

Ma2201/CS2022 Quiz 0100

1. (4 points) Suppose that $\{p_n\}$ is a set of statements for $n \in \{1, 2, 3, \ldots\}$, and suppose that for all n we have $p_n \Longrightarrow p_{n+1}$.

Suppose $p_3 \lor p_5$ is true and $p_2 \lor p_4$ is true. Circle each of the following which must be true.

b) $p_1 \vee p_5$ a) $p_1 \vee p_6$ c) $p_1 \vee p_4$ d) $p_1 \vee p_3$

We have $p_2 \vee p_4$ is true. If p_2 is true, then so is p_3 and p_4 by induction. If p_2 is false, then $p_2 \vee p_4$ implies p_4 is true. So p_4 is true in either case, and by induction so is p_5 and p_6 , so a), b) and c) should be circled.

d) should not be circled since p_1 , p_2 and p_3 false and all others true is consistent with the assumptions.

2. (6 pts) Prove carefully by induction that $\left[\sum_{k=1}^{n} k\right] = n(n+1)/2$.

The statement is $p_n := [\sum_{k=1}^n k = n(n+1)/2]$. Proof by induction. Base case: $p_1 := [\sum_{k=1}^1 k = 1(1+1)/2]$ The right hand side is 1. The left hand side is 1(2)/2 = 1. So p_1 is true.

Induction Step: Assume p_n is true, that is, assume $\sum_{k=1}^n k = n(n+1)/2$ is true for a particular value of n.

We want to show $p_{n+1} := \left[\sum_{k=1}^{n+1} k = (n+1)(n+2)/2 \right].$

$$\sum_{k=1}^{n+1} k = \left(\sum_{k=1}^{n} k\right) + (n+1)$$

= $n(n+1)/2 + (n+1)$ using p_n , that is, by the induction hypothesis
= $(n+1)[n/2+1]$
= $(n+1)[(n+2)/2]$
= $(n+1)(n+2)/2$

as required.

So p_{n+1} is true and have have shown $p_n \Longrightarrow p_{n+1}$.

Conclusion. Since the base case, p_1 , is true and the induction step is true for all n, the statement p_n is true for all n > 1.