LightSight: LiDAR and sonar-based real-time obstacle detection Rachel Bunsick, Charlotte Cain, Isabella Doyle, Garyth Page-Violette, Diego Suchenski Loustaunau, Aaron Tian, David Zhukovsky

Engineering Goal

A visually-impaired wheelchair user has difficulty navigating obstacles in their environment, Our engineering goal is to build, test, and deliver an obstacle detection device which alerts the user of obstructions to their movement path.

Background

STATISTICS

The American Federation for the Blind estimates 14.86% of individuals who are legally blind or have serious visual difficulties use a wheelchair (Simpson et al.,

THE CLIENT

This product was designed for a visually impaired individual, who uses a manual wheelchair.

A LiDAR sensor will be mounted on a tilting mechanism above the head of the user. In addition sonar sensors will be mounted below the wheelchair.

THE SOLUTION

The goal is to increase ndependence and mobility for visually mpaired wheelchair users.

Preliminary Designs

Requirement

The device must be able to sense obst meter range directly in front of the w The device must be capable of alertir impaired individuals

The electronic system shall detect dru curbs, etc.) greater than 2" under the its front and back.

The device must be able to sense obs three-quarters of the way up from the of the wheelchair.

The device shall propose a safe altern user before the object is incidentally o The device shall be functional in dark The device shall be able to notify the two ways (ex. sound and vibration)

Must sense 360° around the user. The apparatus will be capable of prov

information to the user regarding the pace between the m and environmen The device will contain a remote aler of notifying others in a separate envir detected collision.

The device shall scan and map the su environment in three dimensions to as alternative route navigation.

The device will allow the user to prop and type of information relayed to th The device must be able to attach to t The device shall use a rechargeable e Wires and electric parts will be protec waterproof

The apparatus shall weigh less than 5 The device will be integrable with ma different from the client's.

The total price of the device must not excluding already obtained and borro The user must be physically capable (nanual wheelcha

The device shall include a user manu operation and capabilities of the appa The device will include documentation design, materials, and data collection The device shall include figures/diag installation.

Figure 1: Iterations of prototyping and number of collisions for each. Significant p values for each prototype in comparison with control. Complete system had highly significantly less collisions (**p = 0.000002648).

Decision Matrix

	Level	Туре	Verison 1 - SONAR Only	Verison 2 - LiDAR Only	Verison 3 - SONAR and LiDAR	
tacles within a 1.5 heelchair.	1	functional	pass	pass	pass	
g visually	1	functional	pass	pass	pass	
ops (ie. stairs, wheelchair in	1	functional	fail	pass	pass	
tacles floor to the top	2	functional	fail	fail	fail	
ative path to the detected	2	functional	pass	pass	pass	
conditions.	2	functional	pass	pass	pass	
user in at least	2	functional	fail	fail	fail	
	2	functional	fail	pass	pass	
riding a range of scope of the ral obstacles.	3	functional	fail	fail	fail	
t system capable onment about a	3	functional	fail	fail	fail	
rrounding ssist with	3	functional	fail	pass	pass	
gram the range em.	3	functional	fail	fail	fail	
he wheelchair.	1	physic al	pass	pass	pass	
nergy source.	1	physical	pass	pass	pass	
	2	physic al	pass	pass	pass	
lbs.	2	physic al	pass	pass	pass	
anual wheelchairs	2	physic al	pass	pass	pass	
exceed 125 USD, wed materials.	1	cost	pass	pass	pass	
of operating a	1	user	pass	pass	pass	
al detailing the ratus.	1	documentation	pass	pass	pass	
n specifying the /analysis.	1	docum entation	pass	pass	pass	
rams regarding its	1	docum entation	pass	pass	pass	

Results and Testing

Final Design

LiDAR sensor mounted above wheelchair, sonar connected to each footrest, two bracelets (left and right) with vibration modules in each.

Bracelets with Vibration Modules

Sonar Sensors on Footrests

LiDAR Sensor

Completed Prototype

Conclusion

Our system was successful in reducing the amount of wheelchair collisions in two minutes. The sonar and LiDAR system reduced collisions significantly (*p = 0.000002648). In addition, the complete system perform significantly better than both other iterations (*p = 0.022963, **p = 0.000053), proving to be the best option.

Our multifaceted approach means we have the ability to make updates and edits more easily. In addition, our Velcro attachment system would make the system more applicable to different wheelchairs.

Data Collection

Bata was collected through a series of tests run on a sample obstacle-filled pathway. Each group member was blindfolded and asked to navigate the path first using the wheelchair only. Then, the process was repeated with the prototype attached to the wheelchair. Number of collisions along with total time were collected for each run.

Future

- Enable real-time topography analysis and mapping of the user's environment to provide programmed routes
- Utilize mobile notifications to alert caretakers or loved ones of potential collisions
- Deploy electromagnetic or other automated braking system to protect users
- Optimize the apparatus for cost and production scale

