Ma2201/CS2022 Quiz 0010 Discrete Mathematics

D Term, 2012

Sign:

Print Name:

1. (4 pts) Let $A = \{1, 3, 5, 7\}, B = \{2, 4, 6, 8\}$ and $C = \{1, 2, 3, 4\}$. Give the cardinality of each of the following. __8__ $A \cup B \cup C$ ___0__ $A \cap B \cap C$

2. (4 pts) Let X, Y and Z be sets. Prove directly that $X \cup (Y \cap Z) \subseteq (X \cup Y) \cap (X \cup Z)$. Solution:

Let $a \in X \cup (Y \cap Z)$. Then $a \in X$ or $a \in Y \cap Z$.

If $a \in X$, then $a \in X \cup Y$ and $a \in X \cup Z$, so $a \in (X \cup Y) \cap (X \cup Z)$.

On the other hand, if $a \in Y \cap Z$, then $a \in Y$ and $a \in Z$. Since $a \in Y$ then $a \in X \cup Y$. Since $a \in Z$, $a \in X \cup Z$. So $x \in (X \cup Y) \cap (X \cup Z)$.

So, in either case $a \in (X \cup Y) \cap (X \cup Z)$ as required.

Note: A correct "Venn diagram proof" would require an explanation of how and why your shaded diagrams are arrived at, and what they indicate.

3. (2 pts) Let $D = \{1, 2\}$, E be the set of all subsets of D, and F be the set of all subsets of E. What is $E \cap F$?

Solution: The elements of *E* are sets of integers: $E = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$. The elements of *F* are sets of sets of integers $F = \{\emptyset, \{\emptyset\}, \{\{1\}\}, \{\{2\}\}, \{\{1,2\}\}, \{\{0, \{1\}\}, \{\emptyset, \{2\}\}, \{\{1\}, \{2\}\}, \{\{1\}, \{2\}\}, \{\{1\}, \{2\}\}, \{\{1,2\}\}, \{\{0, \{1\}, \{1,2\}\}, \{\{0, \{1\}, \{1,2\}\}, \{\{0, \{1\}, \{1,2\}\}, \{\{0, \{1\}, \{1,2\}\}, \{\{0, \{1\}, \{2\}, \{1,2\}\}, \{\{1\}, \{2\}, \{1,2\}\}, \{\{1,2$