, $\binom{2n}{n-i} = \binom{2n}{2n-(n-i)} = \binom{2n}{n+i}$, giving the result.